初二 一次函数应用题【教师版】

合集下载

一次函数 湘教版数学八年级下册课时习题(含答案)

一次函数 湘教版数学八年级下册课时习题(含答案)

湘教版数学八年级下册4.2《一次函数》同步练习一、选择题1.若函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.22.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A.k=2B.k≠2C.k=﹣2D.k≠﹣23.下列说法正确的是()A.正比例函数是一次函数B.一次函数是正比例函数;C.正比例函数不是一次函数D.不是正比例函数就不是一次函数4.已知正比例函数y=kx(k≠0),点(2,﹣3)在函数上,则y随x的增大而( )A.增大B.减小C.不变D.不能确定5.正比例函数y=kx的图象如图所示,则k的值为( )A. B. C. D.6.函数y=3x+1的图象一定经过点()A.(3,5)B.(﹣2,3)C.(2,7)D.(4,10)7.下列函数中y随x的增大而减小的是()A.y=x﹣m2B.y=(﹣m2﹣1)x+3 C.y=(|m|+1)x﹣5 D.y=7x+m8.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(千米),甲行驶的时间为t(小时),s与t之间的函数关系如图所示.有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中正确结论的个数是( )A.4B.3C.2D.1二、填空题9.已知y=(m-1)x+m2-1为正比例函数,则m= .10.如果函数y=(k﹣2)x|k﹣1|+3是一次函数,则k=.11.已知正比例函数的图象在第二、第四象限,则m的值为12.若点P(a,b)在第二象限内,则直线y=ax+b不经过第象限.三、解答题13.已知y=(k+1)x+k-2是正比例函数.(1)当x=-3时,求对应的函数值y;(2)当y>4时,求对应x的取值范围.14.已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=﹣1时,求y的值.15.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值(2)若函数的图象平行于直线y=3x-3,求m的值(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.参考答案1.B.2.C3.A4.B.5.B6.C7.B8.B9.-1;10.0.11.-2;12.三.13.略14.解:(1)设y+3=k(x+2)(k≠0).∵当x=3时,y=7,∴7+3=k(3+2),解得,k=2.∴y+3=2x+4∴y与x之间的函数关系式是y=2x+1;(2)由(1)知,y=2x+1.所以,当x=﹣1时,y=2×(﹣1)+1=﹣1,即y=﹣1.15.解:(1)∵y=(2m+1)x+m﹣3经过原点,是正比例函数,∴2m+1≠0,m-3=0.解得m=3.(2)∵函数的图象平行于直线y=3x﹣3,∴2m+1=3,解得m=1。

初二一次函数经典例题

初二一次函数经典例题

初二一次函数经典例题
1. 题目描述
小明是初二学生,最近在学习一次函数的知识。

他遇到了下面这个经典的一次
函数例题:
已知函数关系式y=2x+3,求当x=4时,所对应的y的值。

2. 解题思路
要解决这个问题,我们需要使用一次函数的关系式y=kx+b求解。

对于已知
的函数关系式y=2x+3,我们可以得到k=2和b=3。

要求当x=4时,所对
应的y的值,我们只需要将x的值代入函数关系式中即可。

将x=4代入y=2x+3中:
$y = 2 \\times 4 +3 = 8 + 3 = 11$
所以,在x=4时,y的值为 11。

3. 答案验证
为了验证我们的解答是否正确,我们可以直接将x=4和y=11代入原始的函数关系式y=2x+3中进行检验。

将x=4和y=11代入y=2x+3中:
$11 = 2 \\times 4 + 3 = 8 + 3 = 11$
因此,我们的解答是正确的。

4. 结论
根据题目中的已知条件,我们成功求得了当x=4时,所对应的y的值为 11。

通过验证,我们确认了解答的正确性。

这个例题是一次函数的经典例题,通过解答这个例题,我们巩固了一次函数的
知识,并学会了如何求解一次函数中的未知数。

在学习数学的过程中,经典例题的练习对提高我们的解题能力和思考能力至关重要。

希望通过这个例题的解答,能够对初二学生理解一次函数的概念和运用有所帮助。

以上是本文档对初二一次函数经典例题的解答与分析。

希望能对读者有所帮助!。

一次函数应用题带答案

一次函数应用题带答案

一次函数应用题带答案1、函数,那么当时,、2、假设函数是的正比例函数,那么 =、3、函数的图像与轴的交点坐标为、4、一次函数的图像是由函数的图像向上平移2个单位而得到的,那么该一次函数的解析式为、5、函数中,值随的增加而减小,那么的取值范围为、6、一次函数的图像与坐标轴的交点为、那么一次函数的解析式为、7、点P既在直线上,又在直线上,那么P点的坐标为、8、假设一次函数的图像经过,且随的增加而减小,请你写一个符合上述条件的函数解析式:、1、一次函数的图像一定经过点()A、(2,—5)B、(1,0)C、(—2,3)D、(0,—1)2、函数中自变量的取值范围()A、 B、 C、 D、3、函数,当时,值相等,那么的值是()A、1B、2C、3D、44、一次函数的图像与两坐标轴所围成的三角形面积为()A、6B、3C、9D、4、55、当时,函数的图像大致是()6、把函数的图像沿着轴向下平移一个单位,得到的函数关系式是()A、 B、 C、 D、7、点A 和点B 都在直线上,那么与的大小关系为()A、 B、 C、 D、不能确定8、邮购一种图书,每册定价20元,另加书价的5%作邮资,购书册,需付款y(元)与的函数解析式为()A、 B、C、 D、9、如所示,分别表示甲乙两名运发动在自行车比赛中所走的路程S和时间t的函数关系,那么他们的速度关系是()A、甲比乙快B、乙比甲快C、甲乙同速D、不能确定10、在中,当时,y=—1,那么当时,y=()A、—2B、C、D、21、拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q(升)与工作时间t(时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量2、一次函数,求:(1)m为何值时,函数图像交y轴于正半轴?(2)m为何值时,函数图像与y轴的交点在轴的下方?(3)m为何值时,图像经过原点?3、用图像法求下面一元二次方程组的近似解。

北师大版八年级(上)数学《一次函数》应用题练习(含答案)

北师大版八年级(上)数学《一次函数》应用题练习(含答案)

