调速器的功能及工作原理
调速电机调速器原理

调速电机调速器原理
调速电机调速器的原理是通过调节电机输入电压或频率来控制转速。
基于电动机的工作原理,转速与输入电压或频率之间存在一定的线性关系。
因此,调速电机调速器的核心原理是根据系统的负载要求,通过调节电机的输入电压或频率,使电机的转速达到预设的目标值。
调速电机调速器通常包括一个传感器和一个控制回路。
传感器用于监测电机的转速,将实际转速信号反馈给控制回路。
控制回路根据设定的转速目标值和实际转速信号之间的差异,计算出相应的电压或频率调节量,并输出给电机的电源控制部分。
具体来说,当实际转速低于设定目标值时,控制回路会增加电机的输入电压或频率;当实际转速高于设定目标值时,控制回路会降低电机的输入电压或频率。
通过这种控制方式,调速器可以实现对电机转速的精确调节。
调速电机调速器的原理基于PID控制算法,即比例-积分-微分
控制。
这种控制算法可以根据实际转速与目标转速之间的差异,调整控制输出量的大小和方向,使电机的转速稳定在设定的目标值上。
总之,调速电机调速器的原理是基于传感器反馈的实际转速信号,通过控制回路计算出相应的电压或频率调节量,实现对电机转速的精确调节。
电扇调速器原理

电扇调速器原理电扇调速器是一种常见的电子设备,它可以控制电扇的转速,使其在不同的环境下达到最佳效果。
电扇调速器的原理是通过改变电扇电机的电压和频率来控制电扇的转速。
本文将详细介绍电扇调速器的原理和工作方式。
电扇调速器的原理电扇调速器的原理是基于电机的工作原理。
电机是一种将电能转换为机械能的设备,它的工作原理是利用电磁感应原理。
当电流通过电机的线圈时,会产生一个磁场,这个磁场会与电机中的永磁体相互作用,从而产生一个力矩,使电机转动。
电扇调速器的工作原理是通过改变电机的电压和频率来控制电机的转速。
电扇调速器通常采用三种方式来改变电机的电压和频率:调节电压、调节频率和PWM调制。
调节电压调节电压是最简单的一种调速方式。
它通过改变电机的电压来控制电机的转速。
当电压增加时,电机的转速也会增加。
当电压降低时,电机的转速也会降低。
这种方式的缺点是电机的效率会降低,因为电机的功率是电压和电流的乘积,当电压降低时,电机的功率也会降低。
调节频率调节频率是一种更高级的调速方式。
它通过改变电机的频率来控制电机的转速。
当频率增加时,电机的转速也会增加。
当频率降低时,电机的转速也会降低。
这种方式的优点是电机的效率不会降低,因为电机的功率只与电流有关,而与频率无关。
PWM调制PWM调制是一种最先进的调速方式。
它通过改变电机的电压和频率来控制电机的转速。
PWM调制是一种数字调速方式,它将电压和频率转换为数字信号,然后通过调节数字信号的占空比来控制电机的转速。
当占空比增加时,电机的转速也会增加。
当占空比降低时,电机的转速也会降低。
这种方式的优点是电机的效率不会降低,而且可以实现精确的调速控制。
电扇调速器的工作方式电扇调速器的工作方式是通过控制电扇电机的电压和频率来控制电扇的转速。
电扇调速器通常包括一个电源、一个控制电路和一个电机驱动器。
电源是为电扇调速器提供电能的设备。
电源通常是一个交流电源或直流电源,它可以将电能转换为电压和电流。
调速器构造和工作原理

(一)、两速调速器
1、作用: 自动稳定和限制柴油机最低与最高转速,而在所有中间 转速范围内则由驾驶员控制。
2、结构
油量调节拉杆 飞锤 高速弹簧内座 怠速弹簧 调速杠杆 操纵臂 RQ型两极调速器
