第一章 矩阵
第一章 矩阵与行列式

第一章 矩阵与行列式第一节 矩阵及其运算一、矩阵的概念人们在从事经济活动、科学研究、社会调查时, 会获得许多重要的数据资料, 将这些数据排成一个矩形的数表111212122212n nm m mn a a a a a a a a a L L M M M L以便于进行储存、运算和分析, 这种矩形的数表就是矩阵.定义1 由m n ⨯个数()1,2,,;1,2,,ij a i m j n ==L L 排成m 行n 列的矩形 数表111212122212n n m m mn a a a a a a a a a ⎛⎫⎪ ⎪⎪⎪⎝⎭L L M M M L称为m 行n 列矩阵, 简称为m n ⨯矩阵, 其中ij a 称为矩阵的位于第i 行、第j 列的元素. 通常, 我们用大写字母,,A B L 表示矩阵. 例如, 记111212122212.n n m m mn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭L L M M M L其中小括号“()” 也可用方括号“[]”代替. 有时, 矩阵也简记为()ij m nA a ⨯=或()ij A a =. 特别地, 当m n =时, 称A 为n 阶矩阵或n 阶方阵, 其中一阶方阵()a 是一个数, 括号可略去.元素全为实数的矩阵称为实矩阵, 元素全为复数的矩阵称为复矩阵. 本书主要在实数范围内讨论问题.对于由n 个未知量、m 个方程组成的线性方程组:11112211211222221122,,.n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L (1.1.1) 称矩阵A 11121121222212n n m m mn m a a a b a a a b a a a b ⎛⎫⎪⎪= ⎪⎪⎝⎭LL M M M M L(1.1.2)为线性方程组(1.1.1)的增广矩阵;称矩阵A =111212122212n n m m mn a a a a a a a a a ⎛⎫⎪⎪⎪⎪⎝⎭L L M M M L(1.1.3) 为线性方程组(1.1.1)的系数矩阵;矩阵12m b bB b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M (1.1.4)称为线性方程组(1.1.1)的常数项矩阵.显然, 线性方程组(1.1.1)由矩阵(1.1.2)完全地确定.下面介绍一些特殊的矩阵.(1) 零矩阵 元素都是零的矩阵称为零矩阵, 记为O . (2) 列矩阵、行矩阵 在矩阵A 中, 如果1n =, 则11211m a a A a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M , 称这种只有一列的矩阵为列矩阵;同样, 如果1m =, 则()11121n A a a a =L ,称这种只有一行的矩阵为行矩阵.我们也将列矩阵和行矩阵分别称为列向量和行向量. 列向量和行向量统称为向量. 向量的元素称为分量, 有n 个分量的向量称为n 维向量. 矩阵与 向量有密切的联系, 矩阵()ij m nA a ⨯=可以看成由n 个m 维列向量12,1,2,,j j mj a a j n a ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭L M 组成, 也可以看成由m 个n 维行向量()12,1,2,,i i in a a a i m =LL 组成.(3) 负矩阵 如果矩阵()ij m nA a ⨯=, 则()ij m nA a ⨯-=-称为矩阵A 的负矩阵.(4) 行阶梯形矩阵 如果矩阵每一行的第一个非零元素所在的列中, 其下方元素全为零, 则称此矩阵为行阶梯形矩阵. 例如矩阵10234023450056700018A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 12102032210003100000B --⎛⎫ ⎪- ⎪= ⎪- ⎪⎝⎭均为行阶梯形矩阵, 而矩阵10232023450056700418C ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 则不是行阶梯形矩阵.(5) 行最简形矩阵 如果行阶梯形矩阵中, 非零行的第一个非零元素均为1, 且其所在列的其余元素均为0, 则称此矩阵为行最简形矩阵. 例如, 矩阵1060301205000110000⎛⎫⎪⎪⎪- ⎪⎝⎭是行最简形矩阵.(6) 上(下)三角矩阵 n 阶方阵的左上角到右下角元素的连线称为主对角线, 左下角到右上角元素的连线称为次(副)对角线. 如果方阵的主对角线下(上)方元素全为0, 则称此矩阵为上(下)三角矩阵. 矩阵11121222000n n nn a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M M L 为上三角矩阵, 矩阵11212212000n n nn a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭LL M M M L 为下三角矩阵.(7) 对角矩阵 如果方阵中除主对角线上的元素外, 其余元素全为0, 则称此矩阵为对角矩阵. 例如, 矩阵12000000n λλλ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M M L 为对角矩阵.(8) 单位矩阵 在对角矩阵中, 如果()11,2,,i i n λ≡=L , 即为 100010001⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M M L, 则称此矩阵为单位矩阵. 单位矩阵一般用E 或I 表示.定义2 如果两个矩阵()ij A a =, ()ij B b =的行数相同、列数也相同, 则称矩阵A 与B 为同型矩阵.定义3 如果两个同型矩阵m n A ⨯, m n B ⨯的对应元素均相等, 即 ()1,2,,;1,2,,ij ij a b i m j n ===L L , 则称矩阵A 与B 相等, 记作A B =.二、矩阵的运算 1. 矩阵的加法定义4 由两个同型矩阵()m n ij m nA a ⨯⨯=, ()m n ij m nB b ⨯⨯=对应元素的和,即ij ij a b +()1,2,,;1,2,,i m j n ==L L 组成的m n ⨯矩阵称为矩阵A 与B 的和,记作A B +, 即111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫ ⎪+++ ⎪+= ⎪ ⎪+++⎝⎭L L M M M L . 由此定义及负矩阵的概念, 我们定义矩阵A 与B 的差为()A B A B -=+-.注 只有同型矩阵才能相加(减). 2. 数与矩阵相乘(简称数乘)定义5 数k 乘矩阵A 的每一个元素所得到的矩阵称为数k 与矩阵A 的积, 记作kA , 即111212122212.n n m m mn ka ka ka ka ka ka kA ka ka ka ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭L L M M M L 矩阵的加法和数乘统称为矩阵的线性运算, 其满足如下性质:(1) A B B A +=+; (2) ()()A B C A B C ++=++; (3) ()()A A λμλμ=;(4) ()A A A λμλμ+=+; (5) ()A B A B λλλ+=+; (6) A O A +=; (7) 1A A =;(8) ()A A O +-=.上面的λ, μ都是任意常数.例1 设112034A -⎛⎫= ⎪⎝⎭, 403123B -⎛⎫= ⎪--⎝⎭, 求A B +和23A B -.解14102(3)5110(1)3(2)43117A B +-++---⎛⎫⎛⎫+== ⎪ ⎪+-+-+-⎝⎭⎝⎭;224120923068369A B --⎛⎫⎛⎫-=- ⎪ ⎪--⎝⎭⎝⎭102133121--⎛⎫= ⎪-⎝⎭.3. 矩阵与矩阵相乘(矩阵的乘法)n 个变量12,,,n x x x L 与m 个变量12,,,m y y y L 之间的关系式11111221221122221122,,.n n n nm m m mn n y a x a x a x y a x a x a x y a x a x a x =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩L L L L L L L L L L L L (1.1.5) 表示一个从变量12,,,n x x x L 到变量12,,,m y y y L 的线性变换.设有两个线性变换11111221332211222233,.z a y a y a y z a y a y a y =++⎧⎨=++⎩ (1.1.6)和111112222112223311322,,.y b x b x y b x b x y b x b x =+⎧⎪=+⎨⎪=+⎩ (1.1.7) 若要求出从12,x x 到12,z z 的线性变换, 可将(1.1.7)代入(1.1.6), 得 111111221133111112122213322221112221233112112222223322()(),()().z a b a b a b x a b a b a b x z a b a b a b x a b a b a b x =+++++⎧⎨=+++++⎩ (1.1.8) 线性变换(1.1.8)可看作是先作线性变换(1.1.7)、再作线性变换(1.1.6)的结果, 我们称线性变换(1.1.8)为线性变换(1.1.6)与(1.1.7)的乘积, 相应地, 我们将线性变换(1.1.8)所对应的矩阵定义为(1.1.6)与(1.1.7)所对应的矩阵的乘积,即 111211121321222122233132bb a a a b b a a a b b ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭111112211331111212221332211122212331211222222332.a b a b a b a b a b a b a b a b a b a b a b a b ++++⎛⎫= ⎪++++⎝⎭一般地, 我们有:定义6 设有矩阵()ij m sA a ⨯=和()ij s nB b ⨯=, 规定矩阵A 与B 的乘积是一个m n ⨯矩阵()ij m nC c ⨯=, 记为C AB =. 