永磁调速器产品结构和技术原理
永磁调速器工作原理与特点

>>>永磁调速器(PMD)的工作原理及特点2007年永磁耦合与调速驱动器从美国引进我国,在美国已大量应用于冶金、石化、采矿、发电、水泥、纸浆、海运、军舰等行业,国现在应用案例主要有电厂,海化自备热电厂, 华电东华电厂, 华能电厂, 中石化燕山石化, 枣庄煤业集团庄煤矿等大型企业集团。
永磁磁力驱动技术首先由美国MagnaDrive公司在1999年获得了突破性的发展。
该驱动方式与传统的同步式永磁磁力驱动技术有很大的区别,其主要的贡献是将永磁驱动技术的应用大大拓宽。
它不解决密封的问题,但是它解决了旋转负载系统的对中、软启动、减震、调速及过载保护等问题,并且使永磁磁力驱动的传动效率大大提高,可达到98.5%。
该技术现已在各行各业获得了广泛的应用。
该技术将对传统的传动技术带来了崭新的概念,必将为传动领域带来一场新的革命。
该产品已经通过美国海军最严格的9-G抗震试验。
同时,该产品在美国获得17项专利技术,在全球共获得专利一百多项。
目前,由MagnaDrive公司和美国西北能效协会组成专门小组对该技术设备进行商业化推广。
由于该技术创新,使人们对节能概念有了全新的认识。
在短短的几年中,MagnaDrive获得了很大的发展,现已经渗透到各行各业,在全球已超过6000套设备投入运行。
(一) 系统构成与工作原理永磁磁力耦合调速驱动(PMD)是通过铜导体和永磁体之间的气隙实现由电动机到负载的转矩传输。
该技术实现了在驱动(电动机)和被驱动(负载)侧没有机械。
其工作原理是一端稀有金属氧化物硼铁钕永磁体和另一端感应磁场相互作用产生转矩,通过调节永磁体和导体之间的气隙就可以控制传递的转矩,从而实现负载速度调节。
由下图所示,PMD主要由导体转子、永磁转子和控制器三部分组成。
导体转子固定在电动机轴上,永磁转子固定在负载转轴上,导体转子和永磁转子之间有间隙(称为气隙)。
这样电动机和负载由原来的硬(机械)转变为软(磁),通过调节永磁体和导体之间的气隙就可实现负载轴上的输出转矩变化,从而实现负载转速变化。
永磁调速原理

永磁调速原理
永磁调速技术是一种通过改变电机的磁场来实现调速的技术。
在传统的交流调速系统中,通常采用变频器来控制电机的转速,但
是随着永磁材料的发展和应用,永磁调速技术逐渐得到了广泛的应用。
首先,永磁调速原理是基于永磁材料的特性。
永磁材料具有恒
定的磁场强度,因此可以通过改变电机的磁场来实现调速。
在永磁
调速系统中,通常采用永磁同步电机作为驱动电机,通过改变永磁
体的磁场强度,可以实现电机的调速。
其次,永磁调速系统通常包括永磁同步电机、控制器和传感器
等组成部分。
控制器通过采集电机的转速和负载情况,控制永磁体
的磁场强度,从而实现电机的调速。
传感器则用于采集电机的转速
和位置等信息,为控制器提供反馈信号,使控制系统能够及时调整
电机的工作状态。
另外,永磁调速系统具有快速响应、高效率和稳定性好等特点。
由于永磁材料本身具有恒定的磁场强度,因此可以在较短的时间内
实现电机的调速,响应速度快。
同时,永磁同步电机具有高效率和
稳定性好的特点,能够满足各种工业应用的需求。
总之,永磁调速技术是一种高效、稳定的调速技术,能够广泛应用于各种工业领域。
随着永磁材料和控制技术的不断发展,相信永磁调速技术将会在未来得到更广泛的应用和发展。
永磁调速器产品结构和技术原理