外弹簧座 凸轮轴 高速弹簧 活动杠杆 滑动轴 冒烟限制器
3、工作原理
断 怠中 全 起 油 速等 负 动
转荷 速
点击图片观看相关视频
(1)稳定怠速:
怠速时,飞锤在凸 轮轴后端轴和高速弹簧 座之间移动,高速弹簧 不起作用。
怠速转速升高,飞 锤外张,油量调节拉杆 后移,减油。
怠速转速降低,飞 锤收拢,油量调节拉杆 前移,加油。
(2)限制超速:
点击图片观看相关视频
二、喷油泵的速度特性:
当油量调节拉杆位置一定时,供油量随转速升高而 增加,随转速下降而减少。
转速↑
节流作用大 渗漏油量少
转速↓
节流作用小 渗漏油量多
始点提前 终点落后
始点落后 终点提前
供油量↑ 供油量↓
影响:转速不稳
高速易飞车 怠速易熄火
三、分类:
1、按功能分有两速调速器、全速调速器、定速调速器和 综合调速器。
停车手柄 调速弹簧 调速齿轮 调速套筒
飞锤 油量调节套筒
VE泵调速器结构
怠速螺钉 高速螺钉
全负荷油量 调节螺钉
导杆 张力杠杆 起动杠杆
柱塞套 分配柱塞
2、工作原理
1.起动 起动开始,飞锤收拢,油门
踏板踩到底,调速杠杆抵高速 螺钉,调速弹簧拉伸,起动弹 簧使起动杠杆上端和调速套筒 左移到极限位置,并在张力杠 杆凸起销和起动杠杆之间出现 间隙A,油量调节套筒左移至 最大供油量位置。
水轮机调速器结构及工作原理

水轮机调速器结构及工作原理水轮机调速器是水轮机系统中的重要设备,其主要功能是控制水轮机的转速,以满足不同负载工况下的运行要求。
本文将从结构和工作原理两个方面介绍水轮机调速器的基本知识。
一、水轮机调速器的结构水轮机调速器一般由调速机构、液压控制系统和电气控制系统三部分组成。
1. 调速机构调速机构是水轮机调速器的核心部分,它通过改变水轮机的导叶开度来调节水轮机的转速。
调速机构主要由调节器、传动装置和导叶机构组成。
调节器是水轮机调速器的关键部件,它通过接收输入信号,控制传动装置的运动,从而改变导叶的开度。
常见的调节器有液压调节器和电动调节器两种。
传动装置是将调节器的运动转化为导叶运动的装置,常见的传动装置有丝杠传动和液压传动两种。
导叶机构是通过传动装置将调节器的运动传递给导叶,改变导叶的开度。
导叶机构主要由导叶轴、导叶臂和导叶组成。
2. 液压控制系统液压控制系统是水轮机调速器的控制部分,它通过控制液压元件的工作状态,实现对调速机构的控制。
液压控制系统一般由液压泵站、液压缸和液压阀组成。
液压泵站负责提供液压能源,液压缸负责执行调速机构的运动,液压阀负责控制液压缸的工作状态。
3. 电气控制系统电气控制系统是水轮机调速器的辅助部分,它通过控制电气元件的工作状态,实现对液压控制系统的控制。
电气控制系统一般由控制柜、传感器和执行器组成。
控制柜负责接收输入信号和控制输出信号,传感器负责感知水轮机的运行状态,执行器负责执行控制柜的输出信号。
二、水轮机调速器的工作原理水轮机调速器的工作原理主要是通过调节水轮机的导叶开度来改变水轮机的转速。
当负载增加时,调速器接收到输入信号后,调节器会发出相应的指令,通过传动装置将运动转化为导叶的运动,导叶的开度逐渐增大。
导叶开度增大会减小水轮机叶片与水流的夹角,使水轮机的输出功率增加,从而使转速稳定在设定值附近。
当负载减小时,调速器接收到输入信号后,调节器会发出相应的指令,通过传动装置将运动转化为导叶的运动,导叶的开度逐渐减小。
电子调速器的工作原理

电子调速器的工作原理
