正弦余弦函数诱导公式

合集下载

正弦余弦的诱导公式

正弦余弦的诱导公式

正弦余弦的诱导公式正弦和余弦的诱导公式是三角函数中非常重要的两个公式,它们描述了两个角的正弦和余弦之间的关系。

通过这些公式,我们可以使用已知角的正弦或余弦来求解其他角度的正弦和余弦值,从而在三角函数中起到了非常关键的作用。

首先,我们先来看正弦的诱导公式。

对于一个角度为θ的三角形,假设角θ的对边长度为b,斜边长度为c。

根据三角形的定义可以知道:sin(θ) = b/c接下来我们使用勾股定理,即c²=a²+b²,其中a表示角度为θ的三角形的邻边长度。

将c²=a²+b²代入上式,可以得到:sin(θ)= b/√(a² + b²)我们知道,正弦函数是一个周期性函数,且满足-sin(θ) = sin(180° + θ)。

因此,对于角度大于90°的情况,可以通过此公式来计算正弦值。

根据逆三角函数的定义,我们还可以推导出:sin(180° - θ) = sin(θ)这就是正弦的诱导公式,它描述了正弦函数的周期性和对称性。

接下来,我们来看余弦的诱导公式。

同样考虑一个角度为θ的三角形,对于角度大于90°的情况,我们可以使用余弦函数来表示。

余弦函数定义为:cos(θ) = a/c假设角θ的邻边长度为a,斜边长度为c。

利用勾股定理可以得到:cos(θ) = a/√(a² + b²)由余弦函数的周期性和对称性,我们可以推导出:cos(-θ) = cos(θ)cos(180° - θ) = -cos(θ)cos(180° + θ) = -cos(θ)这些公式描述了余弦函数的周期性和对称性。

通过正弦和余弦的诱导公式,我们可以求解其他角度的正弦和余弦值。

例如,对于sin(30°),我们可以使用sin(90° - 30°) = sin(60°) = √3/2来求解。

三角函数诱导公式大全

三角函数诱导公式大全

三角函数诱导公式大全1.正弦函数诱导公式:正弦函数的诱导公式是通过余弦函数定义和平方性质得到的。

sin^2A + cos^2A = 1根据这个公式,我们可以得到以下诱导公式:sin(-A) = -sinAsin(A ± B) = sinA cosB ± cosA sinBsin2A = 2sinAcosAsin3A = 3sinA - 4sin^3A2.余弦函数诱导公式:余弦函数的诱导公式是通过正弦函数定义和平方性质得到的。

sin^2A + cos^2A = 1根据这个公式,我们可以得到以下诱导公式:cos(-A) = cosAcos(A ± B) = cosA cosB - sinA sinBcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Acos3A = 4cos^3A - 3cosA3.正切函数诱导公式:正切函数的诱导公式是通过正弦函数和余弦函数诱导公式得到的。

tanA = sinA / cosA根据正弦函数和余弦函数诱导公式,我们可以得到以下诱导公式:tan(-A) = -tanAta n(A ± B) = (tanA ± tanB) / (1 ∓ tanA tanB)tan2A = 2tanA / (1 - tan^2A)tan3A = (3tanA - tan^3A) / (1 - 3tan^2A)4.余切函数诱导公式:余切函数的诱导公式是通过正切函数的诱导公式得到的。

cotA = 1 / tanA根据正切函数的诱导公式,我们可以得到以下诱导公式:cot(-A) = -cotAcot(A ± B) = (cotA cotB ∓ 1) / (cotB ± cotA)cot2A = (1 - tan^2A) / 2tanAcot3A = (3cotA - cot^3A) / (cot^2A - 3)5.正割函数诱导公式:正割函数的诱导公式是通过余弦函数的诱导公式得到的。