第四章 一次函数1.某商场购进一批内衣,经试验发现,若每件按20元销售时,每月能卖360件;若每件按25元销售时,每月能卖210件,假定每月销售数y (件)是销售单价x (元)的一次函数,求y 与x 之间的函数关系式.2.已知甲、乙两人分别从相距18km 的A 、B 两地同时相向而行,甲以4千米/时的平均速度步行,乙以每小时比甲快1千米的平均速度步行,相遇为止.(1)求甲、乙两人相距的距离为y (km )和所用时间x (小时)的函数关系式;(2)求出函数图像与x 轴、y 轴的交点坐标,画出函数图像,并求出自变量的取值范围;(3)求当甲、乙两人相距6千米时,所需用的时间.3.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.4元;“神州行”不缴月基础费,每通话1分钟,付话费0.6元(这里均指市内通话).若一个月内通话x 分钟,两种通讯方式的费用分别为1y 和2y 元.(1)写出1y 、2y 与x 之间的函数关系式;(2)一个月内通话多少分钟,两种通讯方式的费用相同?(3)若某人预计一个月内使用话费200元,则应选择哪种通讯方式较合算?4.某城市按以下规定收取每月煤气费:用煤气不超过603m ,按0.8元/3m 收费;如果超过603m ,超过部分按1.2元/3m 收费.(1)设煤气用量为)60(m 3 x x ,应交煤气资为y 元,写出y 关于x 的函数解析式,并画出函数的图像;(2)已知某用户一月份的煤气费平均每立方米0.88元,那么一月份该用户应交煤气费共多少元?5.如图,公路上有A、B、C三个车站,一辆汽车在上午8时从离A站10km 的P地出发向C站匀速前进,15分钟后,离A站20km.(1)设出发x小时后,(2)当汽车行驶到离A站150km 汽车离A站y km,写出y与x之间的函数关系式;的B站时,接到通知要在中午12时前赶到离B站30千米的C站,汽车若按原速能否按时到达?若能,是在几点几分到达;若不能,车速最少应提高多少?6.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y(人)与年份x(年)的函数关系式;(2)利用所求函数关系式,预测该地区从哪一年起入学儿童的人数不超过1000人?年份(x)2000 2001 2002 …入学儿童人数(y)2520 2330 2140 …7.《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表累进计算:全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……(纳税款=应纳税所得额×对应的税率)按此规定解答下列问题:(1)设某甲的月工资、薪金所得为x 元(28001300<<x ),需缴交的所得税款为y 元,试写出y 与x 的函数关系式;(2)若某乙一月份应缴交所得税款95元,那么他一月份的工资、薪金是多少元?8.某家电集团公司生产某种型号的新家电,前期投资200万元,每生产1台这种新家电,后期还需其他投资0.3万元,已知每台新家电可实现产值0.5万元.(1)分别求出总投资额1y (万元)和总利润比2y (万元)关于新家电的总产量x (台)的函数关系式;(2)当新家电的总产量为900台时,该公司的盈亏情况如何?(3)请你利用(1)中2y 与x 的函数关系式,分析该公司的盈亏情况. (注:总投资=前期投资+后期其他投资,总利润=总产值-总投资)9.通过电脑拨号上“因特网”的费用是由电话费和上网费两部分组成.以前我市通过“黄冈热线”上“因特网”的费用为电话费0.18元/3分钟,上网费为7.2元/小时,后根据信息产业部调整“因特网”资费的要求,自1999年3月1日起,我市上“因特网”的费用调整为电话费0.2元/3分钟,上网费为每月不超过60小时,按4元/小时计算;超过60小时部分,按8元/小时计算.(1)根据调整后的规定,将每月上“因特网”的费用y (元)表示为上网时间x (小时)的函数;(2)资费调整前,网民晓刚在其家庭经济预算中,一直有一笔每月70小时的上网费用支出,“因特网”资费调整后,晓刚要想不超过其家庭经济预算中的上网费用支出,他现在每月至多可上网多少小时?(3)从资费调整前后的角度分析,比较我市网民上网费用的支出情况.10.某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号的时装需用A种布料0.6m,B种布料0.9m,可获利润45元,做一套N型号的时装需用A种布料1.1m,B 种布料0.4m,可获利润50元,若设生产N型号的时装套数为N,用这批布料生产这两种型号的时装所获的总利润为y元.(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;(2)该服装厂在生产这批时装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?参考答案1..96030+-=x y2.(1)189+-=x y (2)(2,0),(0,18),20≤<x (3)34小时 3.(1).6.04.05021x y x y =+=, (2)每月内通话250分钟,两种移动通讯费用相同. (3)200元话费用“全球通”可通话375分钟,“神州行”可通话31333分钟,选择“全球通”合算. 4.(1).242.1)60(2.1608.0-=-+⨯=x y x y , (2)x x 88.0242.1=-,75=x ,667588.0=⨯=y (元)5.(1)汽车速度为40千米/时,.1040+=x y (2)汽车若按原速度不能按时到达,若要汽车按时到达C 站,车速最少应提高到每小时60km .6.(1)直线b kx y +=过(2000,2500),(2001,2330)两点,∴ ⎩⎨⎧=+=+,23302001,25202000b k b k 解得⎩⎨⎧=-=.382520,190b k ∴.382520190+-=x y (2)设x 年时,入学人数为1000人,1000382520190=+-x ,2008=x ,即从2008年起入学儿童人数不超过1000人.7.(1)∵ 28001300<<x ,∴ 2000800500<-<x ,∴ %.5500%10)500800(⨯+⨯--=x y(2)∵ %5%1020095%5500+⨯<<⨯,∴ 2000,251.0)1300(95=+⨯-=x x ,某乙一月份工资、薪金是2000元.8.(1).2002.0)2003.0(5.02003.021-=+-=+=x x x y x y ,(2)当总产量是900台时,该公司会亏损,亏损20万元.(3)产量小于1000台时,该公司亏损,产量是1000台时,该公司不亏损也不盈利,产量大于1000台时,该公司会盈利.9.(1)⎩⎨⎧>-≤≤=).60(,2404.12),600(,4.8x x x x y (2)资费调整前,上网70小时所需费用为75670)2.76.3(=⨯+元.资费调整后,若上网60小时,则所需费用为504604.8=⨯(元). ∵ 504756>,∴ 晓刚现在上网时间超过60小时.由7562404.12≤-x ,解得32.80≤x . ∴ 晓刚现在每月至多可上网约80.32小时.(3)设调整前所需费用为1y (元);调整后所需费用2y (元),则x y 8.101=.当600≤≤x 时,x x x y 4.88.104.82>=,,故21y y >. 当60>x 时,2404.122-=x y ,当21y y =时,150,2404.128.10=-=x x x ;当21y y >时,150,2404.128.10<->x x x ;当21y y <时,150,2404.128.10>-<x x x .综上可得:当150<x 时,调整后所需费用少;当150=x 时,调整前后所需费用相同;当150>x 时,调整前所需费用少.10.(1)x x y 50)80(45+-=.由⎩⎨⎧≤+-≤+-.524.0)80(9.0,701.1)80(6.0x x x x 解得4440≤≤x . ∴ 自变量的取值范围为40,41,42,43,44.(2)当44=x 时,有最大值,最大值为3820元.。