其中11221,1,2,,;1,2,,.ij i j i j is sjsik kj k C a b a b a b a b i m j n ==+++===∑L L L注 只有当前一个矩阵的列数等于后一个矩阵的行数时, 两个矩阵才能相乘, 且乘积矩阵C 中的元素ij C 就是A 的第i 行与B 的第j 列的对应元素乘积的和.例2 设201131012A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 100221B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求AB .解AB 201101310201221-⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭2100(1)22002(1)11130121032110110(2)20012(2)1⨯+⨯+-⨯⨯+⨯+-⨯⎛⎫ ⎪=-⨯+⨯+⨯-⨯+⨯+⨯ ⎪ ⎪⨯+⨯+-⨯⨯+⨯+-⨯⎝⎭ 0117.40-⎛⎫ ⎪= ⎪ ⎪-⎝⎭例3 求矩阵1111A -⎛⎫= ⎪-⎝⎭与1111B --⎛⎫= ⎪⎝⎭的乘积AB 及BA .解111122;111122AB ---⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭111100.111100BA ---⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭由以上例题可以看出矩阵乘法与数的乘法有两点显著不同:(1) 矩阵乘法不满足交换律:AB 与BA 未必同时有意义(如例2, BA 没有意义);即使都有意义也未必相等(如例3). 因此为明确起见, 称AB 为A 左乘B , 或B 右乘A . 只有在一些特殊情况下才有AB BA =, 这时称A 与B 是乘法可交换的. 容易验证数量矩阵aE 与任何同阶方阵A 乘法可交换, 即()().aE A A aE aA ==(2) 矩阵乘法不满足消去律:由AB O =不能得出A O =或B O =(如例3), 即,A O B O ≠≠但AB 有可能为O .有了矩阵相等和乘法的定义, 我们可以把线性方程组(1.1.1)写成矩阵形式:AX B =, 其中A =111212122212n n m m mn a a a a a a a a a ⎛⎫⎪⎪ ⎪⎪⎝⎭L L M M M L, 1122,.n m x b x b X B x b ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭M M若B O =, 则称(1.1.1)为齐次线性方程组;若B O ≠, 则称(1.1.1)为非齐次线性方程组. 也可以把线性变换(1.1.5)写成矩阵形式:Y AX =, 其中12,m y y Y y ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭MA 与X 同上所设.可以证明矩阵的乘法有下列性质: (1) ()()AB C A BC =;(2) ()A B C AB AC +=+;()B C A BA CA +=+; (3) ()()()AB A B A B λλλ==, λ为任意常数; (4) ()().m m n m n m n n aE A aA A aE ⨯⨯⨯==定义7 设A 为n 阶方阵, k 为正整数, 称k 个A 的连乘积为方阵A 的k次幂, 记作k A , 即.k kA AA A =L 14243当,k l 都为正整数时, 由矩阵乘法的性质, 得(1) k l k l A A A +=;(2) ()lk kl A A =.注 由于矩阵乘法不满足交换律, 所以, 一般地()kk k AB A B ≠. 例4 设1101A ⎛⎫= ⎪⎝⎭, 求nA (n 为正整数).解1101A ⎛⎫= ⎪⎝⎭;2111112010101A ⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 3121113010101A ⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 一般地, 有101n n A ⎛⎫= ⎪⎝⎭.其正确性可由数学归纳法证得, 证明略.4. 矩阵的转置定义8 把m n ⨯矩阵A 的行与列互换得到的一个n m ⨯矩阵, 称为A 的转置矩阵, 记作T A . 例如, 矩阵120311A ⎛⎫= ⎪-⎝⎭的转置矩阵为1321.01T A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭矩阵的转置也是一种运算, 满足下述运算规律:(1) ()TT A A = ;(2) ()TT T A B A B +=+ ;(3) ()TT A A λλ=, λ为一个数;(4) ()TT T AB B A = .例5 已知201132A -⎛⎫= ⎪⎝⎭, 171423201B -⎛⎫⎪= ⎪ ⎪⎝⎭,求().T AB解法1 因为1712010143423132171310201AB -⎛⎫--⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭,所以()0171413310TAB ⎛⎫ ⎪= ⎪ ⎪-⎝⎭. 解法214221017()72003141313112310T T T AB B A ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭.定义9 设A 为n 阶方阵, 如果满足T A A =, 即 ,,1,2,,.ij ji a a i j n ==L则称A 为对称矩阵. 对称矩阵的特点是:关于主对角线对称的对应元素相等.定义10 设A 为n 阶方阵, 如果满足T A A =-, 即ij ji a a =-, ,1,2,,.i j n =L则称A 为反对称矩阵. 反对称矩阵的特点是:主对角线上的元素全为0, 其余关于主对角线对称的对应元素则互为相反数.习题1-11. 设111210111A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 120124051B -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭, 求23AB A -及T A B .2. 已知两个线性变换113212331232,232,45.x y y x y y y x y y y =+⎧⎪=-++⎨⎪=++⎩ 和 1122133233,2,.y z z y z z y z z =-+⎧⎪=+⎨⎪=-+⎩ 求从1z , 2z , 3z 到1x , 2x , 3x 的线性变换. 3. 计算下列乘积:(1) 401123520-⎛⎫ ⎪- ⎪ ⎪⎝⎭421⎛⎫⎪⎪ ⎪-⎝⎭;(2) ()123321⎛⎫ ⎪ ⎪ ⎪⎝⎭; (3) 321⎛⎫ ⎪⎪ ⎪⎝⎭()123;(4) 121232101110324-⎛⎫⎛⎫⎪⎪-- ⎪⎪ ⎪⎪⎝⎭⎝⎭.4. 设A =1203-⎛⎫ ⎪⎝⎭, B =2032⎛⎫⎪-⎝⎭, 问(1) AB BA =吗?(2) ()2A B +=2A +2AB +2B 吗? (3) ()A B +()A B -=2A 2B -吗? 5. 举反例说明下列命题是错误的: (1) 若2A O =, 则A O =; (2) 若2A A =, 则A O =或A E =; (3) 若AX AY =, 且A O ≠, 则X Y =.6. 设A =1111⎛⎫ ⎪-⎝⎭, 1111B ⎛⎫= ⎪⎝⎭, 求2()AB , 22A B .第二节 矩阵的初等变换与初等矩阵一、初等变换的概念中学里, 已经学过用加减消元法解二、三元线性方程组.例1 解三元线性方程组1231231232344,23,226 2.x x x x x x x x x --+=⎧⎪+-=-⎨⎪+-=-⎩ (1.2.1) 解 为叙述方便, 方程组的第i 个方程记为(1,2,3)i r i =. i j r r ↔表示对调第i 、第j 个方程, (0)i kr k ≠表示用k 乘第i 个方程的两边, i j r kr +表示第j 个方程的两边乘以k 然后加到第i 个方程上.方程组(1.2.1)12312r r r ↔⨯−−−→12312312323,2344,3 1.x x x x x x x x x +-=-⎧⎪--+=⎨⎪+-=-⎩ (1.2.2)21311232232323,22,2 2.r r r r x x x x x x x +-+-=-⎧⎪−−−→+=-⎨⎪--=⎩ (1.2.3)321232323,22,00.r r x x x x x ++-=-⎧⎪−−−→+=-⎨⎪=⎩(1.2.4)方程组(1.2.4)呈阶梯状(其增广矩阵为行阶梯形矩阵), 称为阶梯形方程组. 方程组(1.2.4)有3个未知量但有效方程只有2个, 因此有1个未知量可以任意取值, 称为自由未知量. 我们不妨取3x 为自由未知量. 先由方程组(1.2.4)中的2r 得:2322x x =--, 再代入(1.2.4)中的1r 得:1351x x =+.