正弦余弦公式总结

正弦余弦公式总结

正弦余弦公式总结正弦余弦公式总结1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(2π-a)=cos(a)cos(2π-a)=sin(a)sin(2π+a)=cos(a)cos(2π+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)tgA=tanA=sinAcosA2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)tan(b)] tan(a-b)=[tan(a)-tan(b)]/[1+tan(a)tan(b)]3.和差化积公式sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)sin(a)−sin(b)=2cos((a+b)/2)sin((a-b)/2)cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)4.积化和差公式(上面公式反过来就得到了)sin(a)sin(b)=-1/2* [cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2* [cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2* [sin(a+b)+sin(a-b)]cos(a)sin(b)=1/2* [sin(a+b)-sin(a-b)]5.二倍角公式sin(2a)=2sin(a)cos(a)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 6.半角公式2sin2(a/2)=1-cos(a)2cos2(a/2)=1+cos(a)tan(a/2)=[1-cos(a)]/sin(a)=sina/[1+cos(a)] tan2(a/2)= [1-cos(a)]/[1+cos(a)]7.万能公式sin(a)=2tan(a/2)/[1+tan2(a/2)]cos(a)=[1-tan2(a/2)]/[1+tan2(a/2)]tan(a)=2tan(a/2)/[1-tan2(a/2)]8.其它公式(推导出来的)a*sin(a)+b*cos(a)=sin(a+c) 其中tan(c)=b/a a*sin(a)-b*cos(a)=cos(a-c) 其中tan(c)=a/b 1+sin(a)=(sin(a/2)+cos(a/2))21-sin(a)=(sin(a/2)-cos(a/2))2三、正弦定理:a/sinA=b/sinB=c/sinC=2R其中R是三角形外接圆半径正弦定理可以解决下列三角问题:①已知两角和任一边,求其它两边和一角。

三角函数的诱导公式

三角函数的诱导公式

三角函数的诱导公式1.正弦函数和余弦函数的诱导公式:正弦函数和余弦函数是最基本的三角函数,它们之间存在一个非常重要的诱导公式:sin(π/2 - θ) = cos(θ)这个公式告诉我们,如果将一个角的余角代入正弦函数,得到的结果是对应角的余弦函数。

通过这个公式,我们可以推导出一些其他的三角函数的诱导公式。

2.正切函数的诱导公式:正切函数是正弦函数和余弦函数的商:tan(θ) = sin(θ) / cos(θ)通过将正弦函数和余弦函数的诱导公式代入,我们可以得到正切函数的诱导公式:tan(θ) = sin(θ) / cos(θ) = cos(π/2 - θ) / sin(π/2 - θ)这个公式告诉我们,如果将一个角的余角代入正切函数,得到的结果是对应角的余切函数的倒数。

3.余切函数的诱导公式:余切函数是正切函数的倒数:cot(θ) = 1 / tan(θ) = cos(θ) / sin(θ)通过将正弦函数和余弦函数的诱导公式代入,我们可以得到余切函数的诱导公式:cot(θ) = 1 / tan(θ) = 1 / [cos(π/2 - θ) / sin(π/2 - θ)] = sin(π/2 - θ) / cos(π/2 - θ)这个公式告诉我们,如果将一个角的余角代入余切函数,得到的结果是对应角的正切函数的倒数。

4.正弦函数和余弦函数的平方和差公式:sin(θ ± ϕ) = sin(θ)cos(ϕ) ± cos(θ)sin(ϕ)cos(θ ± ϕ) = cos(θ)cos(ϕ) ∓ sin(θ)sin(ϕ)这两个公式称为正弦函数和余弦函数的平方和差公式,它们揭示了正弦函数和余弦函数的和角和差角的关系。

通过这两个公式,我们可以将任意两个角的和、差转化为正弦函数和余弦函数的乘积,从而进行更复杂的运算。

这里的正弦函数和余弦函数的平方和差公式可以通过三角函数的诱导公式和欧拉公式来证明。

正弦和余弦的诱导公式

正弦和余弦的诱导公式

①sin(180°+α)=sinαcos(180°+α)=cosα②sin(-α) = -sinα cos(-α) = cosα1,利用单位圆表示任意角α的正弦值和余弦值xyoP(x,y)(1,0).α的终边.yxoP(x,y)(1,0).α的终边.xyoP(x,y)(1,0).α的终边.xyoP(x,y)(1,0).α的终边.如左图,由定义,都有:sinα= y cosα= x1,利用单位圆表示任意角α的正弦值和余弦值xyoP(x,y)(1,0).α的终边.yxoP(x,y)(1,0).α的终边.如左图,由定义,都有:sinα= y cosα= x2,诱导公式一及其用途sin(α+k·360°) = sinαcos(α+k·360°) = cosαtan(α+k·360°) = tanα 其中k ∈Z任意角的三角函数值公式一的用途0 °~ 360 °角的三角函数值本单元的内容0 °~ 90 °角的三角函数值(1)0 °~ 90 °角的正弦值、余弦值用何法可求得?(2)90 °~ 360 °的角β能否与锐角α相联系?设0°≤α≤90 °,那么,对于90°~ 180 °间的角,可表示成:180 °-α;180°~ 270 °间的角,可表示成:180 °+α;270°~ 360 °间的角,可表示成:360 °-α;(1)锐角α的终边与180 °+α角的终边,位置关系如何?(2)任意角α与180 °+α呢?yxoP(x,y)(1,0).α的终边.xyoP(x,y)(1,0).α的终边.α180 °+α的终边180 °+α的终边.P’.P’由分析可得:角α180 °+α终边关系关于原点对称点的关系P(x,y)P’(-x,-y)函数关系sinα= ycosα= xsin(180 °+α)= -ycos(180 °+α)= -x因此,可得:sin(180 °+α) = -sinαcos(180 °+α) = -cosα公式二2,同理可研究-α与α的三角函数值的关系yxoP(x,y)(1,0).α的终边.-α的终边.P’角α-α终边关系关于X 轴对称点的关系P(x,y)P’(x,-y)函数关系sinα= y cosα= xsin(-α) = -y cos(-α) = x因此,可得:sin(-α) = -sinαcos(-α) = cosα公式三sin(180 °+α) = -sinαcos(180 °+α) = -cosα公式二:公式二与公式三的成立条件,以及它们的特点,用途。