苏教版八上一次函数应用题含答案解析

苏教版八上一次函数应用题含答案解析

八上一次函数应用题含解析一.解答题(共15小题)1.(2014•邗江区一模)某厂工人小宋某月工作部分信息如下.信息一:工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月20天信息二:生产甲、乙两种产品,并且按规定每月生产甲产品件数不少于60件.生产产品的件数与所用时间之间的关系如下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件数计酬,每生产一件甲产品可得1.5元,每生产一件乙产品可得2.8元.信息四:小宋工作时两种产品不能同时进行生产.根据以上信息回答下列问题:(1)小宋每生产一件甲种产品,每生产一件乙种产品分别需要多少时间?(2)小宋该月最多能得多少元?此时生产的甲、乙两种产品分别是多少件?(习题改编)2.(2014•丹东二模)甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式_________;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?3.(2014•泰州三校一模)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为_________km/h,快车的速度为_________km/h;(2)解释图中点D的实际意义并求出点D的坐标;(3)求当x为多少时,两车之间的距离为300km.4.(2014•如东县模拟)甲、乙两车同时从M地出发,以各自的速度匀速向N地行驶.甲车先到达N地,停留1h 后按原路以原速匀速返回,直到两车相遇,乙车的速度为50km/h.如图是两车之间的距离y(km)与乙车行驶时间x(h)之间的函数图象.(1)甲车的速度是_________km/h,M、N两地之间相距_________km;(2)求两车相遇时乙车行驶的时间;(3)求线段AB所在直线解析式.5.(2014•徐州模拟)某物流公司有20条输入传送带,20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图a,每条输出传送带每小时出库的货物流量如图b,而该日仓库中原有货物8吨,在0时至4时,仓库中货物存量变化情况如图c.(1)根据图象,在0时至2时工作的输入传送带和输出传送带的条数分别为_________;A.8条和8条B.14条和12条C.12条和14条D.10条和8条(2)如图c,求当2≤x≤4时,y与x 的函数关系式;(3)若4时后恰好只有4条输入传送带和4条输出传送带在工作(至货物全部输出完毕为止),请在图c中把相应的图象补充完整.6.(2014•海陵区模拟)一天,某渔船离开港口前往黄岩岛海域捕鱼,8小时后返航,此时一艘渔政船从该港口出发前往黄岩岛巡查(假设渔政船与渔船沿同一航线航行).下图是渔政船及渔船到港口的距离S和渔船离开港口的时间t之间的函数图象.(1)写出渔船离港口的距离S和它离开港口的时间t的函数关系式;(2)在渔船返航途中,什么时间范围内两船间距离不超过30海里?7.(2014•沛县模拟)某次海军舰艇演习中,甲、乙两舰艇同时从A、B两个港口出发,均沿直线匀速驶向演习目标地海岛C,两舰艇都到达C岛后演习第一阶段结束.已知B港位于A港、C岛之间,且A、B、C在一条直线上.设甲、乙两舰艇行驶x(h)后,与B港的距离分别为y1和y2(km),y1、y2与x的函数关系如图所示.(1)求A港与C岛之间的距离;(2)分别求出甲、乙两舰艇的航速及图中点M的坐标;(3)若甲、乙两舰艇之间的距离不超过20km时就属于最佳通讯距离,试求出两舰艇在演习第一阶段处于最佳通讯距离时的x的取值范围.8.(2014•海拉尔区模拟)某大型物流公司首期规划建造面积为2400平方米的商铺,商铺内设A种类型和B种类型的店面共80间,A种类型的店面平均面积为28平方米,每间月租费为400元,B种类型的店面平均面积为20平方米,每间月租费为360元,全部店面的建造面积不低于商铺总面积的85%.(1)设A种类型的店面数为a间,请问数量a在什么范围?(2)该物流公司管理部门通过了解,A种类型的店面的出租率为75%,B种类型的店面的出租率为90%,为使店面的月租费收入最高,应建造A种类型的店面多少间?9.(2014•天水一模)某商场计划购进冰箱、彩电进行销售,相关信息如下表进价(元/台)售价(元/台)冰箱 a 2500彩电a﹣400 2000(1)若商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等,求表中a的值;(2)为了满足市场需求,商场决定用不超过90000元的资金采购冰箱彩电共50台,要求冰箱的数量不少于23台.①该商场有哪几种进货方案?②若该商场将购进的冰箱彩电全部售出,获得的利润为w元,求w的最大值.10.(2014•泰安模拟)为了迎接2013新年的到来,我校决定购进A、B两种纪念品.若购进A种纪念品10件,B 种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若我校决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么我们共有几种进货方案?(3)销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?11.(2014•玄武区一模)某市出租车按里程计费标准为:不超过3公里部分,计费11元,超过3公里部分,按每公里2.4元计费.现在在此基础上,如果车速不超过12公里/小时,那么再加收0.48元/分钟,这项费用叫做“双计费”.图中三段折线表示某时间段内,一辆出租车的计费总额y(元)与行驶时间x(分钟)的函数关系(出租车在每段上均匀速行驶).(1)写出AB段表示的实际意义;(2)求出线段BC所表示的y与x的函数关系式;(3)是否可以确定在CD段该辆出租车的计费过程中产生了“双计费”的费用?请说明你的理由.12.(2014•东丽区一模)A,B两个商场平时以同样的价格出售同样的产品,在中秋节期间让利酬宾.A商场所有商品8折销售,B商场消费超过200元后,可以在这家商场7折购物.试问如何选择商场购物更经济?13.(2014•江西样卷)小明家国庆期间租车到某地旅游,先匀速行驶50千米的普通公路,这时油箱内余油32升,由于国庆期间高速免费,进而上高速公路匀速行驶到达旅游目的地.下图是汽车油箱内余油量Q(升)与行驶路程s(千米)之间的函数图象,当行驶150千米时油箱内余油26升.(1)分别求出AB段和BC段图象所在直线的解析式.(2)到达旅游目的地后,司机说:“今日改走高速公路后比往日全走普通公路省油6升”,求此时油箱内的余油量.(假设走高速公路和走普通公路的路程一样)(3)已知出租车在高速公路上匀速行驶的速度是100千米/小时,求出租车在高速公路上行驶的时间.14.(2014•永康市模拟)李明乘车从永康到某景区旅游,同时王红从该景区返回永康.线段OB表示李明离永康的路程S1(km)与时间t(h)的函数关系;线段AC表示王红离永康的路程S2(km)与时间t(h)的函数关系.行驶1小时,李明、王红离永康的路程分别为100km、280km,王红从景区返回永康用了4.5小时.(假设两人所乘的车在同一线路上行驶)(1)分别求S1,S2关于t的函数表达式;(2)当t为何值时,他们乘坐的两车相遇;(3)当李明到达景区时,王红离永康还有多少千米?15.(2014•牡丹江一模)快、慢两车分别从相距240千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后停留1小时,然后按原路原速返回,快车比慢车早1小时到达甲地,快、慢两车距甲地的路程y(千米)与出发后所用的时间x(小时)的关系如图所示.请结合图象信息解答下列问题:(1)快、慢两车的速度各是多少?(2)出发多少小时,两车距甲地的路程相等?(3)直接写出在快车到达甲地前,两车相距10千米路程的次数.八上一次函数应用题含解析参考答案与试题解析一.解答题(共15小题)1.(2014•邗江区一模)某厂工人小宋某月工作部分信息如下.信息一:工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月20天信息二:生产甲、乙两种产品,并且按规定每月生产甲产品件数不少于60件.