永磁调速器产品结构和技术原理
永磁调速器系统由永磁调速器本体、电动执行器、控制信号源、控制中心、电缆等集成。
永磁调速器安装在电动机和负载之间,通过导体转子和永磁体转子之间的气隙实现电动机到负载端无接触式联接的扭矩传递。
其工作原理是:当导体转子和永磁体转子之间相对运动时,导体转子切割磁力线,在导体转子中产生感应电流,感应电流进而产生感应磁场,感应磁场与永磁体转子产生的磁场交互作用,从而实现两者之间的扭矩传递。
永磁调速器本体包括:1.永磁体转子(连接于负载侧);2.导体转子(连接于电机侧);3.调速机构。
调速机构可调节永磁体转子和导体转子的相对位置,改变两者之间磁场耦合的面积,从而改变传递的扭矩。
耦合面积增大,通过永磁调速器传递的扭矩就增大,负载转速提高;耦合面积变小,通过永磁调速器传递的扭矩就变小,负载转速降低。
电动执行器给调速机构提供动力,根据控制中心的指令进行动作,调节耦合面积,进而调节扭矩输出,并将结果反馈给控制中心。
控制中心可以是PLC控制、智能仪表控制、也可以是DCS控制。
控制信号源则为工艺需要的控制对象,对于水泵系统而言可能是管网压力、流量、或者液位。
对于风机系统而言则可能是压力、流量等工艺参数。
因此控制信号源可能为压力、流量、液位等参数,此参数通过变送器可转化为4~20mA 的电流信号,指示电动执行器动作。
永磁调速器实现了电动机和负载之间无接触式联接,有效的解决了旋转负载系统的对中、软启动、调速节能、减振等问题。
整个系统结构示意图如下:。
永磁调速器工作原理

永磁调速器工作原理永磁调速器是一种常见的电机调速器,通过利用永磁体产生的磁场和电流之间的相互作用,实现对电机的调速控制。
在现代工业中,永磁调速器被广泛应用于各种领域,如风力发电、电动汽车、电梯等。
下面将介绍永磁调速器的工作原理。
1. 磁场产生永磁调速器中通常采用永磁体来产生磁场。
永磁体是一种能够持续产生磁场的材料,常见的有钕铁硼、钴磁体等。
当永磁体被加热或外界磁场作用时,就会产生一个稳定的磁场。
2. 电流控制在永磁调速器中,通过控制电流的大小和方向,可以改变电机中的磁场分布,从而实现电机的调速。
通常采用功率半导体器件,如晶闸管、IGBT等来实现电流控制。
3. 磁场与电流的相互作用当电流通过电机绕组时,会产生一个磁场。
这个磁场与永磁体产生的磁场相互作用,产生磁力,驱动电机运转。
通过控制电流的大小和方向,可以调节电机的转速。
4. 调速控制永磁调速器通过控制电流的大小和方向,可以实现对电机的调速控制。
当需要提高电机转速时,增大电流;当需要降低电机转速时,减小电流。
通过精确控制电流,可以实现电机平稳、高效地运行。
5. 特点与应用永磁调速器具有响应速度快、效率高、体积小、结构简单等优点,适用于对转速要求高、精度要求高的场合。
在风力发电、电动汽车、电梯等领域都有广泛的应用。
总的来说,永磁调速器利用永磁体和电流之间的相互作用,实现对电机的调速控制。
通过精确控制电流的大小和方向,可以实现电机的平稳、高效运行,满足不同场合的需求。
在未来,随着技术的不断进步,永磁调速器将在更多领域展现出其巨大的应用潜力。
永磁调速器工作原理

