5平面平行力系的平衡条件

合集下载

平面任意力系的平衡条件和平衡方程

平面任意力系的平衡条件和平衡方程

理论力学 3-2平面任意力系的平衡条件和平衡方程 图 3-8 b
理论力学 3-2平面任意力系的平衡条件和平衡方程
(2)按图示坐标列平衡方程
理论力学 3-2平面任意力系的平衡条件和平衡方程
(3)解方程 解方程,求得
负号说明图中所设方向与实际情况相反,即 MA 为顺时针转向。
理论力学 3-2平面任意力系的平衡条件和平衡方程
二、关于平面任意力系 的例题
理论力学 3-2平面任意力系的平衡条件和平衡方程
例3-2 起重机 P1 = 10 kN,可绕铅直轴AB转动;
起重机的挂钩上挂一重为 P2 = 40 kN 的重物, 如图 3-6 所示。
起重机的重心C到转动轴的距离为1.5 m, 其他尺寸如图所示。
求在止推轴承 A 和轴承 B 处的约束力。
理论力学 3-2平面任意力系的平衡条件和平衡方程
b.如果力系对另一点 B的主矩也同时为 零,则这个力系或一合力沿 A,B 两点的连 线,或者平衡(图3-9)。
c.如果再加上
,那么力系如
有合力,则此合力必与 x 轴垂直。
理论力学 3-2平面任意力系的平衡条件和平衡方程 图 3-9
理论力学 3-2平面任意力系的平衡条件和平衡方程
理论力学 3-2平面任意力系的平衡条件和平衡方程
解: (1)选梁AB为研究对象 梁 AB 所受的主动力有: 均布载荷 q,
重力 P 和矩为 M 的力偶。 梁AB所受的约束力有: 铰链 A 的两个分力 Fax 和 FAy ,滚动支
座 B 处铅直向上的约束力FB。
理论力学 3-2平面任意力系的平衡条件和平衡方程
(2)列平衡方程 取坐标系如图3-7所示,列出平衡方程:
理论力学 3-2平面任意力系的平衡条件和平衡方程

理论力学第3章 力系的平衡条件与平衡方程

理论力学第3章 力系的平衡条件与平衡方程

10
例题二的解答
解:选取研究对象:杆CE(带有销 钉D)以及滑轮、绳索、重物组成 的系统(小系统)受力分析如图, 列平衡方程:
M D (F ) 0 M C (F ) 0 M B (F ) 0
( F C cos ) CD F ( DE R ) PR 0 F Dx DC F ( CE R ) PR 0 F BD F ( DE R ) P ( DB R ) 0 Dy
2012年11月3日星期六
北京邮电大学自动化学院
29
滚动摩擦力偶的性质
滚动摩擦力偶M 具有如下性质(与滑动摩擦力性质类似): ◆ 其大小由平衡条件确定; ◆ 转向与滚动趋势相反; ◆ 当滚子处于将滚未滚的平衡临界状态时, M = M max =δFN
式中:δ —滚动摩擦系数,它的量纲为长度; FN —法向反力(一般由平衡条件确定)。
q (2a b) 2a
2
YA q (2a b)
16
2012年11月3日星期六
北京邮电大学自动化学院
课堂练习3
多跨静定梁由AB梁和BC梁用中间铰B连接而成,支撑和荷 载情况如图所示,已知P = 20kN,q=5kN⋅m,α = 45°。求 支座A、C的反力和中间铰B处的反力。
2012年11月3日星期六
x
xC
x
2012年11月3日星期六
北京邮电大学自动化学院
5
平行分布线载荷的简化
Q
q
1、均布荷载 Q=ql
l 2
l 2
Q
q
2、三角形荷载 Q=ql /2
2l 3
l 3
Q
3、梯形荷载 Q=(q1+q2)l /2 (自己求合力的位置)

第四章:力系的平衡条件与平衡方程

第四章:力系的平衡条件与平衡方程

未知量个数 <= 独立平衡方程数 静定
(全部未知量可以由平衡方程完全求解)
未知量个数 > 独立平衡方程数 静不定或超静定
(未知量不能全部由平衡方程求解)
物体系的平衡·静定和超静定问题
未知量个数 <= 独立平衡方程数 静定
(全部未知量可以由平衡方程完全求解)
未知量个数 > 独立平衡方程数 静不定或超静定
∑ M B = 0 −8FAy + 5*8 +10*6 +10* 4 +10* 2 = 0
得 FAy = 20kN ∑ Fiy = 0 FAy + FBy − 40 = 0
得 FBy = 20kN
求各杆内力
取节点A
⎧⎪∑ ⎨⎪⎩∑
Fiy Fix
= =
0 0
→ →
FAD FAC
取节点C
⎧⎪∑ ⎨⎪⎩∑
解得 P3max=350kN
22mm 22mm
所以,平衡载重P3取值范围为:
75kN ≤ P3 ≤ 350kN
(2)P3=180kN时:
∑ M A = 0 4P3 − 2P2 −14P1 + 4FB = 0
解得 FB=870kN
∑ Fy = 0 FA + FB − P1 − P2 − P3 = 0
∑M =0
FA'
⋅r
sinθ
− M2
=
0
解得 M 2 = 8kN ⋅m
FB = FA = 8kN

已知:OA=R,AB=
l,
r F
,
不计物体自重与摩擦,系统在图示位置平衡;
求: 力偶矩M 的大小,轴承O处的约 束力,连杆AB受力,滑块给导 轨的侧压力.