生产产品的件数与所用时间之间的关系如下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件数计酬,每生产一件甲产品可得1.5元,每生产一件乙产品可得2.8元.信息四:小宋工作时两种产品不能同时进行生产.根据以上信息回答下列问题:(1)小宋每生产一件甲种产品,每生产一件乙种产品分别需要多少时间?(2)小宋该月最多能得多少元?此时生产的甲、乙两种产品分别是多少件?(习题改编)考点:一次函数的应用;二元一次方程组的应用.专题:函数思想;方程思想.分析:(1)由已知列二元一次方程组求解,(2)先设小宋该月生产甲种产品a件,收入y元,根据题意写出函数关系式求最大值,再求出生产的乙种产品.解答:解:(1)设小宋每生产一件甲种产品需要x分钟,每生产一件乙种产品需要y分钟,根据题意得:,解得,答:小宋每生产一件甲种产品需要15分钟,每生产一件乙种产品需要20分钟.(2)设小宋该月生产甲种产品a件,收入y元,y=1.5a+(160×60﹣15a)÷20×2.8(a≥60)=﹣0.6a+1344,∵k=﹣0.6<0∴y随着a的增大而减小,∴当a=60时,y取得最大值=1308,此时生产的乙种产品为:(1308﹣1.5×60)÷2.8=435,答:小宋该月最多能得1308元,此时生产的甲、乙两种产品分别是60,435件.点评:此题考查的知识点是一次函数的应用及二元一次方程组的应用,解题的关键是首先列二元一次方程组求出小宋每生产一件甲种产品,每生产一件乙种产品分别需要的时间,然后写出函数关系式求最大值.2.(2014•丹东二模)甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式y=60x;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?考点:一次函数的应用.分析:(1)利用待定系数法求一次函数解析式即可;(2)利用乙的原来加工速度得出更换设备后,乙组的工作速度即可;(3)首先利用当0≤x≤2时,当2<x≤2.8时,以及当2.8<x≤4.8时,当4.8<x≤6时,求出x的值,进而得出答案即可,再假设出再经过x小时恰好装满第1箱,列出方程即可.解答:解:(1)∵图象经过原点及(6,360),∴设解析式为:y=kx,∴6k=360,解得:k=60,∴y=60x(0<x≤6);故答案为:y=60x(0<x≤6);(2)乙2小时加工100件,∴乙的加工速度是:每小时50件,∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.∴更换设备后,乙组的工作速度是:每小时加工50×2=100件,a=100+100×(4.8﹣2.8)=300;(3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为:y=100+100(x﹣2.8)=100x﹣180,当0≤x≤2时,60x+50x=300,解得:x=(不合题意舍去);当2<x≤2.8时,100+60x=300,解得:x=(不合题意舍去);∵当2.8<x≤4.8时,60x+100x﹣180=300,解得x=3,∴经过3小时恰好装满第1箱.答:经过3小时恰好装满第一箱.点评:此题主要考查了一次函数的应用,根据题意得出函数关系式以及数形结合是解决问题的关键.3.(2014•泰州三校一模)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为80km/h,快车的速度为120km/h;(2)解释图中点D的实际意义并求出点D的坐标;(3)求当x为多少时,两车之间的距离为300km.考点:一次函数的应用.分析:(1)先利用前0.5小时的路程除以时间求出一辆车的速度,再利用相遇问题根据2.7小时列式求解即可得到另一辆车的速度,从而得解;(2)点D为快车到达乙地,然后求出快车行驶完全程的时间从而求出点D的横坐标,再求出相遇后两辆车行驶的路程得到点D的纵坐标,从而得解;(3)分相遇前相距300km和相遇后相遇300km两种情况列出方程求解即可.解答:解:(1)(480﹣440)÷0.5=80km/h,440÷(2.7﹣0.5)﹣80=120km/h,所以,慢车速度为80km/h,快车速度为120km/h;故答案为:80;120.(2)快车到达乙地(出发了4小时快车慢车相距360KM时甲车到达乙地);∵快车走完全程所需时间为480÷120=4(h),∴点D的横坐标为4.5,纵坐标为(80+120)×(4.5﹣2.7)=360,即点D(4.5,360);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为300km.即相遇前:(80+120)×(x﹣0.5)=440﹣300,解得x=1.2(h),相遇后:(80+120)×(x﹣2.7)=300,解得x=4.2(h),故x=1.2 h或4.2 h,两车之间的距离为300km.点评:本题考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.4.(2014•如东县模拟)甲、乙两车同时从M地出发,以各自的速度匀速向N地行驶.甲车先到达N地,停留1h 后按原路以原速匀速返回,直到两车相遇,乙车的速度为50km/h.如图是两车之间的距离y(km)与乙车行驶时间x(h)之间的函数图象.(1)甲车的速度是75km/h,M、N两地之间相距300km;(2)求两车相遇时乙车行驶的时间;(3)求线段AB所在直线解析式.考点:一次函数的应用.分析:(1)由图可知,在x=4小时,两车相距100千米,由此可求甲车从M到N的行驶速度和M、N两地之间的距离;(2)设出两车相遇时乙车行驶的时间,根据两车相遇行的路程和为300×2列方程解答即可;(3)设出AB所在直线解析式为y=kx+b(k≠0),将A、B点坐标代入求得函数解析式即可.解答:解:(1)甲车的速度是100÷4+50=75km/h,M、N两地之间相距75×4=300km;(2)两车相遇时乙车行驶的时间即为t,75(t﹣1)+50t=300×2解得t=5.4,答:两车相遇时乙车行驶的时间5.4小时.(3)根据题意得:A(5,50),B(5.4,0)设AB所在直线解析式为y=kx+b(k≠0),将A、B点坐标代入,解得.则AB所在直线解析式为y=﹣125x+675.点评:考查了一次函数的运用,注意结合图象,理解题意,利用行程问题的基本数量关系解决问题.5.(2014•徐州模拟)某物流公司有20条输入传送带,20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图a,每条输出传送带每小时出库的货物流量如图b,而该日仓库中原有货物8吨,在0时至4时,仓库中货物存量变化情况如图c.(1)根据图象,在0时至2时工作的输入传送带和输出传送带的条数分别为B;A.8条和8条B.14条和12条C.12条和14条D.10条和8条(2)如图c,求当2≤x≤4时,y与x 的函数关系式;(3)若4时后恰好只有4条输入传送带和4条输出传送带在工作(至货物全部输出完毕为止),请在图c中把相应的图象补充完整.考点:一次函数的应用.分析:(1)设在0时至2时内有x条输入传送带和y条输出传送带在工作,根据图已列出二元一次方程,根据取值范围,且都是正整数,探讨得出答案即可;(2)设出y与x的函数关系式y=kx+b,代入(2,12)、(4,32)求得函数解析式即可;(3)4条输入传送带和4条输出传送带在工作,因为每小时相当于输出(15﹣13)×4=8吨货物,所以把仓库中的32吨输出完毕需要32÷8=4小时,由此画出图形即可.解答:(1)设在0时至2时内有x条输入传送带和y条输出传送带在工作,则13x﹣15y=2,因为x≤20,y≤20,且都是正整数,所以x=14,y=12;故选:B;(2)由图象可知:当2≤x≤4时,y是x的一次函数,设y=kx+b,将(2,12)、(4,32)代入得:,解得:∴当2≤x≤4时,y=10x﹣8(3)画图如下:点评:此题主要考查了函数的图象的应用,解题的关键是根据图象得到相关的信息,根据题意列出方程,结合未知数的实际意义求解.6.(2014•海陵区模拟)一天,某渔船离开港口前往黄岩岛海域捕鱼,8小时后返航,此时一艘渔政船从该港口出发前往黄岩岛巡查(假设渔政船与渔船沿同一航线航行).下图是渔政船及渔船到港口的距离S和渔船离开港口的时间t之间的函数图象.(1)写出渔船离港口的距离S和它离开港口的时间t的函数关系式;(2)在渔船返航途中,什么时间范围内两船间距离不超过30海里?