方程组(1.2.4)与方程组(1.2.1)是同解的, 由于3x 取值的任意性, 因此方程组(1.2.1)有无穷多组解, 其一般形式(通解)是13233351,22,.x x x x x x =+⎧⎪=--⎨⎪=⎩ 若令3x c =, 即得123x X x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭=5122c c c +⎛⎫ ⎪-- ⎪ ⎪⎝⎭=521c ⎛⎫ ⎪- ⎪ ⎪⎝⎭+120⎛⎫⎪- ⎪ ⎪⎝⎭,其中c 为任意常数.解方程组(1.2.1)的过程中施行了3种变换:(1) 换位变换 即互换两个方程的位置;(2) 倍乘变换 即用一个非零常数乘某一方程;(3) 倍加变换 即把一个方程乘以常数后加到另一个方程上去. 这三种变换统称为线性方程组的初等变换.首先, 我们用换位、倍乘和倍加变换得到的新方程组可以用同类型变换变回原方程组(例如方程组(1.2.2)1232r r r ↔⨯−−−→方程组(1.2.1)), 因此线性方程组 的初等变换是同解变换;其次, 可以证明:任何线性方程组都可以用初等变换化为阶梯形方程组, 而阶梯形方程组很容易判定是否有解, 且有解时容易通过自下而上的“回代”得到解.由于线性方程组AX B =和其增广矩阵A 相互唯一地确定, A 的每一行 对应AX B =中的一个方程, 因此线性方程组的初等变换就对应着其增广矩阵的相应行变换.定义1 对矩阵施行的下列3种变换统称为矩阵的初等行变换: (1) 换位变换 对调矩阵的第i 行和第j 行, 记为i j r r ↔; (2) 倍乘变换 用常数0k ≠乘第i 行, 记为i kr ;(3) 倍加变换 把第j 行的k 倍加到第i 行上去, 记为i j r kr +.把上述定义中的“行”换成“列”(所有记号只要把""r 换成""c )即为矩阵的初等列变换. 矩阵的初等行变换和初等列变换统称为矩阵的初等变换.回顾例1, 方程组(1.2.1)的初等变换(消元)过程可以用增广矩阵的初等行变换表示如下:234412132262A --⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭12312r r r ↔⨯−−−→121323441131--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭=A 121312r r r r +-−−−→121301220122--⎛⎫ ⎪- ⎪ ⎪--⎝⎭=A 232r r +−−−→121301220000--⎛⎫⎪- ⎪ ⎪⎝⎭=A 3 122r r -−−−→105101220000-⎛⎫⎪- ⎪ ⎪⎝⎭=A 4,A 3是行阶梯形矩阵, A 4是行最简形矩阵, A 4对应的方程组为132351,22,00.x x x x -=⎧⎪+=-⎨⎪=⎩取3x 为自由未知量, 并令3x c =, 即得1235122x c X x c x c +⎛⎫⎛⎫ ⎪ ⎪==--=⎪ ⎪ ⎪⎪⎝⎭⎝⎭521c ⎛⎫ ⎪- ⎪ ⎪⎝⎭+120⎛⎫⎪- ⎪ ⎪⎝⎭, 其中c 为任意常数.利用初等行变换, 把一个矩阵化为行阶梯形矩阵和行最简形矩阵, 是一种很重要的运算. 行阶梯形矩阵不是唯一的, 但其非零行的行数是唯一确定 的(第五节将给出证明). 在解线性方程组AX B =时, 将增广矩阵A 化为行阶梯形矩阵, 就可以看出原方程组中是否有矛盾方程, 从而判断AX B =是否有解;在有解时, 进一步地将A 化为行最简形矩阵, 即可写出方程组AX B =的解.例2 将矩阵A =212341352012⎛⎫ ⎪ ⎪ ⎪⎝⎭化为行阶梯形矩阵和行最简形矩阵.解A =212341352012⎛⎫ ⎪⎪ ⎪⎝⎭21312212301110111r r r r --⎛⎫⎪−−−→--- ⎪ ⎪---⎝⎭32212301110000r r -⎛⎫ ⎪−−−→--- ⎪ ⎪⎝⎭(行阶梯形矩阵)1212(1)r r ⨯⨯-−−−→13112201110000⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎝⎭12121101201110000r r -⎛⎫ ⎪ ⎪−−−→ ⎪ ⎪ ⎪⎝⎭. (行最简形矩阵)例3 求解方程组123423412341234231,41,234,23 6.x x x x x x x x x x x x x x x +++=⎧⎪+-=⎪⎨++-=⎪⎪+--=-⎩解11231011411231423116A ⎛⎫ ⎪-⎪= ⎪- ⎪---⎝⎭31412111231011410114301578r r r r A --⎛⎫ ⎪-⎪−−−→= ⎪- ⎪---⎝⎭3242211231011410000200639r r r r A --⎛⎫ ⎪-⎪−−−→= ⎪ ⎪---⎝⎭34311231011410063900002r r A ↔⎛⎫ ⎪-⎪−−−→= ⎪--- ⎪⎝⎭,矩阵3A 是行阶梯形矩阵, 其对应的方程组为123423434231,41,639,0 2.x x x x x x x x x +++=⎧⎪+-=⎪⎨--=-⎪⎪=⎩ 第四个方程为02=, 这是不可能的, 故原方程组无解.例4 求解方程组1234123412341234231,234,324,23 6.x x x x x x x x x x x x x x x x +++=⎧⎪++-=-⎪⎨---=-⎪⎪+--=-⎩ 解11231123143112423116A ⎛⎫ ⎪-- ⎪= ⎪---- ⎪---⎝⎭ 213141321112310114504711701578r r r r r r A ---⎛⎫ ⎪--⎪−−−→= ⎪---- ⎪---⎝⎭ 3242421123101145003272700633r r r r A +-⎛⎫⎪--⎪−−−→= ⎪---⎪---⎝⎭4323112310114500327270005151r r A -⎛⎫ ⎪-- ⎪−−−→= ⎪--- ⎪⎝⎭1331451()411231011450019900011r r A ⨯-⨯⎛⎫⎪--⎪−−−→= ⎪⎪⎝⎭34241494351120201101001000011r r r r r r A -+--⎛⎫⎪-⎪−−−→= ⎪⎪⎝⎭231312261000101001001000011r r r r r r A ----⎛⎫⎪-⎪−−−→= ⎪⎪⎝⎭,3A 是行阶梯形矩阵, 6A 是行最简形矩阵, 6A 对应的方程组为12341,1,0,1.x x x x =-⎧⎪=-⎪⎨=⎪⎪=⎩故原方程组有唯一解, 即12341101x x x x -⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 二、初等矩阵定义2 将单位矩阵作一次初等变换所得的矩阵称为初等矩阵. 对应于三类初等行、列变换, 有下列三种类型的初等矩阵:(1) 初等换位矩阵 对调单位矩阵的第i , j 两行或第i , j 两列而得到的矩阵, 即为11011(,)11011E i j ⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪= ⎪⎪ ⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭O L M O M L O i j ←←第行第行 (2) 初等倍乘矩阵 用常数0k ≠乘单位矩阵的第i 行或第i 列而得到的矩阵, 即为11(())11E i k k i ⎛⎫ ⎪⎪ ⎪ ⎪=← ⎪ ⎪ ⎪⎪⎪⎝⎭O O 第行(3) 初等倍加矩阵 把单位矩阵的第j 行的k 倍加到第i 行上而得到的矩阵, 即为11(,())11k i E i j k j ⎛⎫ ⎪ ⎪ ⎪← ⎪= ⎪⎪← ⎪⎪⎪⎝⎭O L O M O 第行第行 (,())E i j k 也可看作是把单位矩阵的第i 列的k 倍加到第j 列上而得到的矩阵.下面我们用一个初等矩阵左乘或右乘一个矩阵. 例如111211112121222313233132321222100001010n n n n n n a a a a a a a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L L L L L ; 111213111312212223212322123132100001010m m m m m m a a a a a a a a a a a a a a a aa a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭M M M M M M .由此可见, 用三阶初等换位矩阵(2,3)E 左乘矩阵3n A ⨯, 相当于对矩阵3n A ⨯作一次相应的初等换位行变换(即对调矩阵3n A ⨯的第2,3两行);用三阶初等换位矩阵(2,3)E 右乘矩阵3m A ⨯, 相当于对矩阵3m A ⨯作一次相应的初等换位列变换(即对调矩阵3m A ⨯的第2,3两列).用初等倍乘矩阵或初等倍加矩阵左乘或右乘一个矩阵, 可得类似的结论.一般地, 有如下定理.定理 设A 是一个m n ⨯矩阵, 对A 施行一次初等行变换, 相当于在A 的左边乘一个相应的m 阶初等矩阵;对A 施行一次初等列变换, 相当于在A 的右边乘一个相应的n 阶初等矩阵.由定理可知, 对于同阶初等矩阵, 有(1) (,)(,);E i j E i j E ⋅= (1.2.5) (2) 1(());E i E i k E k ⎛⎫⎛⎫⋅= ⎪ ⎪⎝⎭⎝⎭(1.2.6)(3) (,())(,()).E i j k E i j k E -⋅= (1.2.7)习题1-21. 把下列矩阵化为行阶梯形矩阵及行最简形矩阵:(1) 121131114302-⎛⎫ ⎪---- ⎪ ⎪⎝⎭;(2) 1111532114012211543314⎛⎫⎪⎪⎪⎪⎝⎭.2. 