平面力系的平衡

平面力系的平衡

Fx F cosa
Fy F cos b F sina
即力在某个轴上的投影等于力的模乘以力与该轴的 正向间夹角的余弦。投影的符号规定为:由起点a 到终点b连线(或a/由b/到)的指向与坐标轴正向相 同时为正,反之为负。 故力在坐标轴上的投影是个代数量。
投影练习
【例1】 试分别求出图2-2中各力在x轴和y轴上投影。已知
二、力的平移定理
作用在物体上的力F可以平行移动到物体内任一点O,但 必须同时附加一个力偶,才能与原来的作用等效。其附加力 偶的力偶矩等于原力F对平移点O的力矩。这就是力的平移定 理。
F′ B F A
a)
F′ F A
b)

F′
M
B

Bቤተ መጻሕፍቲ ባይዱ
A
c)
图1-15
F
F
F’ = F’’=F
F’ F”
F
F’ M=Fh
F2 x F2 cos30 150N 0.866 = 129.9N
F3x F3 cos90 0
F3 y F3 sin90 200N 1.0 = 200N F4 x F4 cos60 200N 0.5 =100N
F4 y F4 sin 60 200N 0.866 = 173.2N
四、平面力系平衡的条件
平面 汇交力系 平面 平行力系 平面 力偶系 平面 任意力系
F F
F M M
x
y
0
0
0
两个独立方程,只能求两个独立未知数。
两个独立方程,只能求两个独立未知数。
y A
(F ) 0
i
0 一个独立方程,只能求一个独立未知数。
0
0

工程力学3-力系的平衡条件和平衡方程

工程力学3-力系的平衡条件和平衡方程

例1 例1 求图示刚架的约束反力。
解:以刚架为研究对象,受力如图。
F x0:F A xq b0
P a A
q
b
F y0:F A yP0
P
MA(F)0:
MA
MAPa12q b2 0
FAx
A
FAy
q
解之得:
FAx qb
FAy P
MAPa 1 2qb 2
例2 例2 求图示梁的支座反力。
解:以梁为研究对象,受力如图。
坐标,则∑Fx=0自然满足。于是平面 平行力系的平衡方程为:
O
F2
x
F y 0 ; M O ( F ) 0
平面平行力系的平衡方程也可表示为二矩式:
M A ( F ) 0 ; M B ( F ) 0
其中AB连线不能与各力的作用线平行。
[例5] 已知:塔式起重机 P=700kN, W=200kN (最大起重量), 尺寸如图。求:①保证满载和空载时不致翻倒,平衡块
解: 1.分析受力
建立Oxy坐标系。 A处约束力分量为FAx和FAy ;钢 索的拉力为FTB。
解: 2.建立平衡方程
Fx=0
MAF= 0
- F Q 2 l- F W xF T Blsi= n0
FTB= FPlxs+ iF nQ2 l= 2FlWxFQ
FAx F TBco = s0
Fy=0
F A = x 2 F W x l F Q l co= s3 3 F lW 0xF 2 Q
[例1] 已知压路机碾子重P=20kN, r=60cm, 欲拉过h=8cm的障碍物。 求:在中心作用的水平力F的大小和碾子对障碍物的压力。
解: ①选碾子为研究对象 ②取分离体画受力图

理论力学平面力系的简化和平衡

理论力学平面力系的简化和平衡

原力偶系的合力偶矩
n
M Mi i 1
只受平面力偶系作用的刚体平衡充要条件:
n
M Mi 0 i 1
对BC物块对B点取矩,以逆时针为正列方程应为:
M 2 M B (FC ) M FCY a FCx b M FC (b a) cos45 0
[例] 在一钻床上水平放置工件,在工件上同时钻四个等直径 的孔,每个钻头的力偶矩为 m1m2 m3 m4 15Nm 求工件的总切削力偶矩和A 、B端水平反力?
两轴不平行即 条件:x 轴不 AB
可,矩心任意
连线
mA (Fi ) 0 mB (Fi ) 0 mC (Fi ) 0
③三矩式 条件:A,B,C不在
同一直线上
上式有三个独立方程,只能求出三个未知数。
4. 平面一般力系的简化结果分析
简化结果: 主矢R ,主矩 MO ,下面分别讨论。 ① R =0, MO =0,则力系平衡,下节专门讨论。 ② R =0,MO≠0 即简化结果为一合力偶, MO=M 此时刚
解除约束,可把支反
力直接画在整体结构
的原图上)
解除约束