考点:一次函数的应用.分析:(1)根据函数图象可以得出是一个分段函数,当0≤t≤5时,5<t≤8时,8<t≤13时,由待定系数法就可以求出结论;(2)由待定系数法求出渔政船离港口的距离S和它离开港口的时间t的函数关系式,再建立不等式组求出其解即可.解答:解:(1)当0≤t≤5时,设渔船离港口的距离S和它离开港口的时间t的关系式为S=k1t,由题意,得150=5k1,解得:k1=30∴S=30t;5<t≤8时,S=150当8<t≤13时,设渔船离港口的距离S和它离开港口的时间t的关系式为S=k2t+b,由题意,得,解得:,∴S=﹣30t+390.∴S=;(2)渔政船离港口的距离S和它离开港口的时间t的函数关系式为S1=k3t+b1,由题意,得,解得:,∴S1=45t﹣360,∴,∴9.6≤t≤10.4,∴9.6≤t≤10.4时,两船距离不超过30海里.点评:本题考查了分段函数的在实际问题中的运用,待定系数法求一次函数的解析式的运用,列不等式组解实际问题的运用,解答时求出一次函数的解析式是关键.7.(2014•沛县模拟)某次海军舰艇演习中,甲、乙两舰艇同时从A、B两个港口出发,均沿直线匀速驶向演习目标地海岛C,两舰艇都到达C岛后演习第一阶段结束.已知B港位于A港、C岛之间,且A、B、C在一条直线上.设甲、乙两舰艇行驶x(h)后,与B港的距离分别为y1和y2(km),y1、y2与x的函数关系如图所示.(1)求A港与C岛之间的距离;(2)分别求出甲、乙两舰艇的航速及图中点M的坐标;(3)若甲、乙两舰艇之间的距离不超过20km时就属于最佳通讯距离,试求出两舰艇在演习第一阶段处于最佳通讯距离时的x的取值范围.考点:一次函数的应用.分析:(1)利用甲船与B港的距离y1(km)与行驶时间x(h)的函数图象如图所示.结合已知条件“B港位于A港、C岛之间,且A、B、C在一条直线上”来求A港与C岛之间的距离;(2)利用速度=来求甲、乙两舰艇的航速;点M即为y1、y2与交点;(3)需要分类讨论:甲舰艇追上乙舰艇之前、后两种情况下,两舰艇处于最佳通讯距离时x的取值范围.解答:解:(1)40+160=200(km),即A港与C岛之间的距离为200km;(2)甲航速为=80(km/h),乙航速为=60(km/h).当0.5≤x≤时,y1=80x﹣40 ①,当0≤x≤2时,y2=60x ②,①②联立成方程组解得即M点坐标为(2,120);(3)当甲舰艇追上乙舰艇之前两舰艇处于最佳通讯距离时,(80﹣60)x≥40﹣20,解得x≥1.当甲舰艇追上乙舰艇之后两舰艇处于最佳通讯距离时,(80﹣60)(x﹣2)≤20,解得,x≤3.∴在演习第一阶段两舰艇处于最佳通讯距离时的x的取值范围是1≤x≤2.点评:本题考查了一次函数的应用.解题时,需要学生具备识别函数图象的能力.另外,解答(3)题时,采用了“分类讨论”的数学思想.8.(2014•海拉尔区模拟)某大型物流公司首期规划建造面积为2400平方米的商铺,商铺内设A种类型和B种类型的店面共80间,A种类型的店面平均面积为28平方米,每间月租费为400元,B种类型的店面平均面积为20平方米,每间月租费为360元,全部店面的建造面积不低于商铺总面积的85%.(1)设A种类型的店面数为a间,请问数量a在什么范围?(2)该物流公司管理部门通过了解,A种类型的店面的出租率为75%,B种类型的店面的出租率为90%,为使店面的月租费收入最高,应建造A种类型的店面多少间?考点:一次函数的应用;一元一次不等式的应用.分析:(1)关键描述语为:全部店面的建造面积不低于商铺总面积的85%.关系式为:A种类型店面面积+B种类型店面面积≥3200×85%.(2)店面的月租费=A种类型店面间数×75%×400+B种类型店面间数×90%×360,然后按取值范围来求解.解答:解:(1)设A种类型店面的数量为a间,则B种类型店面的数量为(80﹣a)间,根据题意得28a+20(80﹣a)≥2400×85%,解得a≥55.又A种类型和B种类型的店面共80间,得a≤80故数量a的范围55≤a≤80.(2)设应建造A种类型的店面x间,则店面的月租费为w,则W=400×75%•x+360×90%•(80﹣x)=300x+25920﹣324x=﹣24x+25920,∴k=﹣24<0,∴y随x的增大而减小,∴x=55时,y最大=24600所以应建造A种类型的店面55间.点评:考查了一次函数的应用和一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式组,及所求量的等量关系.注意本题的不等关系为:建造面积不低于商铺总面积的85%;并会根据函数的单调性求最值问题.9.(2014•天水一模)某商场计划购进冰箱、彩电进行销售,相关信息如下表进价(元/台)售价(元/台)冰箱 a 2500彩电a﹣400 2000(1)若商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等,求表中a的值;(2)为了满足市场需求,商场决定用不超过90000元的资金采购冰箱彩电共50台,要求冰箱的数量不少于23台.①该商场有哪几种进货方案?②若该商场将购进的冰箱彩电全部售出,获得的利润为w元,求w的最大值.考点:一次函数的应用.分析:(1)根据总价÷单价=数量由80000元购进冰箱的数量与用64000元购进彩电的数量相等建立方程求出其解即可;(2)①设购买冰箱x台,则购买洗衣机(50﹣x)台,根据总费用不超过90000元和冰箱的数量不少于23台建立不等式组求出其解即可;②根据利润=冰箱的利润+洗衣机的利润求出W与x的解析式,由一次函数的性质求解即可.解答:解:由题意,得,解得:a=2000,经检验,a=2000是原方程的解,且符合题意.∴a=2000;(2)①设购买冰箱x台,则购买洗衣机(50﹣x)台,由题意,得,解得:23≤x≤25,∵x为整数,∴x=23,24,25,∴有3种购买方案:方案1,购买冰箱23台,购买洗衣机27台;方案2,购买冰箱24台,购买洗衣机26台;方案3,购买冰箱25台,购买洗衣机25台;②由题意,得W=(2500﹣2000)x+(2000﹣1600)(50﹣x),=100x+20000.∵k=100>0,∴W随x的增大而增大,∴x=25时,W最大=22500,∴w的最大值为22500元.点评:本题考查了列分式方程解实际问题的运用,列不等式组解设计方案题型的运用,一次函数的解析式的性质的运用,解答时根据总利润═冰箱的利润+洗衣机的利润建立解析式是关键.10.(2014•泰安模拟)为了迎接2013新年的到来,我校决定购进A、B两种纪念品.若购进A种纪念品10件,B 种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若我校决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么我们共有几种进货方案?(3)销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.分析:(1)设我校购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据条件建立二元一次方程组求出其解即可;(2)设我校购进A种纪念品x个,购进B种纪念品y个,根据条件的数量关系建立不等式组求出其解即可;(3)设总利润为W元,根据总利润=两种商品的利润之和建立解析式,由解析式的性质就可以求出结论.解答:解:(1)设我校购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,由题意,得,∴解方程组得:答:购进一件A种纪念品需要50元,购进一件B种纪念品需要100元.(2)设我校购进A种纪念品x个,购进B种纪念品y个,由题意,得则,解得,解得:20≤y≤25∵y为正整数∴y=20,21,22,23,24,25答:共有6种进货方案;(3)设总利润为W元,由题意,得W=20x+30y=20(200﹣2 y)+30y,=﹣10y+4000(20≤y≤25)∵﹣10<0,∴W随y的增大而减小,∴当y=20时,W有最大值W最大=﹣10×20+4000=3800(元)答:当购进A种纪念品160件,B种纪念品20件时,可获最大利润,最大利润是3800元.点评:本题考查了待定系数法求一次函数的解析式的运用,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出一次函数的解析式是关键.。