三角函数的诱导公式知识点

三角函数的诱导公式知识点

三角函数的诱导公式知识点三角函数的诱导公式是数学中关于三角函数之间的一组等式,通过这组等式可以在不依赖计算器或表格的情况下直接计算出一些角度的三角函数值,从而简化计算。

诱导公式的基本思想是通过将一个角度的三角函数转化为另一个角度的三角函数来求解。

一、正弦和余弦的诱导公式:根据正弦函数和余弦函数的定义,对于任意角度θ,有:sin θ = y/rcos θ = x/r其中,x,y,r代表直角三角形中的边长。

利用勾股定理可以得到x²+y²=r²。

现在考虑角度θ+90°,即sin(θ+90°)和cos(θ+90°)的值。

根据正弦函数和余弦函数的定义,有:sin(θ+90°) = y’/rcos(θ+90°) = x’/r其中,x’,y’,r由右边角相等可知。

然后考虑直角三角形中的边长关系:y’=xx’=-y(由右边角相等,即90°+(-θ))代入sin(θ+90°)和cos(θ+90°),得到:sin(θ+90°) = x/r,即sin(θ+90°) = cosθcos(θ+90°) = -y/r,即cos(θ+90°) = -si nθ得到正弦的诱导公式:sin(θ+90°) = cosθ;得到余弦的诱导公式:cos(θ+90°) = -sinθ。

利用这两个诱导公式,我们可以在计算中互相转化正弦和余弦的值。

二、正切和余切的诱导公式:正切和余切的定义是:tan θ = sin θ / cos θcot θ = cos θ / sin θ。

根据正弦和余弦的诱导公式,我们可以得到:sin(θ+90°) = cosθcos(θ+90°) = -sinθ。

将这两个式子带入正切和余切的定义,有:tan(θ+90°) = sin(θ+90°) / cos(θ+90°) = cosθ / (-sinθ) = -cotθcot(θ+90°) = cos(θ+90°) / sin(θ+90°) = (-sinθ) /cosθ = -tanθ。

三角函数的诱导公式

三角函数的诱导公式

三角函数的诱导公式三角函数的诱导公式是指通过一些基本的三角函数值,推导出其他三角函数的值的公式。

这些基本的三角函数包括正弦函数、余弦函数和正切函数。

在证明三角函数的诱导公式时,可以运用几何图形、代数运算以及三角函数的定义等方法。

首先,我们来讨论正弦函数和余弦函数的诱导公式。

假设在单位圆上,角A对应的弧度为θ,其坐标为(x,y),则可以得到以下关系式:x = cosθy = sinθ我们可以通过单位圆的对称性,得到以下诱导公式:1. sin(-θ) = -sinθ证明:设角B为-A,对应的弧度为-θ,其坐标为(-x,y)。

由对称性可知,-x = cos(-θ) = cosθ,y=sin(-θ)。

所以,sin(-θ) = -sinθ。

2. sin(π-θ) = sinθ证明:设角C为π-A,对应的弧度为π-θ,其坐标为(-x,-y)。

由对称性可知,-x = cos(π-θ) = cosθ,-y = sin(π-θ)。

所以,sin(π-θ) = sinθ。

3. sin(θ+π) = -sinθ证明:设角D为A+π,对应的弧度为θ+π,其坐标为(-x,-y)。

由对称性可知,-x = cos(θ+π) = -cosθ,-y = sin(θ+π)。

所以,sin(θ+π) = -sinθ。

通过这些诱导公式,我们可以计算任意角度的正弦函数值,而不仅仅局限于0到π的范围。

接下来,我们来讨论正弦函数和余弦函数的平方和公式和差公式。

1. sin²θ + cos²θ = 1证明:根据单位圆上坐标的定义,可以得到(x,y)² = x² + y² = cos²θ + sin²θ = 1、所以,sin²θ + cos²θ = 12. cos(θ±φ) = cosθcosφ - sinθsinφ证明:设角A对应的弧度为θ,角B对应的弧度为φ。