永磁调速器工作原理
当调速器控制器接收到调速指令后,会通过控制电路控制功率电源的输出电压。
功率电源根据控制器的指令,将相应的电压输出到永磁同步电动机的绕组中。
通过控制器控制功率电源的输出电压,可以改变永磁同步电动机的电磁场强度。
当输出电压增加时,电磁场强度增强,永磁同步电动机转速也随之增加。
反之,当输出电压减小时,电磁场强度减弱,永磁同步电动机转速也随之减少。
这样就实现了对永磁同步电动机的调速控制。
永磁同步电动机的转速与电磁场的转速成正比。
而电磁场的转速与功率电源的频率成正比,所以永磁同步电动机的转速与功率电源的频率成正比。
因此,通过控制器改变功率电源的频率,可以实现对永磁同步电动机的调速控制。
传感器主要用来检测永磁同步电动机的转速和电流。
当永磁同步电动机的转速或电流超过一定范围时,传感器会向控制器发送信号,控制器会做出相应的调整。
通过传感器的反馈信号,控制器可以更加准确地控制功率电源的输出电压,从而实现对永磁同步电动机的精确调速控制。
总结一下,永磁调速器的工作原理是通过控制器控制功率电源的输出电压,从而改变永磁同步电动机的电磁场强度,进而实现对永磁同步电动机的调速控制。
同时,通过传感器的反馈信号,可以对控制器进行精确控制,提高调速的稳定性和精度。
永磁调速构造及原理

永磁调速构造及原理永磁调速技术被广泛应用于电机调速和驱动系统中,其构造和工作原理相对简单,但却非常有效。
下面将详细介绍永磁调速的构造和原理。
永磁调速通过改变电机磁场的方式来实现电机的调速。
其构造主要由永磁体、定子线圈和转子组成。
永磁体是由永磁材料组成的磁场源,定子线圈则是通过电流激励来产生磁场,转子则根据磁场的变化来旋转。
在永磁调速中,定子线圈是通过功率电子器件控制的,通常使用晶闸管或者IGBT等。
当定子线圈通电时,通过传感器获取到电机转速,并将其转变为电压信号进行比较,然后经过控制器进行计算和处理,最后输出控制信号给定子线圈。
这样,定子线圈的磁场就可以根据转速信号的反馈进行调整,从而实现电机的调速。
在永磁调速中,永磁体的磁场是稳定的,转子则根据定子线圈的磁场变化来旋转。
定子线圈的磁场的大小和方向决定了转子的位置和速度。
通过不断调整定子线圈的磁场,可以改变转子的位置和速度,从而实现电机的调速。
永磁调速的工作原理主要依靠磁场的相互作用和转子的惯性。
当定子线圈通电时,通过电流激励产生的磁场与永磁体的磁场相互作用,从而产生电磁力,推动转子旋转。
同时,转子具有惯性,即使在定子线圈的磁场变化的情况下,也会保持一定的转速。
通过不断调整定子线圈的磁场,可以改变电磁力的大小和方向,从而改变转子的位置和速度,实现电机的调速。
永磁调速技术具有调速范围广、调速精度高、响应速度快等特点,因此在工业生产和日常生活中得到了广泛的应用。
同时,永磁调速还可以结合其他调速技术,如矢量控制、感应电机调速等,进一步提高电机的性能和效率。
以上就是永磁调速的构造和原理的详细介绍。
永磁调速的构造相对简单,但其原理却十分重要和复杂。
理解和掌握永磁调速的构造和原理,对于电机调速和驱动系统的设计和应用具有重要的意义和价值。
永磁调速器工作原理

永磁调速器工作原理
永磁调速器是一种电力电子器件,主要用于驱动直流电机,实现电机的调速。
其工作原理是利用永磁体产生的磁场与电流产生的磁场相互作用,从而控制电机的转速。
永磁调速器主要由三个部分组成:整流器、逆变器和控制器。
整流器将交流电源转换为直流电源,逆变器将直流电源转换为交流电源,控制器则控制整个系统的工作状态。
当永磁调速器开始工作时,交流电源经过整流器转换为直流电源,直流电源经过逆变器转换为交流电源,然后送入电机。
在这个过程中,控制器会根据电机的负载情况和用户的需求,调整逆变器的输出电压和频率,从而控制电机的转速。
在永磁调速器中,永磁体是关键部件之一。
永磁体是一种能够产生恒定磁场的材料,通常采用稀土永磁材料。
永磁体的磁场与电流产生的磁场相互作用,从而控制电机的转速。
永磁调速器具有调速范围广、响应速度快、效率高等优点,被广泛应用于工业生产和家庭生活中的各种电机驱动系统。
永磁调速器