电子调速器的工作原理是通过控制电机输入的电压、电流或频率来实现调速的。
其基本原理如下:
1. 传感器感知信号:电子调速器使用传感器(如速度传感器、位置传感器、加速度传感器等)感知电机运行状态的相关参数,例如电机的转速、转角、加速度等。
2. 信号处理:感知到的传感器信号经过信号处理器进行处理,将其转化为数字信号。
常用的信号处理技术包括滤波、采样、积分等。
3. 控制算法:电子调速器内置的控制算法根据感知到的信号以及设定的目标调速参数,计算出应该提供给电机的控制信号。
常用的控制算法包括比例控制、积分控制、微分控制等。
4. 输出控制信号:计算得到的控制信号会被转化为电压、电流或频率信号,通过电子器件(如功率放大器、变频器)输出给电机。
这些控制信号会调节电机的输入能量,从而控制电机的转速或负载。
5. 反馈环路:电子调速器通常还会建立一个反馈环路,将电机的实际运行状态反馈给控制算法,以便实时调整控制信号。
这样可以提高系统的稳定性和精确度。
综上所述,电子调速器通过传感器感知电机的运行状态,经过信号处理、控制算法计算和输出控制信号,来实现对电机转速
或负载的调节。
这种调速机制具有响应速度快、精确度高、适用范围广等优点。
电机调速器的工作原理

电机调速器的工作原理
电机调速器是一种用于控制电动机转速的设备,其工作原理可以简单描述如下:
1. 传感器采集:电机调速器通过安装在电机上的传感器,如转速传感器或位置传感器,实时采集电机的工作状态数据。
2. 反馈信号与设定值比较:调速器将传感器采集到的电机状态数据与事先设定好的目标值进行比较,确定电机转速的偏差。
3. 控制信号生成:根据偏差的大小和方向,电机调速器产生相应的控制信号,用于调节电机的输入电压或频率。
4. 电机驱动:调速器的控制信号通过电源或变频器等设备送达电机,调节其输入电压或频率,从而影响电机的转速。
5. 反馈控制:电机调速器实时监测电机转速,并通过反馈信号与设定值进行比较,进行闭环控制,保持电机转速在设定范围内稳定运行。
此外,根据具体的电机调速器类型和控制方式的不同,其工作原理可能会有细微的差异。
比如,有些调速器采用PWM(脉
宽调制)控制方式,通过改变电平信号的脉宽来调节电机转速;而其他调速器则可能采用变频器,通过改变输入电压频率来实现调速等。
交流调速器工作原理

交流调速器工作原理
调速器是一种用于调节机械设备转速的装置,它使用一种称为调速器的装置来实现工作原理。
调速器通常包含一个控制系统和一个执行系统。
工作原理如下:当控制系统接收到调速信号时,它会根据信号的要求调整执行系统的工作状态。
控制系统通常由一个感知器、一个比较器和一个执行器组成。
感知器是一个用来感知原始信息的装置,可以是传感器或者人工输入。
它能够感知到机械设备的转速,并将其转化为电信号。
比较器负责将感知到的信号与设定值进行比较,然后产生一个偏差信号。
如果实际转速低于设定值,偏差信号会告诉执行器,需要增加动力输出;如果实际转速高于设定值,偏差信号会告诉执行器,需要减少动力输出。
执行器则负责根据比较器发出的指令调整机械设备的工作状态。
它可以通过控制设备的供电电压或调整传动系统的速比来改变输出功率。
综上所述,调速器通过感知器感知机械设备的转速,然后通过比较器和执行器实现对设备转速的调节。
这个过程一直持续进行,以保持设备转速在设定范围内的稳定工作。
离心机调速器工作原理

离心机调速器工作原理
1.离心机调速器的作用