初二 一次函数 应用题

初二 一次函数 应用题

初二一次函数应用题1.图中表示甲,乙两名选手在一次自行车越野赛中路程y(千米)随时间x(分)变化的图象,从图中可知比赛开始分钟后两人第一次相遇.2.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象,有以下结论: ①m=1;②a=40;③甲车从A地到B地共用了6.5小时;④当两车相距50km时,乙车用时为ℎ..其中正确结论的个数是( )A. 1B. 2C. 3D. 43.某天中午,小明从文具店步行返回学校,与此同时,小亮从学校骑自行车去文具店购买文具(购买文具时间忽略不计),然后原路返回学校,两人均匀速行驶,结果两人同时到达学校. 小明、小亮两人离文具店的路程y₁、y₂(单位:米)与出发时间x(单位:分)之间的函数图象如图所示.(1).学校和文具店之间的路程是米,小亮的速度是小明速度的倍:(2).求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3).小明与小亮迎面相遇以后,再经过多长时间两人相距20米?4.《龟兔赛跑》是一则耐人寻味的寓言故事,故事中塑造了一只骄傲的兔子和一只坚持不懈的小乌龟. 图中的线段OD和折线OABC表示“龟兔赛跑时时间与路程”的关系,请你根据图中给出的信息,解决下列问题.(1).填空:折线OABC表示赛跑过程中 (填“兔子”或“乌龟”)的时间与路程的关系,赛跑的全过程是米.(2).乌龟用了多少分钟追上了正在睡觉的兔子?(3).兔子醒来后,以300米/分钟的速度跑向终点,结果还是比乌龟晚到了1分钟,请问兔子在中间停下睡觉用了多少分钟?5.小明家、新华书店、学校在一条笔直的公路旁,某天小明骑车上学,当他骑了一段后,想起要买某本书,于是又返回到刚经过的新华书店,买到书后继续骑车去学校,他本次骑车上学的过程中离家距离与所用的时间的关系如图所示,请根据图象提供的信息回答下列问题:(1).小明家到学校的距离是米;小明在书店停留了分钟;(2).如果骑车的速度超过了300米/分就超越了安全限度,小明买到书后继续骑车到学校的这段时间的骑车速度在安全限度内吗?请说明理由;(3).请直接写出小明出发后多长时间离家的距离为900米?6.汽车、摩托车分别从相距240千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中摩托车因故停留0.5小时,然后以原速度继续向甲地行驶,到达甲地后停止行驶;汽车达到乙地后,立即按原路原速返回甲地(调头的时间忽略不计),如图是汽车、摩托车距乙地的路程.y(千米)与所用时间x(小时)之间的函数图象,请结合图象信息解答下列问题:(1)求摩托车的行驶速度及a的值;(2)分别求出图中线段OD、AB所表示的y与x的函数关系式;(3)求汽车与摩托车第一次相遇时,距离甲地的路程是多少千米?(4)两车出发后几小时相距的路程为80千米?请直接写出答案。