求解下面的方程组(1) 12341234123412343520,2350,7430,415790.x x x x x x x x x x x x x x x x -+-=⎧⎪+-+=⎪⎨-+-+=⎪⎪+-+=⎩(2) 123423412341234231,41,234,236,x x x x x x x x x x x x x x x +++=⎧⎪+-=⎪⎨++-=⎪⎪+--=-⎩(3) 123451234512345321,335432,2244 3.x x x x x x x x x x x x x x x +++-=⎧⎪+++-=⎨⎪+++-=⎩第三节 行 列 式一、n 阶行列式的定义 对于二元线性方程组11112212112222,.a x a x b a x a x b +=⎧⎨+=⎩ (1.3.1) 用消元法可得:当112212210a a a a -≠ 时, 存在唯一的解122212*********,b a b a x a a a a -=-211121*********b a b ax a a a a -=-.如果我们将方程组(1.3.1)的系数矩阵11122122a a A a a ⎛⎫= ⎪⎝⎭所对应的二阶行列式定义为1112112212211222a a D A a a a a a a ===-, (1.3.2) 并记1D =112222b a b a , 2D =111212ab a b , 则方程组(1.3.2)的解可写成如下形式11D x D =, 22Dx D=. (1.3.3)同样, 可以用行列式表示三元线性方程组111122133121122223323113223333,,.a x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩ (1.3.4) 的解. 为此定义111213212223112233122331132132313233132231122133112332a a a D a a a a a a a a a a a a a a a a a a a a a a a a ==++--- (1.3.5)为系数矩阵所对应的三阶行列式, 用()1,2,3j D j =分别记用方程组(1.3.4)右端的常数列替换D 中的第j 列所得的三阶行列式, 则当0D ≠时, 方程组(1.3.4)的解可写为11D x D =, 22Dx D =, 33D x D=. (1.3.6)式(1.3.3)和式(1.3.6)分别用二、三阶行列式来表示方程组(1.3.1)、(1.3.4)的解. 这些公式形式简单, 便于记忆, 明显地表示出线性方程组的解与方程组的系数和常数项的关系. 这就启发我们考虑:如果含有n 个未知量、n 个方程的线性方程组有唯一解, 能否给出类似的求解公式?回答是肯定的 . 为此, 必须推广二、三阶行列式.二阶及三阶行列式的定义, 即公式(1.3.2)及(1.3.5), 可以用“对角线法则”来记忆(见下图):11122122a a a a 111213111221222321223132333132a a a a a a a a a a a a a a a (-) (+) (-) (-) (-) (+) (+) (+)二阶行列式等于主对角线元素的乘积减去副对角线元素的乘积.三阶行列式等于主对角线及与其平行的两条线上各 3 个元素的乘积之和, 减去副对角线及与其平行的两条线上各3 个元素乘积之和.例1 求行列式的值:12(1)34-, 102(2)211313---. 解 (1)1214(2)31034-=⨯--⨯=; (2) 1022113(4)0(6)012313--=-+-+----=--.例2 求解方程211123049x x =. 解 方程左端的三阶行列式2223418129256,D x x x x x x =++---=-+由2560x x -+=, 解得2x =或3x =.分析三阶行列式的定义, 我们发现第一, 式(1.3.5)的右端有3!项, 除去带有的正、负号外, 每项都是这个行列式中的每一行和每一列中任取1个且仅取1个元素的积. 如果把元素的第1个下标, 即行标(表示元素所在的行)按照123顺序排列, 则它的任意 一项可写成123123j j j a a a , 这里123,,j j j 是1, 2, 3 的一个排列(由1, 2, 3这三个数按某种次序所排成的一个有序数组), 元素的第2个下标, 即列标k j 表示 该元素所在的列.第二, 这6项中带有正号的那些项, 列标123,,j j j 形成3个排列: 123, 231, 312;带有负号的那些项的列标也形成3个排列:321, 213, 132.我们感兴趣的是, 这2组排列的区别是什么?为了回答这个问题, 我们给出下面几个定义.定义1 由1,2,,n L 这n 个数按某种次序所排成的一个有序数组12n j j j L 称为一个n 元全排列.显然, n 元全排列的个数为n !定义2 对于n 个不同元素, 若事先规定各元素之间有一个标准次序(例如n 个不同的自然数, 可规定由小到大为标准次序), 于是在这n 个元素的任一排列中, 当某两个元素的先后次序与标准次序不同时, 就说有1个逆序.定义3 一个排列中所有逆序的总数称为这个排列的逆序数, 用τ表示. 定义4 逆序数为奇数的排列称为奇排列, 递序数为偶数的排列称为偶排列.标准排列12n L 的逆序数(12)0n τ=L , 为偶排列. 可以证明:当2n ≥时,n 元全排列中奇 、偶排列各占一半, 即各有!2n 个.例3 求排列32514的逆序数, 并指明奇偶性. 解 在排列32514中, 3排在首位, 没有逆序;2的前面比2大的数有一个(3), 故有1个逆序; 5是最大数, 没有逆序;1的前面比1 大的数有三个(3, 2, 5), 故有3个逆序;4的前面比4大的数有一个(5), 故有1个逆序, 于是这个排列的逆序数为(32514)1315τ=++=. 从而排列32514是奇排列.现在回过来考察三阶行列式展开式中各项正负号的取法, 因为(123)0τ=, (231)2τ=, (312)2τ=, (321)3τ=, (213)1τ=, (132)1τ=,由此可见:任一项带正号或负号完全由它的行标为标准次序时, 列标形成的 排列123j j j 的奇偶性来决定, 即当列标形成的排列为偶排列时, 该项取正 号;列标形成的排列为奇排列时, 该项取负号. 因此, 我们有1231231112133!()212223123313233(1)j j j j j j a a a a a a a a a a a a τ=-∑, (1.3.7) 其中3!∑表示对1,2,3的所有排列求和, 共有3!6=项.二阶行列式也可以表示成和式12122!1112()122122(1)j j j j a a a a a a τ=-∑.定义5 设()ij n n A a ⨯=是一个n 阶方阵(2)n ≥, 称121211121!21222()1212(1)n n nn nj j j j j nj n n nna a a a a a a a a a a a τ=-∑L L L L M M M L (1.3.8)为n 阶行列式, 也可称为方阵A 的行列式, 记为A 或det A . 规定一阶行列式a a =(注意不要与绝对值混淆).下面是n 阶行列式的等价定义:121211121!21222()1212(1)n n nn ni i i i i i n n n nna a a a a a a a a a a a τ=-∑L L L L M M M L , (1.3.9)上式右端各项的n 个因子是按列标组成标准次序的.由行列式的定义知, 若行列式的某行(列)的元素都是零, 则此行列式为零.例4 证明对角行列式(对角线以外的元素均为0)(1)1212n nλλλλλλ=L O; (2)1(1)2212(1)n n n nλλλλλλ-=-L N.证明 (1) 由行列式的定义即得.(2) 若记,1i i n i a λ+-=则由行列式的定义可得1122,11nn nn a a a λλλ-=NN12,1112(1)(1)n n n n a a a ττλλλ-=-=-L L , 其中τ为排列(1)21n n -L 的逆序数, 故(1)12(1)2n n n τ-=+++-=L . 例5 证明行列式112122112212000nn n n nna a a D a a a a a a ==L L L M M M L. 证明 由于当j i >时, 0ij a =, 故D 中可能不为0的元素i i p a , 其下标应有i p i ≤, 即121,2,,n p p p n ≤≤≤L .在所有排列12n p p p L 中, 能满足上述关系的排列只有一个排列12n L , 其逆序数0τ=, 所以D 中可能不为0的项只有一项1122(1)nn a a a τ-L , 即1122nn D a a a =L . 对角线以下(上)的元素都为零的行列式称为上(下)三角行列式, 它们的值与对角行列式一样, 都等于主对角线上元素的乘积.二、行列式的性质 记111212122212n n n n nn a a a a a a A a a a =L L M M M L, 112111222212n n T n n nna a a a a a A a a a =L LM M M L, 行列式T A 称为行列式A 的转置行列式.性质1 行列式与它的转置行列式相等. 例如3421=--3241-=-5.由性质1可知, 行列式对行成立的性质, 对列也成立, 反之亦然. 以下叙述行列式性质时, 只对行叙述.性质2 互换行列式的两行, 行列式变号. 例如3421=--5, 2134--=5-.推论 若行列式有两行元素完全相同, 则此行列式为零.性质3 行列式中某一行的所有元素乘同一数k 等于用k 乘原行列式(第i 行乘以k , 记作:i r k ⨯).推论1 行列式中某一行的所有元素的公因子可提到行列式记号外. 由此推论及矩阵的运算, 设A 为n 阶方阵, λ为数, 则n A A λλ=. 例如, 若A 是三阶方阵且2A =, 则322216A =⋅=.推论2 行列式中如果有两行的元素对应成比例, 则此行列式为零. 