离心机调速器是一种广泛应用于各种离心机的设备,它能够实现对离心机的转速、负载等参数的自动控制,从而保证生产过程的稳定性和可靠性。
其主要功能包括:调节负载,保持系统稳定,限制斷电等。
2.离心机调速器的组成
离心机调速器主要由电子控制系统、电机、变频器和机械传动系统组成。
其中,电子控制系统是调节转速的核心,它利用传感器采集的数据,通过数学计算和控制算法,指挥电机和变频器协同工作,实现对离心机转速的自动调节。
3.离心机调速器的工作原理
离心机调速器的工作原理可以分为以下几个步骤:
第一步,传感器检测转速:离心机调速器内置各种传感器,如霍尔传感器、光电传感器等,用于检测离心机的转速,将转速信号传输给电子控制系统。
第二步,电子控制系统计算误差:将传感器采集到的数据与预设的转速目标值进行比较,计算出误差值。
第三步,电子控制系统调节电机输出:根据误差值和预设调节范围,电子控制系统调节变频器,控制电机的输出频率和电流,从而实现对离心机的转速调节。
第四步,反馈系统优化控制:离心机调速器还具备反馈机制,通过反馈系统检测离心机的运行情况,优化控制参数,以保证离心机的安全运行和工作效率。
4.利用离心机调速器的优势
离心机调速器具备许多优势,如可靠性高、实现自动化控制、提高工作效率、降低生产成本等。
利用离心机调速器,我们能够更加准确地掌握离心机的转速和负载情况,避免因转速过高或过低导致的生产事故和产品质量问题,同时降低能耗和设备的维护成本。
因此,在现代生产中离心机调速器得到了广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、调速器功用及分类调速器是一种自动调节装置,它根据柴油机负荷的变化,自动增减喷油泵的供油量,使柴油机能够以稳定的转速运行。
在柴油机上装设调速器是由柴油机的工作特性决定的。
汽车柴油机的负荷经常变化,当负荷突然减小时,若不及时减少喷油泵的供油量,则柴油机的转速将迅速增高,甚至超出柴油机设计所允许的最高转速,这种现象称“超速”或“飞车”。
相反,当负荷骤然增大时,若不及时增加喷油泵的供油量,则柴油机的转速将急速下降直至熄火。
柴油机超速或怠速不稳,往往出自于偶然的原因,汽车驾驶员难于作出响应。
这时,惟有借助调速器,及时调节喷油泵的供油量,才能保持柴油机稳定运行。
汽车柴油机调速器按其工作原理的不同,可分为机械式、气动式、液压式、机械气动复合式、机械液压复合式和电子式等多种形式。
但目前应用最广的当属机械式调速器,其结构简单,工作可靠,性能良好。
按调速器起作用的转速范围不同,又可分为两极式调速器和全程式调速器。
中、小型汽车柴油机多数采用两极式调速器,以起到防止超速和稳定怠速的作用。
在重型汽车上则多采用全程式调速器,这种调速器除具有两极式调速器的功能外,还能对柴油机工作转速范围内的任何转速起调节作用,使柴油机在各种转速下都能稳定运转。
二、两极式调速器两极式调速器只在柴油机的最高转速和怠速起自动调节作用,而在最高转速和怠速之间的其他任何转速,调速器不起调节作用。
(一)RQ型调速器结构通常调速器由感应元件、传动元件和附加装置三部分构成。
感应元件用来感知柴油机转速的变化,并发出相应的信号。
传动元件则根据此信号进行供油量的调节。
(二)RQ型调速器基本工作原理1)起动将调速手柄从停车挡块移至最高速挡块上。
在此过程中,调速手柄带动摇杆,摇杆带动滑块,使调速杠杆以其下端的铰接点为支点向右摆动,并推动喷油泵供油量调节齿杆克服供油量限制弹性挡块的阻力,向右移到起动油量的位置。