苏科版初二一次函数经典练习题解析版

苏科版初二一次函数经典练习题解析版

苏科版初二一次函数经典练习题一、选择题1、已知一次函数y=kx+b,当x=1时,y=−2,且它的图象与y轴交点纵坐标是−5,则它的解析式是( )A. y=3x+5B. y=−3x−5C. y=−3x+5D. y=3x−5考点:待定系数法求一次函数解析式分析:直接利用待定系数法求出一次函数解析式得出答案.解答:∵一次函数y=kx+b,当x=1时,y=−2,且它的图象与y轴交点纵坐标是−5,∴− − ,解得:−故它的解析式是:y=3x−5.故选:D.2、一次函数y=−2x+3的图象与两坐标轴的交点是()A. (0,3)(,0)B. (1,3)(,1)C. (3,0)(0,)D. (3,1)(1,)考点:[一次函数图象上点的坐标特征]分析:本题要求两交点的坐标,可分别令x,y为零,即可分别得出与两坐标轴的交点.解答:设y=0,得x=,∴与x轴的交点为(,0)设x=0,得y=3,∴与y轴的交点为(0,3).故答案选:A3、一次函数y=2x−3的图象不经过的仙仙是()A、第一象限B、第二象限C、第三象限D、第四象限考点:一次函数的走向分析:k=2>0,b=-3<0,所以过一、三、四象限解答:∵k=2>0,b=-3<0∴图像过一、三、四象限∴不过第二象限故答案选:B4、一次函数y=kx+b的图像经过第一、二、四象限,则有()A.k>0,b>0B.k>0,b<0C.k<0.b<0D.k<0,b>0 考点:一次函数的图像分析:过一、二、四,则k<0,b>0解答:∵y=kx+b过第一、二、四象限故k<0,b>0故答案选:D5、函数y=2x+4的图象与x、y轴的交点为A. B,则AB=()A. B. 2 C. 2 D. 5考点:一次函数的性质分析:根据题意,找到函数y=2x+4的图象与x、y轴的交点为A、B,再利用勾股定理求得线段AB 的长度.解答:①当x=0时,y=4,即B(0,4);②当y=0时,x=−2,即A(−2,0);综合①②,函数y=2x+4的图象如图所示:所以(−)= 2故选B.6、若正比例函数y=(1−2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A、m<0B、m>0C、m<D、m>考点:[一次函数图象上点的坐标特征, 正比例函数的定义]分析:由题目所给信息“当x1<x2时,y1>y2可以知道,y随x的增大而减小,则由一次函数性质可以知道应有:1-2m<0,进而可得出m的取值范围.解答:由题目分析可知:在正比例函数y=(1−2m)x中,y随x的增大而减小由一次函数性质可知应有:1−2m<0,即−2m<−1,解得:m>.故答案选:D7、已知等腰三角形的周长为10cm,将底边长ycm表示为腰长xcm的关系式是y=10−2x,则其自变量x的取值范围是()A. 0<x<5B. <x<5C. 一切实数D. x>0考点:函数自变量的取值范围分析:根据三角形两边之和大于第三边及周长的限制,确定自变量的取值范围.解答:根据三角形的三边关系得:−−,解得:<x<5故选:B.8、拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是( )A. B.C. D.考点:[一次函数的图象]分析:根据题意列出函数关系式为:y=40-5t,根据关系式画出图象,要注意自变量和函数的取值范围.解答:根据题意列出关系式为:y=40−5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段。

初中八年级一次函数实际常用的应用题【有答案】

初中八年级一次函数实际常用的应用题【有答案】

一次函数实际常用应用类问题1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)2、甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量的取值范围)⑵当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;⑶在⑵的条件下,设乙同学从A点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙同学相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?12623S(千米)t(小时)CD EF B甲乙3、教室里放有一台饮水机,饮水机上有两个放水管。

课间同学们到饮水机前用茶杯接水。

假设接水过程中水不发生泼洒,每个学声所接的水量是相等的。

两个放水管同时打开时,它们的流量相同。

放水时先打开一个水管,过一会再打开第二个水管,放水过程中阀门一直开着。

饮水机的存水量y (升)与放水时间x(分钟)的函数关系如下图所示:O 21281718y(升)x(分钟)⑴求出饮水机的存水量y (升)与放水时间x(分钟)(x ≥2)的函数关系式;⑵如果打开第一个水管后,2分钟时恰好有4个同学接水接束,则前22个同学接水结束共需要几分钟? ⑶按⑵的放法,求出在课间10分钟内最多有多少个同学能及时接完水?4、 甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度()m y 与挖掘时间()h x 之间的关系如图1所示,请根据图象所提供的信息解答下列问题: ⑴乙队开挖到30m 时,用了 h . 开挖6h 时甲队比乙队多挖了 m ;⑵请你求出:①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式;②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式;⑶当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?5、小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图2中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高___________cm ;(2)求放入小球后量桶中水面的高度y (cm )与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?6、日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表: (单位:千元/吨)养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨49cm 30cm36cm 3个球有水溢出(第23题) 图2 图2(1)求x的取值范围;(2)设这两个品种产出后的总产值为y(千元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?.8、某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数应用题练习
,两种产品50 1、某工厂现有甲种原料280kg,乙种原料190kg,计划用这两种原料生产A B
件,已知生产一件A产品需甲种原料7kg、乙种原料3kg,可获利400元;生产一件B产品需甲种原料3kg,乙种原料5kg,可获利350元.
(1)请问工厂有哪几种生产方案?
(2)选择哪种方案可获利最大,最大利润是多少?
2、某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元.
(1)该公司有哪几种进货方案?
(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?
(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案.
,两种产品3、某工厂现有甲种原料226kg,乙种原料250kg,计划利用这两种原料生产A B
,两种产品用料情况如下表:
共40件,生产A B
设生产A产品x件,请解答下列问题:
(1)求x的值,并说明有哪几种符合题意的生产方案;
(2)若甲种原料50元/kg,乙种原料40元/kg ,说明(1)中哪种方案较优?
4、小亮妈妈下岗后开了一家糕点店.现有10.2千克面粉,10.2千克鸡蛋,计划加工一般糕点和精制糕点两种产品共50盒.已知加工一盒一般糕点需0.3千克面粉和0.1千克鸡蛋;加工一盒精制糕点需0.1千克面粉和0.3千克鸡蛋.
(1)有哪几种符合题意的加工方案?请你帮助设计出来;
(2)若销售一盒一般糕点和一盒精制糕点的利润分别为1.5元和2元,那么按哪一个方
案加工,小亮妈妈可获得最大利润?最大利润是多少?
5、我市某生态果园今年收获了15吨李子和8吨桃子,要租用甲、乙两种货车共6辆,及时运往外地,甲种货车可装李子4吨和桃子1吨,乙种货车可装李子1吨和桃子3吨.
(1)共有几种租车方案?
(2)若甲种货车每辆需付运费1000元,乙种货车每辆需付运费700元,请选出最佳方案,此方案运费是多少.
6、某服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元。