性质4 若行列式的某一行元素都是两数之和, 例如11121112212n i i i i in inn n nna a a D a a a a a a a a a '''=+++L M M ML MM M L,则行列式D 等于下面的两个行列式之和:111211212n i i in n n nn a a a D a a a a a a =L M M M L M M M L 111211212ni i in n n nna a a a a a a a a '''+L M M M LM M M L. 注 行列式的加法与矩阵的加法不同.性质5 把行列式的某一行的各元素乘以同一个数, 然后加到另一行对应的元素上去, 行列式不变.以上性质不难由行列式的定义证得, 以性质4为例, 证明如下. 性质4的证明 由(1.3.8)式, 得 1212!()12(1)()n i i n n j j j j j ij ij nj D a a a a a τ'=-+∑L L L 1212!()12(1)n i n n j j j j j ij nj a a a a τ=-∑LL L1212!()12(1)n i n n j j j j j ijnj a a a a τ'+-∑L L L 111211212n i i in n n nn a a a a a a a a a =LM MM LM M M L111211212ni i in n n nna a a a a a a a a '''+L M M M L M M M L. 例6 计算行列式121024*********3D -=---. 解D21314123r r r r r r -++ 1210003202110213-- 23r r ↔ 1210021100320213--- 42r r - 1210021100320022---4323r r + 12100211003210003--10123203=-⨯⨯⨯=-.例7 计算行列式3111131111311111D =. 解 这个行列式的特点是各列4个数之和都是6. 将第2, 3, 4行同时加到第一行, 提出公因子6, 然后各行减去第一行, 得D121314r r r r r r +++ 6666131111311111 116r ⨯ 11111311611311111213141r r r rr r --- 1111020064800200002=. 例8 设2113A -⎛⎫= ⎪⎝⎭, 3452B -⎛⎫= ⎪⎝⎭, 求,A ,B AB .解 217,13A -== 342652B -==. 因为21341101352182AB ---⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以110182182AB -==.我们注意到:AB A B =. 一般地, 有下列结论:定理1 若A , B 为同阶方阵, 则AB A B =, 从而.AB BA =三、行列式按行(列)展开在三阶行列式的定义式(1.3.5)中, 如果把含111213,,a a a 的项分别合并, 并提出公因子, 则有1112132223212223113233313233a a a aa a a a a a a a a a = 2123123133aa a a a - 2122133132aa a a a +. (1.3.10) 据此, 一个三阶行列式的计算可转化为三个二阶行列式的计算. 自然有一个问题:一个n 阶行列式的计算能否转化为n 个1n -阶行列式的计算, 从而达到降阶的目的?下面讨论这个问题.定义6 在n 阶行列式A 中划去第i 行和第j 列后所剩下的2(1)n -个元素按原来的相对位置所构成的1n -阶行列式称为ij a 在A 中的余子式, 记为ij M , 而称(1)i j ij ij A M +=-为ij a 在A 中的代数余子式, 这里1,i j n ≤≤.例9 在行列式123456789A =中, 求23M , 33M , 23A , 33A . 解 2312678M ==-, 232323(1)6A M +=-=, 3312345M ==-, 333333(1)3A M +=-=-. 利用代数余子式, 式(1.3.10)可以写成111112121313A a A a A a A =++,将上式推广到一般情况, 有下面的结论:定理2 n 阶行列式(2n ≥)等于它的任一行(列)各元素与其代数余子式乘积之和, 即1122i i i i in in A a A a A a A =+++L 1nij ij j a A ==∑, 1,2,,i n =L . (1.3.11)或1122j j j j nj nj A a A a A a A =+++L 1nij ij i a A ==∑, 1,2,,j n =L . (1.3.12)推论 行列式的任一行(列)的元素与另一行(列)的元素的代数余子式乘积之和等于零. 即11220i j i j in jn a A a A a A +++=L , (1.3.13) 11220i j i j ni nj a A a A a A +++=L , (1.3.14)其中i j ≠.定理1按行(列)展开计算行列式的方法称为降阶法. 计算行列式时, 将行列式按行(列)展开与行列式的性质结合起来用, 常常能够达到事半功倍的效果.例10 计算行列式 (即本节例6)1210241210213423D -=---.解 利用行列式的性质, 将行列式的某行(列)除某个元素外的其余元素化为0, 再按该行(列)展开.D21312c cc c-+1000203212113213---1r 按展开110321(1)211213+⨯--32r r -032211022-1c 按展开21322(1)22+⨯--21020=-⨯=-.例11 证明123213132222123111()()()x x x x x x x x x x x x =---. 证明123222123111x x x x x x 2131c c c c --121312222212131100x x x x x x x x x x ---- 213111212131311(1)()()()()x x x x x x x x x x x x +--=⨯--+-+2131213111()()x x x x x x x x =--++213132()()()x x x x x x =---.上例中的行列式称为三阶范得蒙德行列式. 类似可证n 阶范得蒙德行列式1222212111112111()n n n i j j i nn n n n x x x x x x D x x x x x ≤<≤---==-∏L L L M M M L . 四、克拉默法则下面介绍利用行列式求含有n 个未知量、n 个方程的线性方程组解的公式. 设方程组为11112211211222221122,,.n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L (1.3.15) 由各方程中的未知量的系数构成的行列式111212122212n nn n nna a a a a a D a a a =L L M M M L(1.3.16) 称为方程组(1.3.15)的系数行列式, 用常数项12,,,n b b b L 替换D 中第j 列的相应元素得行列式记为j D , 即111,111,11212,122,121,1,1j j n j j nj n n j n n j nna ab a a a a b a a D a a b a a -+-+-+=L L L L M M M M M LL. 定理3 (克拉默法则)如果n 元线性方程组(1.3.15)的系数行列式0D ≠, 则方程组有唯一解,1,2,,j j D x j n D ==L .。
线性代数知识点汇总1

第一章 矩阵矩阵的概念:n m A *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) 矩阵的运算:加法(同型矩阵)---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==(一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0) 转置:A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)( 方幂:2121k k k kA AA += 2121)(k k k k A A +=逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, 且B A=-1矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置TA 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB ,但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B A 。
A 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵。
5、若A 可逆,则11--=A A逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
分块矩阵:加法,数乘,乘法都类似普通矩阵转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素初等变换:1、交换两行(列)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另一行(列) 初等变换不改变矩阵的可逆性,初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的矩阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r第二章 行列式N 阶行列式的值:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ行列式的性质:①行列式行列互换,其值不变。