永磁调速器无连接调速节能技术永磁调速器是通过调节导磁体和永磁体之间的相互磁力耦合作用大小来传递扭矩,同时实现负载调速和电机节能。
是一种无机械连接的软启动设备,传递效率能达到95%以上,实现电机节能30%以上。
主要应用设备为泵、风机、离心负载、皮带运输机及其它机械装置,应用广泛。
永磁调速器一:产品工作原理永磁调速器(筒式/盘式):一般由三个部分组成,一是和电机连接的导体转子,二是与负载连接的永磁转子,永磁转子在导体转子内,其间由空气隙分开,并随各自安装的旋转轴独立转动,三是一个调速机构,调速机构包括手动控制和信号电控两种。
通过调节永磁磁力耦合有效面积(筒式)或永磁磁力耦合间隙(盘式)的方式来调整负载速度而电机转速不变,实现负载调速和电机节能。
调速机构调节筒形永磁转子与筒形导体转子在轴线方向的相对耦合面积,或调节盘式永磁转子与盘式导体转子在轴线方向的相对间隙,实现改变导体转子与永磁转子之间传递转矩的大小。
导体转子安装在输入轴上,永磁转子安装在输出轴上,当导体转子转动时,导体转子与永磁转子产生相对运动,永磁场在导体转子上产生涡流,同时涡流又产生感应磁场与永磁场相互作用,从而带动永磁转子沿与导体转子相同的方向转动,结果是将输入轴的转矩传递到输出轴上;输出转矩的大小与相互作用的面积(或相互作用的间隙)相关,作用面积越大(作用间隙小),扭矩越大,负载转速高.反之亦然。
永磁转子与导体转子完全脱开,作用面积为零(或作用间隙最大),永磁转子转速为零,即负载转速为零。
能实现可重复的、可调整的、可控制的输出扭矩和转速。
永磁调速器是通过调节扭矩来实现速度控制,电机输出到永磁调速器的扭矩和永磁调速器输出到负载的扭矩是相等的。
当永磁调速器接到一个控制信号后,如压力,水流量,液面高度等信号传到永磁调速器的调速机构,调速机构对信号进行识别和转换后,产生一个机械操作指令,来调节导体转子与永磁转子之间的耦合面积大小(筒式),或导体转子与永磁转子之间的耦合间隙大小(盘式),根据适时的负载输入扭矩的要求,调节永磁调速器输入端的扭矩大小,负载要求扭矩小,电机输出扭矩小,相应电机输出功率也小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
永磁调速器产品结构和技术原理
永磁调速器系统由永磁调速器本体、电动执行器、控制信号源、控制中心、电缆等集成。
永磁调速器安装在电动机和负载之间,通过导体转子和永磁体转子之间的气隙实现电动机到负载端无接触式联接的扭矩传递。
其工作原理是:当导体转子和永磁体转子之间相对运动时,导体转子切割磁力线,在导体转子中产生感应电流,感应电流进而产生感应磁场,感应磁场与永磁体转子产生的磁场交互作用,从而实现两者之间的扭矩传递。
永磁调速器本体包括:1.永磁体转子(连接于负载侧);2.导体转子(连接于电机侧);3.调速机构。
调速机构可调节永磁体转子和导体转子的相对位置,改变两者之间磁场耦合的面积,从而改变传递的扭矩。
耦合面积增大,通过永磁调速器传递的扭矩就增大,负载转速提高;耦合面积变小,通过永磁调速器传递的扭矩就变小,负载转速降低。
电动执行器给调速机构提供动力,根据控制中心的指令进行动作,调节耦合面积,进而调节扭矩输出,并将结果反馈给控制中心。
控制中心可以是PLC控制、智能仪表控制、也可以是DCS控制。
控制信号源则为工艺需要的控制对象,对于水泵系统而言可能是管网压力、流量、或者液位。
对于风机系统而言则可能是压力、流量等工艺参数。
因此控制信号源可能为压力、流量、液位等参数,此参数通过变送器可转化为4~20mA 的电流信号,指示电动执行器动作。
永磁调速器实现了电动机和负载之间无接触式联接,有效的解决了旋转负载系统的对中、软启动、调速节能、减振等问题。
整个系统结构示意图如下:。