mA (Fi
)
0
P2a N B
3a0,
N B
2P 3
X 0 XA 0
Y 0 YB NB P0,
YA
P 3
2.5物体系统的平衡、静定与超静定问题
1、物体系统的平衡问题 物体系统(物系):由若干个物体通过约束所组成的系统叫∼。 [例]
外力:外界物体作用于系统上的力叫外力。 内力:系统内部各物体之间的相互作用力叫内力。
N2个物体受平面汇交力系(或平面平行力系)
X 0 Y 0
2*n2个独立平衡方程
N3个物体受平 X 0 面任意力系 Y 0

第3章力系的平衡条件与平衡方程

第3章力系的平衡条件与平衡方程

第3章 力系的平衡条件与平衡方程3.1 平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程如果一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。

力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都分别等于零,即 110()0i n R i n O O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式:11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或 00()0x y O F F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和分别等于零,以及各力对任一点的矩的代数和也等于零。

平面汇交力系:平面汇交力系对平面内任意一点的主矩都等于零,即恒满足()0O M F ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。

其中AB 为吊车大梁,BC为钢索,A 处为固定铰支座,B 处为铰链约束。

已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。

求:1、电动机处于任意位置时,钢索BC所受的力和支座A处的约束力;2、分析电动机处于什么位置时。

钢索受力最大,并确定其数值。

解:1、选择研究对象以大梁为研究对象,对其作受力分析,并建立图示坐标系。

建立平衡方程 取A 为矩心。

根据()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+由xF =∑cos 0Ax TB F F θ-=2()cos303()2Q P P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽量选在两个或多个未知力的交点上,这样建立的力矩平衡方程中将不包含这些未知力;坐标系中坐标轴取向应尽量与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数目。

平面力系的平衡条件与平衡方程式

平面力系的平衡条件与平衡方程式
A,B连线不垂直于x轴,故该力系不可能简化为一个合力,
从而所研究的力系必为平衡力系,如图2-16所示。
三矩式平衡方程为
M A 0 M B 0 M C 0
其中,A,B,C三点不得共线。
图 2-16
由 M A 0 , M B 0 知,该力系只可能为作用线过A,B
两点的合力或是平衡力系;
Fy 0
M O 0 (2-22)
图 2-19
对于平面力偶系,由于它简化后为一个合力偶,而力偶在任何 轴上的投影都是零,因此,式(2-18)中的前两式自然满足。 所以,平面力偶系的平衡方程为
MO 0
理论力学
的平衡,也就不会产生附加的平面力偶系,从而只要主矢为零,该力 系就平衡。其平衡方程为
Fx 0
Fy
0
(2-21)
图 2-18

对于平面平行力系(各力作用线共面且平行的力系),该力系简化 后其主矢必与各力平行从而方向已知,这时可取两个投影轴分别与 该力系平行和垂直,则与该力系垂直的轴上的投影方程总是自然满 足的,故其平衡方程式为
M A 0
M B 0
Fx 0
(2-19)
式中,AB连线不得与x轴相垂直。
方程式(2-19)也完全表达了力系的平衡条件:由 M A 0 知,
该力系不能与力偶等效,只能简化为一个作用线过矩心A的合力,
或者为平衡力系;
由 M B 0 知,若该力系有合力,则合力必通过A,B连线
最后,由 Fx 0 知,若有合力,则它必垂直于x轴;而据限制条件,
理论力学
平面力系的平衡条件与平衡方程式
平面力系平衡的充分和必要条件是 力系的主矢及作用面内任意一点的主矩同时为零。

由主矢为零,即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建筑力学中,平面任意力系是一个重要概念,它指的是所有力的作用线都在同一平面内,且既不相交于一点,又不平行的力系。研究该力系的简化与平衡问题是静力学的重点之一。力的简化基于力平移定理,即作用在刚体上的力可以平行移动到任一点,但必须同时附加一个力偶,此附加力偶的矩等于原力对新作用点的矩。平面任意力系向一点简化后,可以得到一个力和一个力偶,分别称为主矢和主矩,其中主矢与简化中心无关,而主矩一般与简化中心有关。在特定情况下,如平面平行力系的平衡条件中,当合力为零且合力偶不为零时,原力系合成为一个合力偶;当合力不为零且合力偶为零时,原力系合成为一个合力,且其作用线通过选定的简化中心。这些条件为平面平行力系的平衡提供了理论基础,并在工程实际中有广泛应用,如固定端约束及其约束力的分析。
相关文档
最新文档