起动油量多于全负荷油量,旨在加浓混合气,以利柴油机低温起动。
2)怠速柴油机起动之后,将调速手柄置于怠速位置。
这时调速手柄通过摇杆、滑块使调速杠杆仍以其下端的铰接点支点向左摆动,并拉动供油量调节齿杆7左移至怠速油量的位置。
怠速时柴油机转速很低,飞锤的离心力较小,只能与怠速弹簧力相平衡,飞锤处于内弹簧座与安装飞锤的轴套之间的某一位置。
若此时柴油机由于某种原因转速降低,则飞锤离心力减小,在怠速弹簧的作用下,飞锤移向回转中心,同时带动角形杠杆和调速套筒,使调速杠杆下端的铰接点以滑块为支点向左移动,调速杠杆则推动供油量调节齿杆向右移,增加供油量,使转速回升。
反之,当转速增高时,飞锤的离心力增大,飞锤便压缩怠速弹簧远离回转中心,同样通过角形杠杆和高速套筒使调速杠杆下端的铰接点以滑块为支点向右移动,而供油量调节齿杆则向左移动,减小供油量,使转速降低。
可见,调速器可以保持怠速转速稳定。
3)中速将调速手柄从怠速位置移至中速位置,供油量调节齿杆处于部分负荷供油位置,柴油机转速较高,飞锤进一步外移直到飞锤底部与内弹簧座接触为止。
柴油机在中等转速范围内工作时,飞锤的离心力不足以克服怠速弹簧和高速弹簧的共同作用力,飞锤始终紧靠在内弹簧座上而不能移动,即调速器在中等转速范围内不起调节供油量的作用。
但此时驾驶员可根据汽车行驶的需要改变调速手柄的位置,使调速杠杆以其下端的铰接点为支点转动,并拉动供油量调节齿杆增加或减少供油量。
4)最高转速将调速手柄置于最高速挡块上,供油量调节齿杆相应地移至全负荷供油位置,柴油机转速由中速升高到最高速。
此时,飞锤的离心力相应增大,并克服全部调速弹簧的作用力,使飞锤连同内弹簧座一起向外移到一个新的位置。
在此位置,飞锤离心力与弹簧作用力达到新的平衡。
若柴油机转速超过规定的最高转速,则飞锤的离心力便超过调速弹簧的作用力,使供油量调节齿杆向减油方向移动,从而防止了柴油机超速。
5)停车将调速手柄置于停车挡块上,调速杠杆以其下端的铰接点为支点向左摆动,并带动供油量调节齿杆向左移到停油位置,柴油机停车,调速器飞锤在调速弹簧的作用下抵靠在安装飞锤的轴套上。
(三)附加装置1.怠速稳定弹簧在RQ型调速器盖上装有怠速稳定弹簧,其安装位置刚好与供油量调节齿杆相对,它对调节齿杆的移动起限位和缓冲作用。
有了怠速稳定弹簧,怠速更加稳定。
2.转矩平稳装置转矩平稳装置安装在滑动销内,其作用是缓冲高速时喷油泵供油量调节齿杆的振动,借以消除柴油机转矩的波动。
当把调速手柄移向高速并与最高速挡块接触时,转矩平稳装置中的弹簧3首先被压缩,同时供油量调节齿杆移至全负荷供油位置。
若此时柴油机转速升高,当飞锤的离心力超过调速弹簧的作用力时,飞锤开始向外移动,但调节齿杆并不立即向减油方向移动,而是在转矩平稳装置中的弹簧伸长复原后,调节齿杆才开始移动,从而减缓了调节齿杆的频繁移动或振动,使柴油机输出的转矩趋于平稳。
3.转矩校正装置转矩校正装置的功用是校正喷油泵供油量随转速的变化特性,也就是校正柴油机转矩随转速变化的特性,以使喷油泵的供油量与吸入气缸的空气量相匹配。
转矩校正有正校正与负校正两种。
供油量随转速下降而增加的校正为正校正;相反,供油量随转速下降而减少的为负校正。
前者用于高速范围,后者用于低速范围。
全程式调速器机械离心式全程调速器的结构形式很多,有与柱塞式喷油泵配套的,也有装在分配式喷油泵体内的,但其工作原理却基本相同。