量子力学中要用到的数学知识大汇总

量子力学中要用到的数学知识大汇总第一章矩阵1.1矩阵的由来、定义和运算方法1.矩阵的由来2.矩阵的定义3.矩阵的相等4.矩阵的加减法5.矩阵和数的乘法6.矩阵和矩阵的乘法7.转置矩阵8.零矩阵9.矩阵的分块1.2行矩阵和列矩阵1.行矩阵和列矩阵2.行矢和列矢3.Dirac符号4.矢量的标积和矢量的正交5.矢量的长度或模6.右矢与左矢的乘积1.3方阵1.方阵和对角阵2.三对角阵3.单位矩阵和纯量矩阵4.Hermite矩阵5.方阵的行列式,奇异和非奇异方阵6.方阵的迹7.方阵之逆8.酉阵和正交阵9.酉阵的性质10.准对角方阵11.下三角阵和上三角阵12.对称方阵的平方根13.正定方阵14.Jordan块和Jordan标准型1.4行列式求值和矩阵求逆1.行列式的展开/doc/4b14802796.html,place展开定理3.三角阵的行列式4.行列式的初等变换及其性质5.利用三角化求行列式的值6.对称正定方阵的平方根7.平方根法求对称正定方阵的行列之值8.平方根法求方阵之逆9.解方程组法求方阵之逆10.伴随矩阵11.伴随矩阵法求方阵之逆1.5线性代数方程组求解1.线性代数方程组的矩阵表示2.用Cramer法则求解线性代数方程组3.Gauss消元法解线性代数方程组4.平方根法解线性代数方程组1.6本征值和本征矢量的计算1.主阵的本征方程、本征值和本征矢量2.GayleyHamilton定理及其应用3.本征矢量的主定理4.Hermite方阵的对角化——计算本征值和本征矢量的Jacobi法1.7线性变换1.线性变换的矩阵表示2.矢量的酉变换3.相似变换4.等价矩阵5.二次型6.标准型7.方阵的对角化参考文献习题第二章量子力学基础2.1波动和微粒的矛盾统一1.从经典力学到量子力学2.光的波粒二象性3.驻波的波动方程4.电子和其它实物的波动性——de Broglie关系式5.de Broglie波的实验根据6.de Broglie波的统计意义7.态叠加原理8.动量的几率——以动量为自变量的波函数2.2量子力学基本方程——Schrdinger方程1.Schrdinger方程第一式2.Schrdinger方程第一式的算符表示3.Schrdinger方程第二式4.波函数的物理意义5.力学量的平均值(由坐标波函数计算)6.力学量的平均值(由动量波函数计算)2.3算符1.算符的加法和乘法2.算符的对易3.算符的平方4.线性算符5.本征函数、本征值和本征方程6.Hermite算符7.Hermite算符本征函数的正交性——非简并态8.简并本征函数的正交化9.Hermite算符本征函数的完全性10.波函数展开为本征函数的叠加11.连续谱的本征函数12.Dirac δ函数13.动量的本征函数的归一化14.Heaviside阶梯函数和δ函数2.4量子力学的基本假设1.公理方法2.基本概念3.假设Ⅰ——状态函数和几率4.假设Ⅱ——力学量与线性Hermite算符5.假设Ⅲ——力学量的本征状态和本征值6.假设Ⅳ——态随时间变化的Schrdinger方程7.假设Ⅴ——Pauli互不相容原理2.5关于定态的一些重要推论1.定态的Schrdinger方程2.力学量具有确定值的条件3.不同力学量同时具有确定值的条件4.动量和坐标算符的对易规律5.Hesienberg测不准关系式2.6运动方程1.Heisenberg运动方程——力学量随时间的变化2.量子Poisson括号3.力学量守恒的条件4.几率流密度和粒子数守恒定律5.质量和电荷守恒定律6.Ehrenfest定理2.7维里定理和HellmannFeynman定理1.超维里定理2.维里定理3.Euler齐次函数定理4.维里定理的某些简化形式5.HellmannFeynman定理2.8表示论1.态的表示2.算符的表示3.另一套量子力学的基本假设参考文献习题第三章简单体系的精确解3.1自由粒子1.一维自由粒子2.三维自由粒子3.2势阱中的粒子1.一维无限深的势阱2.多烯烃的自由电子模型3.三维长方势阱4.圆柱体自由电子模型3.3隧道效应——方形势垒1.隧道效应2.Schrdinger方程3.波函数中系数的确定(E>V0)4.贯穿系数与反射系数(E>V0)5.能量小于势垒的粒子(E<V0)3.4二阶线性常微分方程的级数解法1.二阶线性常微分方程2.级数解法3.正则奇点邻域的级数解法4.若干二阶线性微分方程3.5线性谐振子和Hermite多项式1.线性谐振子2.幂级数法解U方程3.谐振子能量的量子化4.Hermite微分方程与Hermite多项式5.Hermite多项式的递推公式6.Hermite多项式的微分式定义——Rodrigues公式7.Hermite多项式的母函数展开式定义8.谐振子的波函数——Hermite正交函数9.矩阵元的计算参考文献习题第四章氢原子和类氢离子4.1Schrdinger方程1.氢原子质心的平移运动2.氢原子中电子对核的相对运动3.氢原子作为两个质点的体系4.坐标的变换5.变量分离6.球坐标系7.球坐标系中的变量分离8.Φ方程之解9.θ方程之解10.R方程之解11.能级4.2Legendre多项式1.微分式定义2.幂级数定义3.母函数展开式定义和递推公式4.母函数的展开5.正交性6.归一化4.3连带Legendre函数1.微分式定义2.递推公式3.正交性4.归一化4.4laguerre多项式和连带Laguerre函数1.母函数展开式定义2.微分式定义3.级数定义4.积分性质5.连带Laguerre多项式和连带Laguerre函数6.连带Laguerre多项式的母函数展开式定义7.连带Laguerre多项式的级数定义8.连带Laguerre函数的积分性质4.5类氢原子的波函数1.类氢原子的波函数2.氢原子的基态3.径向分布4.角度分布5.电子云的空间分布6.波函数的等值线图和立体表示图参考文献习题第五章角动量和自旋5.1角动量算符1.经典力学中的角动量2.角动量算符3.对易规则4.Hamilton算符与角动量算符的对易规则5.三??算符具有相同本征函数的条件6.角动量的本征函数5.2阶梯算符法求角动量的本征值1.角动量算符的对易规则2.阶梯算符的性质3.阶梯算符的作用4.角动量的本征值5.3多质点体系的角动量算符1.经典力学中多质点体系的角动量2.总角动量算符及其对易规则3.多电子原子的Hamilton算符的对易规则5.4电子自旋1.电子自旋2.假设Ⅰ——自旋角动量算符的对易规则3.假设Ⅱ——单电子自旋算符的本征态和本征值4.电子自旋的阶梯算符5.自旋算符的矩阵表示6.假设Ⅲ——自由电子的g因子参考文献习题第六章变分法和微扰理论6.1多电子体系的Schrdinger方程1.原子单位2.多电子分子的Schrdinger方程3.BornOppenheimer原理4.多电子体系的Schrdinger方程举例5.多电子体系的Schrdinger方程的近似解法6.2变分法1.最低能量原理2.变分法3.氦原子和类氦离子的变分处理(一)4.氦原子和类氦离子的变分处理(二)5.激发态的变分原理6.线性变分法7.变分法的推广6.3定态微扰理论1.非简并能级的一级微扰理论2.基态氦原子或类氦离子3.简并能级的一级微扰理论4.微扰法在氢原子中的应用5.二级微扰理论6.4含时微扰理论与量子跃迁1.含时微扰理论2.光的吸收与发射3.激发态的平均寿命4.光谱选律5.偶极强度与吸收系数的关系参考文献习题第七章群论基础知识7.1群的定义和实例1.群的定义2.群的几个例子3.乘法表和重排定理4.同构和同态7.2子群、生成元和直积1.子群2.生成元3.直积7.3陪集、共轭元素和类1.陪集/doc/4b14802796.html,grange定理3.共轭元素和类4.置换群的类7.4共轭子群、正规子群和商群1.共轭子群2.正规子群(自轭子群)3.商群和同态定理7.5对称操作群1.对称操作2.操作的乘积3.对称操作群4.共轭对称元素系,同轭对称操作类和两个操作可对易的条件5.生成元、子群和直积7.6分子所属对称群的确定1.单轴群2.双面群3.立方体群4.分子对称群的生成元和生成关系5.晶体学点群6.分子所属对称群的确定参考文献习题第八章群表示理论8.1对称操作的矩阵表示1.基矢变换和坐标变换2.物体绕任意轴的旋转,Euler角3.对称操作的矩阵表示4.函数的变换8.2群的表示1.群表示的定义2.等价表示和特征标3.可约表示和不可约表示,不变子空间4.Schur引理5.正交关系6.正交关系示例7.投影算符和表示空间的约化8.直积群的表示9.实表示和复表示8.3表示的直积及其分解1.表示的直积2.对称积和反对称积3.直积表示的分解4.ClebschGordan系数8.4某些群的不可约表示1.循环群2.互换群3.点群4.回转群5.旋转群6.双值表示8.5群论在量子化学中的应用1.态的分类和谱项2.能级的分裂3.时间反演对称性和Kramers简并4.零矩阵元的鉴别和光谱选律5.矩阵元的计算,不可约张量方法6.久期行列式的劈因子7.不可约表示基的构成8.杂化轨道的构成9.轨道对称性守恒原理这些可是爱考的专业课老师(如果俺考研成功她可就是俺滴学姐啦)珍藏不外漏的当年的笔记啊。
线性代数 第一章、矩阵

张一 98 90 87 72 李二 89 90 86 98 王三 97 84 75 87 刘六 85 88 85 88
解: 用矩阵表示为
98
89
90 90
87 86
72
98
97 84 75 87
85 88 85 88
11
几种比较特殊的矩阵:
行矩阵:只有一行的矩阵
列矩阵:只有一列的矩阵
L
L L L
称为线性变换的系数矩阵。
am1
am 2
0 0 3
14
数量矩阵:对角矩阵中当 1 2 n时
例如:
5 0 0 0
0
5
0
0
就是一个数量矩阵
0 0 5 0
0
0
0
5
也就是说,数量矩阵是对角矩阵的一种特例
15
单位矩阵:当数量矩阵中对角线上的常数为1,
称为单位矩阵,用字母 E 或 En 表示
1 0 L 0
即
M M O M
ym am1 x1 am2 x2 amn xn .