(1)求A、B两种型号的服装每件分别为多少元?
(2)若销售1件A型服装可获利18元,销售1件B型服装可获得30元,根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A型服装最多可购进28件,这样服装全部售完后,可使总的获得不少于699元,问有几种进货方案?如何进货?
7、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家订月租车合同.设汽车每月行驶x 千米,应付给个体车主月租费是y 1元,应付给出租车公司的月租费是y 2元,y 1和y 2分别与x 之间的函数关系图象(两条射线)如图4,观察图象回答下列问题:
(1)每月行驶的路程在什么范围内时,租国营公司的车合算?
(2)每月行驶的路程等于多少时,两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租那家的车合算?
8、某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。

(1)写出每月电话费(元)与通话次数之间的函数关系式;
(2)分别求出月通话50次、100次的电话费;
(3)如果某月的电话费是27.8元,求该月通话的次数
答案解析
1、解:(1)设生产A 产品x 件,生产B 产品(50)x -件,则
73(50)28035(50)190x x x x +-⎧⎨+-⎩
≤≤解得:3032.5x ≤≤. x 为正整数,∴x 可取30,31,32.
当30x =时,5020x -=,
当31x =时,5019x -=,
当32x =时,5018x -=,
所以工厂可有三种生产方案,分别为:
方案一:生产A 产品30件,生产B 产品20件;
方案二:生产A 产品31件,生产B 产品19件;
方案三:生产A 产品32件,生产B 产品18件;
(2)方案一的利润为:304002035019000⨯+⨯=元;
方案二的利润为:314001935019050⨯+⨯=元;
方案三的利润为:324001835019100⨯+⨯=元.
因此选择方案三可获利最多,最大利润为19100元
2、【解】:(1)设购进甲种商品茗件,乙种商品(20-x)件.
190≤12x+8(20-x)≤200 解得7.5≤x≤10.
∵ x 为非负整数,∴ x 取8,9,lO
y
x
有三种进货方案:购甲种商品8件,乙种商品12件
购甲种商品9件,乙种商品ll 件购甲种商品lO 件,乙种商品10件
(2)购甲种商品10件,乙种商品10件时,可获得最大利润最大利润是45万元
(3)购甲种商品l 件,乙种商品4件时,可获得最大利润
3、解:(1)根据题意,得73(40)226410(40)250.
x x x x +-⎧⎨+-⎩,≤≤ 这个不等式组的解集为2526.5x ≤≤.
又x 为整数,所以25x =或26.
所以符合题意的生产方案有两种:
①生产A 种产品25件,B 种产品15件;
②生产A 种产品26件,B 种产品14件.
(2)一件A 种产品的材料价钱是:750440510⨯+⨯=元.
一件B 种产品的材料价钱是:3501040550⨯+⨯=元.
方案①的总价钱是:2551015550⨯+⨯元.
方案②的总价钱是:2651014550⨯+⨯元.
2551015550(2651014550)55051040⨯+⨯-⨯+⨯=-=元.
由此可知:方案②的总价钱比方案①的总价钱少,所以方案②较优.
4、解:(1)设加工一般糕点x 盒,则加工精制糕点(50)x -盒.
根据题意,x 满足不等式组:
0.30.1(50)10.20.10.3(50)10.2x x x x +-⎧⎨+-⎩,.
≤≤ 解这个不等式组,得2426x ≤≤.
因为x 为整数,所以242526x =,
,. 因此,加工方案有三种:加工一般糕点24盒、精制糕点26盒;加工一般糕点25盒、精制糕点25盒;加工一般糕点26盒、精制糕点24盒.
(2)由题意知,显然精制糕点数越多利润越大,故当加工一般糕点24盒、精制糕点26盒时,可获得最大利润.
最大利润为:24 1.526288⨯+⨯=(元)
5、解:(1)设安排甲种货车x 辆,乙种货车(6)x -辆, 根据题意,得:4(6)1533(6)85x x x x x x +-⎧⎧⇒⎨⎨+-⎩⎩≥≥≥≤ 35x ∴≤≤
x 取整数有:3,4,5,共有三种方案.
(2)租车方案及其运费计算如下表.(说明:不列表,用其他形式也可)
答:共有三种租车方案,其中第一种方案最佳,运费是5100元.
6、解:(1)设A 型号服装每件为x 元,B 型号服装每件为y 元,
根据题意得:91018101281880
x y x y +=+=⎧⎨⎩ 解得x y ==⎧⎨⎩
90100 故A 、B 两种型号服装每件分别为90元、100元。

(2)设B 型服装购进m 件,则A 型服装购进()24m +件,
根据题意得:1824306992428()m m m ++≥+≤⎧⎨
⎩, 解不等式组得192
12≤≤m ∵m 为正整数,∴m =10,11,12,2m +4=24,26,28。

∴有三种进货方案:B 型号服装购买10件,A 型号服装购买24件;或B 型号服装购买11件,A 型号服装购买26件;或B 型号服装购买12件,A 型号服装购买28件
7、解:观察图象可知,当x=1500(千米)时,射线y 1和y 2相交;在0≤x<1500时,y 2在y 1下方;在x>1500时,y 1在y 2下方.结合题意,则有
(1)每月行驶的路程小于1500千米时,租国营公司的车合算;
(2)每月行驶的路程等于1500千米时,两家车的费用相同;
(3)由2300>1500可知,如果这个单位估计每月行驶的路程为2300千米,那么这个单位租个体车主的车合算.
8、解;(1)由题意得:与之间的函数关系式为:= (2)当=50时,由于<60,所以=20(元)
当=100时,由于>60,所以==25.2(元)
(3)∵=27.8>20
∴>60

解得:=120(次) y x y ⎩⎨⎧>-+≤≤)60)(60(13.020)600(20x x x x x y x x y )60100(13.020-+y x 8.27)60(13.020=-+x x。

相关文档
最新文档