正弦余弦公式总结

正弦余弦公式总结

1.诱导公式sin(-a)=—sin(a)cos(-a)=cos(a)sin(2π-a)=cos(a)cos(2π-a)=sin(a)sin(2π+a)=cos(a)cos(2π+a)=—sin(a)sin(π-a)=sin(a)cos(π—a)=—cos(a)sin(π+a)=—sin(a)cos(π+a)=-cos(a)tgA=tanA=sinAcosA2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=[tan(a)+tan(b)]/[1—tan(a)tan(b)] tan(a—b)=[tan(a)—tan(b)]/[1+tan(a)tan(b)]3。

和差化积公式sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)sin(a)−sin(b)=2cos((a+b)/2)sin((a-b)/2)cos(a)+cos(b)=2cos((a+b)/2)cos((a—b)/2)cos(a)-cos(b)=—2sin((a+b)/2)sin((a-b)/2)4。

积化和差公式(上面公式反过来就得到了)sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2* [cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b)=1/2* [sin(a+b)—sin(a-b)]5.二倍角公式sin(2a)=2sin(a)cos(a)cos(2a)=cos2(a)-sin2(a)=2cos2(a)—1=1—2sin2(a)6.半角公式2sin2(a/2)=1-cos(a)2cos2(a/2)=1+cos(a)tan(a/2)=[1-cos(a)]/sin(a)=sina/[1+cos(a)]tan2(a/2)= [1-cos(a)]/[1+cos(a)]7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦余弦函数诱导公式
1. sin 415º- cos 415º的值为 ( )
A .31
B .21
C .23
D .-2
3
2.设sin θ= - 53, θ为第四象限角,则sin 2
θ
的值是 ( )
A .
1010 B .-1010 C .10
10± D .10103±
3.设),
090(-∈x ,54cos =
x , 则
=x 2tan ( )
A. 7
24- B.24
7- C.7
24 D.24
7
4.已知2
sin 3
α=,则cos(2)πα-= ( )
A.3-
B.19-
C.1
9
D.3 5.设2
3
1cos sin -=
+x x ,且,2x ππ<<则=x 2cos )
A.
23 B. 21 C. 21- D. 2
1
± 6.已知2
1
)tan()18090(53sin =-<<=βπαα,
, 则=-)2tan(βα ( )
A. 24-
B. 7-
C. 24
D. 7
7.=++0
0020215cos 105cos 15cos 105cos ( )
A. 41
B. 43
C. 45
D.
46
8、已知tan α,tan β是方程x 2+33x +4=0的两根,且-2
π<α
<2
π,-2
π<β<2
π,则α+β等于( ).
(A )3π (B )-32π (C )3π或32π (D )-3π或3

9.若f (cos x )=cos 2x ,则f (sin 15°)的值是( ).
(A )2
1 (B )
23 (C )-2
1
(D )-23 10.若sin cos 0αα+<,tan 0α>,则α的终边在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 11. 1=x 与2=x 是x y ωtan =相邻的两条对称轴,化简
x
x x x sin )
cos(cos )sin(--+ωω为( )
A .1
B .2
C .1-
D .0 12.已知sin(α-β)=1010,α-β是第一象限角,tanβ=12
,β
是第三象限角,则cosα的值等于
A.7210 B .-7210 C.22 D .-2
2
13.化简 1
cos 2cos sin 2sin +++θθϑθ=__________.
14.设)9045(12sin
<<=αα,则 =-ααsin cos ________.
15.函数
2sin()32x
y π=-的单调递增区间是 16.已知6sin 2
α+sinαcosα-2cos 2
α=0,α∈[π
2
,π],求
sin(2α+π
3)的值.
17.
已知函数2
()2cos cos f x x x x =+. (1)求函数)(x f 的最小正周期及最值; (2)求函数)(x f 的单调递增区间;
(3)并用“五点法”画出它一个周期的图像.
18.设π
<A <23π
,0<B <2
π,且cos A =-55,cot B =3,求证
A -
B =π4
5
.。

相关文档
最新文档