称为由变量x1 ,x2 , ... ,xn到变量y1 ,y2 , ... ,ym的
变换为线性变换。线性变换由 m 个 n元函数
组成,每个函数都是变量的一次幂,故而称
之为线性变换。
17
a11 a12 L
其中,由系数构成的矩阵
A
a21
a22
0
0
L
1
特点:从左上角到右下角的直线(主对角线)上
的元素都是1,其他元素都是0。
16
定义1.4
线性变换:
如果变量y1 ,y2 ,... ,ym可由变量x1 ,x2 ,... ,xn线性表示,
线性代数第一章 矩阵

16 150 160 140
丁 25
16 180 150 150
甲乙丙丁 单价 20 50 30 25 重量 16 20 16 16
200 180 190 100 120 100 150 160 140 180 150 150
第一章 矩阵
§1.1 矩阵概念
例2. 四个城市间的单向航线如图所示.
1
4
甲 220 185 200
乙 105 120 110
第二次
两次累计:
产品
发到各商场的数量
ABC
甲 420
乙
第一章 矩阵
§1.2 矩阵的基本运算
§1.2 矩阵的基本运算
一. 矩阵的线性运算
1. 加法
例3.
产品
发到各商场的数量
ABC
甲 200 180 190
乙 100 120 100
第一次
产品
发到各商场的数量
例如A =
1 0
1 0
,B=
1 1
0 0
,
AB =
2 0
0 0
,
A2 =
1 0
1 0
= A, B2 =1 10ຫໍສະໝຸດ 0=B,(AB)2 =
4 0
0 0
,
A2B2 = AB =
2 0
0 0
,
第一章 矩阵
§1.2 矩阵的基本运算
例:
1 设A = BC, 其中B = 2 , C = [1 2 3],
2
3
若用aij表示从i市到j市航线的条数, 则上图信息可表示为
a11 a12 a13 a14
01 1 1
a21 a22 a23 a24 a31 a32 a33 a34
第一章线性代数

2. 初等矩阵的性质 定理1.1. 定理1.1. 对m×n矩阵A施行一次初等行变换 矩阵A施行一次初等行 相当于在A 相当于在A的左边乘以相应的初等 矩阵; 施行一次初等列 矩阵; 对A施行一次初等列变换相 当于在A 当于在A的右边乘以相应的初等矩 阵.
第一章 矩阵
§1.5 方阵的逆矩阵
§1.5 方阵的逆矩阵 一. 逆矩阵的概念 1. 定义: 设A为方阵, 若存在方阵B, 使得 定义: 为方阵, 若存在方阵B AB = BA = E, 则称A可逆, 并称B 则称A可逆, 并称B为A的逆矩阵. 逆矩阵. 2. 逆矩阵是唯一的, A−1. 逆矩阵是唯一的, 记为A 记为 3. 性质:设A, B为同阶可逆方阵, 数k ≠ 0. 则 性质: 为同阶可逆方阵, (1) (A−1)−1 = A. (2) (AT)−1 = (A−1)T. (A (3) (kA)−1 = k−1A−1. (4) (AB)−1 = B−1A−1.
则λA =
λA11 λA12 … λA1r λA21 λA22 … λA2r
… … … … . λAs1 λAs2 … λAsr
第一章 矩阵
§1.3 分块矩阵
3. 分块乘法
设A为m×l矩阵, B为l ×n矩阵, 将它们分块如下 矩阵, 矩阵, A11 A12 … A1t B11 B12 … B1r A21 A22 … A2t B21 B22 … B2r A= … … … … , B= … … … … , As1 As2 … Ast Bt1 Bt2 … Btr 其中A 的列数分别与B 其中Ai1, Ai2, …, Ait的列数分别与B1j, B2j, …, Btj的 行数相等. 行数相等. C11 C12 … C1r t C21 C22 … C2r 其中C 则AB = … … … … , 其中Cij = Σ AikBkj , k=1 Cs1 Cs2 … Csr (i = 1, 2, …, s; j = 1, 2, …, r.)
第一章 矩阵

阳光普照
定义3 规定数 与矩阵 A [ai j ]mn 的乘积 A 为
A A [ai j ]m n .
显然
0 A O, 1 A A. A (1) A [ai j ]m n 称为矩阵A的负矩阵。
数乘满足运算律:
1 A A; 2 A A A;
二、矩阵的乘法运算
显然可考虑定义矩阵的乘法和除法为:
A B [ai j bi j ]mn
和
A B [ai j bi j ]mn ,
这是个著名的病态矩阵,称为Hilbert矩阵。
例 4 (图的邻接矩阵) 某航空公司在A,B,C,D四城市之间开辟了若干 航线 ,如图所示表示了四城市间的航班图,如果 从A到B有航班,则用箭头从 A指向 B.
到达城市
A
出 发 城 市
B
C
D
A
B
C
A B C D
D
我们先用表格来表示航班图(见前页) 。表格中
太繁琐了,得换个思路!!
注意到二元一次方程组的解完全由未知数系数
a11、a12、a21、a22
及常数项 b1、b2 所确定。
三元一次方程组的解完全由未知数系数
a11、a12、a13、a21、a22、a23、a31、a32、a33
及常数项 b1、b2、b3 所确定。
一般地,归纳可知,n元的线性方程组
将上式回代入
(1)
中,并整理,可得
b1a22 b2a12 x1 a11a22 a12a21
对于三元一次线性方程组
a11 x1 a12 x2 a13 x3 b1 a21 x1 a22 x2 a23 x3 b2 a x a x a x b 32 2 33 3 3 31 1
第一章 矩阵

⎛ 250 500 190 10 ⎞ ⎜ ⎟ C = ⎜ 300 500 300 410 ⎟ ⎜ 600 310 110 400 ⎟ ⎝ ⎠
表示,其中矩阵 C 的第 i 行第 j 列( i =1,2,3; j =1,2,3,4)元素恰好是矩阵 A 与 B 的 第 i 行第 j 列元素之和. 定义 2 设有两个 m × n 矩阵 A = (aij ) 与 B = (bij ) ,那么 m × n 矩阵
a12 a 22 # am2
a1n ⎞ ⎟ " a 2n ⎟ " # ⎟ ⎟ " a mn ⎟ ⎠ "
(1.1)
称为一个 m 行 n 列矩阵,简称 m × n 矩阵.这 m × n 个数称为矩阵 A 的元素,其中 aij 表示 矩阵 A 的第 i 行第 j 列元素. 元素是实数的矩阵称为实矩阵, 元素是复数的矩阵称为复矩阵. 本书中的矩阵都指实矩 阵. (1.1)式可以简记为
设矩阵 A = (aij ) ,记 − A = ( −aij ) ,那么 − A 称为矩阵 A 的负矩阵,显然有
A + (− A) = (− A) + A = 0 .
从而规定矩阵的减法为
A − B = A + (− B) .
如果三个门市部销售四种计算机(单位:台)在第一月内的销售情况矩阵为
⎛ 150 200 100 0 ⎞ ⎜ ⎟ A = ⎜ 170 300 50 210 ⎟ , ⎜ 320 160 10 230 ⎟ ⎝ ⎠
第一章 矩 阵
矩阵是线性代数的主要研究对象之一,它在数学、物理学,工程技术以及社会科学等领 域都有广泛的应用.本章主要介绍矩阵及其应用.
§1
矩阵的概念
主要知识点:矩阵的定义;矩阵的例子(线性方程组的系数矩阵及增广矩阵) ;矩阵相
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注: 今后除非特别说明, 我们所考虑的矩阵都
是实矩阵.
5
第一章 矩阵
§1.1 矩阵概念
2. 方阵(square matrix)
n阶方阵: nn矩阵
见例2. 3. 向量(vector)
一个11的矩阵 就是一个数
行向量(column vector) [a1, a2, …, an]
a1
列向量(row vector)
190 100
B=
220 105
185 120
200 110
(2) 具体操作: 对应元素相加
A+B=
420 205
365 240
390 210
19
第一章 矩阵
§1.2 矩阵的基本运算
§1.2 矩阵的基本运算
一. 矩阵的线性运算
1. 加法(addition of matrices)
A = [aij]mn与B = [bij]mn的和(sum): C = [cij]mn = [aij+bij]mn. 注: ① 设矩阵A = (aij)mn , 记A = (aij)mn ,
(1) A + B = B + A, (2) (A + B) + C = A + (B + C), (3) A + O = A, (4) A + (A) = O, (5) 1A = A, (6) k(lA) = (kl)A, (7) (k + l)A = kA + lA, (8) k(A + B) = kA + kB.
主对角线
…
…
(leading/main/principal
an1 an2 … ann diagonal)
对角矩阵
… …
…
…
1 0 … 0 0 2 … 0 简记为 diag[1, 2, …, n].
0 0 … n
9
第一章 矩阵
§1.1 矩阵概念
3. 数量矩阵/纯量矩阵(scalar matrix)
diag[k, k, …, k]——数量矩阵/纯量矩阵.
ABC
甲 420
乙
13
第一章 矩阵
§1.2 矩阵的基本运算
§1.2 矩阵的基本运算
一. 矩阵的线性运算
1. 加法(addition of matrices)
例3.
产品
发到各商场的数量
ABC
甲 200 180 190
乙 100 120 100
产品
发到各商场的数量
ABC
甲 220 185 200
乙 105 120 110
a2 …
n–维
(n–dimensional)
an
第i分量 (ith component) ai (i = 1, …, n) 6
第一章 矩阵
§1.1 矩阵概念
4. 同型(same-sized): 行数相等, 列数也相等
20 50 30 与 a b c 同型
16 20 16 1 2 3
20 16
50 20
第一章 矩阵
英国数学家凯莱 被公认为是矩阵 论的创立者.
§1.1 矩阵概念
他首先把矩阵作为 一个独立的数学概 念, 并发表了一系 列关于这个题目的 文章.
Arthur Cayley (1821.8.16~1895.1.26)
2
第一章 矩阵
§1.1 矩阵概念
二. 实例
例1. 某厂家向A, B, C三个商场发送四款产品.
(kaij)mn , 记为kA或Ak.
ka11 ka12 … ka1n
即kA = Ak =
ka21 …
ka22 …
… …
ka2n …
kam1 kam2 … kamn
加法 注: 矩阵的线性运算(linear operation) 数乘
21
第一章 矩阵
§1.2 矩阵的基本运算
3. 性质
设A, B, C, O是同型矩阵, k, l是数, 则
1 0 1
12
0 x3
21
1 3 0
§1.1 矩阵概念
若矩阵A = [aij]mn满足: m = n且aij = aji (i, j = 1, 2, …, n) 则称A为对称矩阵.
8
第一章 矩阵
§1.1 矩阵概念
2. 对角矩阵(diagonal matrix)
a11 a12 … a1n a21 a22 … a2n
第一章 矩阵
§1.2 矩阵的基本运算
1. 定义A = (aij)ms与B =(bij)sn的乘积(product)
是一个mn矩阵C = (cij)mn , 其中
s
cij = ai1b1j + ai2b2j +…+ aisbsj = aikbkj.
k=1
记为C = AB. 称AB为“以A左乘B” .
丙 30 16 150 160 140
丁 25 16 180 150 150
总价(元) 18000 18150 16750
总重(Kg) 10480 10240 9680
20 50 30 25 A = 16 20 16 16
200 180 190 100 120 100 B = 150 160 140 18000 180 150 15203
产品
单价 (元/箱)
重量 (Kg/箱)
数量(箱) ABC
甲 20
16 200 180 190
乙 50
20 100 120 100
丙 30
16 150 160 140
丁 25
16 180 150 150
甲乙丙丁 单价 20 50 30 25 重量 16 20 16 16
200 180 190 100 120 100 150 160 140 180 150 150 3
第一次
第二次
两次累计:
产品
发到各商场的数量
ABC
甲 420 365
乙
14
第一章 矩阵
§1.2 矩阵的基本运算
§1.2 矩阵的基本运算
一. 矩阵的线性运算
1. 加法(addition of matrices)
例3.
产品
发到各商场的数量
ABC
甲 200 180 190
乙 100 120 100
产品
发到各商场的数量
——A的负矩阵(additive inverse of A).
② 设A, B是同型矩阵, 则它们的差
(subtraction)定义为A + (B). 记为AB.
即A B = A + (B).
20
第一章 矩阵
§1.2 矩阵的基本运算
2. 数乘(scalar multiplication)
设矩阵A = (aij)mn , 数k与A的乘积定义为
1. 加法(addition of matrices)
例3.
产品
发到各商场的数量
ABC
甲 200 180 190
乙 100 120 100
产品
发到各商场的数量
ABC
甲 220 185 200
乙 105 120 110
第一次
第二次
两次累计:
产品
发到各商场的数量
ABC
甲 420 365 390
乙 205 240
4
第一章 矩阵
三. 定义
列(column)
§1.1 矩阵概念
1. mn矩阵
a11 a12 … a1n a21 a22 … a2n …………
am1 am2 … amn
行(row)
元素(element/entry) aij (1 i m, 1 j n) 元素都是实数——实矩阵(real ~) 元素都是复数——复矩阵(complex ~)
ABC
甲 200 180 190
乙 100 120 100
产品
发到各商场的数量
ABC
甲 220 185 200
乙 105 120 110
第一次
第二次
两次累计:
产品
发到各商场的数量
ABC
甲 420 365 390
乙 205
16
第一章 矩阵
§1.2 矩阵的基本运算
§1.2 矩阵的基本运算
一. 矩阵的线性运算
11
第一章 矩阵
6. 零矩阵(zero matrix)
§1.1 矩阵概念
000 00 000 0 0 0 00 000 0 0 0
零矩阵——元素全为零. 通常用O表示零矩阵. 有时, 加下标指明其阶数.
例如, 上述零矩阵分别可以记为:
O2,
O23,
O3.
12
第一章 矩阵
§1.2 矩阵的基本运算
例如:
30 03
2 0 0 0 2 0 0 0 2
4. 单位矩阵(identity matrix)
1 0 …0 En = 0 1 … 0
称为n阶单位矩阵.
…
… …
0 0 … 1 nn
10
第一章 矩阵
5. 反对称矩阵
0 2 20
0 1 1 1 0 3 1 3 0
§1.1 矩阵概念
若矩阵A = [aij]mn满足: m = n且aij = aji (i, j = 1, 2, …, n), 则称A为反对称矩阵(antisymmetric matrix/ skew–symmetric matrix).
9 9 11 23
注意 乘积BA 没有意义
25
第一章 矩阵
§1.2 矩阵的基本运算