下面仅以VE型分配泵的调速器为例,说明机械离心式全程调速器的基本结构及工作原理。
(一)VE型分配泵调速器结构(二)VE型分配泵调速器工作原理全程式调速器的基本调速原理是,由于调速器传动轴旋转所产生的飞锤离心力与调速弹簧力相互作用,如果两者不平衡,调速套筒便会移动。
调速套筒的移动通过调速器的杠杆系统使供油量调节套筒的位置发生变化,从而增减供油量,以适应柴油机运行工况变化的需要。
1.起动起动前,将调速手柄推靠在最高速限止螺钉上。
这时调速弹簧被拉伸,弹簧的张力拉动张力杠杆绕销轴N向左摆动,并通过板形起动弹簧使起动杠杆压向调速套筒,从而使静止的飞锤处于完全闭合的状态。
与此同时,起动杠杆下端的球头销将供油量调节套筒向右拨到起动加浓供油位置C,供油量最大。
起动后,飞锤的离心力克服作用在起动杠杆上的起动弹簧的弹力,使起动杠杆绕销轴N向右摆动,直到抵靠在张力杠杆的挡销上。
此时,起动杠杆下端的球头销向左拨动供油量调节套筒,供油量自动减少。
2.怠速柴油机起动后,将调速手柄移至怠速调节螺钉上。
在这个位置,调速弹簧的张力几乎为零,即使调速器传动轴的转速很低,飞锤也会向外张开,推动调速套筒,使起动杠杆和张力杠杆绕销轴N向右摆动,并使怠速弹簧受到压缩。
这时,飞锤离心力对调速套筒的作用力与怠速弹簧及起动弹簧对调速套筒的作用力平衡,供油量调节套筒处于怠速供油位置D,柴油机在怠速下运转。
若由于某种原因使柴油机转速升高,则飞锤离心力增大,上述的平衡被打破,飞锤推动调速套筒、起动杠杆和张力杠杆进一步压缩怠速弹簧而向右摆动,供油量调节套筒则向左移,供油量减少,转速回落复原。
若柴油机转速降低,飞锤离心力减小,怠速弹簧推动张力杠杆和起动杠杆向左摆动,供油量调节套筒则向右移,增加供油量,使转速回升。
3.中速和最高速欲使柴油机在高于怠速而又低于最高转速的任何中间转速工作时,则需将调速手柄置于怠速调节螺钉与最高速限止螺钉之间某一位置。
这时,调速弹簧被拉伸,同时拉动张力杠杆和起动杠杆绕销轴N向左摆动,而起动杠杆下端的球头销则向右拨动供油量调节套筒,使供油量增加,柴油机由怠速转入中速状态。
由于转速升高,飞锤离心力增大。
当其向右作用于调速套筒上的推力与调速弹簧向左作用于张力杠杆和起动杠杆上的拉力平衡时,供油量调节套筒便稳定在某一中等供油量位置,柴油机也就在某一中间转速稳定运转。
当把调速手柄置于最高速限止螺钉上时,调速弹簧的张力达到最大,供油量调节套筒也相应地移至最大供油量位置,柴油机将在最高转速或标定转速下工作。
4.最大供油量的调节若拧入最大供油量调节螺钉,则导杆绕销轴M逆时针方向转动,销轴N也随之转动,并带动球头销向右拨动供油量调节套筒,这时最大供油量增加。
反之,旋出最大供油量调节螺钉,则最大供油量减少。
改变最大供油量,可以改变柴油机的最大输出及最高转速或标定转速。
(三)附加装置1.增压补偿器在增压柴油机上装用的分配式喷油泵附有增压补偿器,其作用是根据增压压力的大小,自动增减供油量,以提高柴油机的有效功率和燃油经济性,并可减少有害气体的排放。
在补偿器盖和补偿器体之间装有膜片,膜片把补偿器分成上、下两个腔。
上腔与进气管相通,其中的压力即为增压压力。
下腔经通气孔与大气相通,膜片下面装有弹簧。
补偿器阀杆与膜片相连,并与膜片一起运动。
阀杆的中下部加工成上细下粗的锥体,补偿杠杆的上端与锥体相靠。
在阀杆上还钻有纵向长孔和横向孔,以保证阀杆在补偿器体内移动时不受气体阻力的作用。
补偿杠杆可绕销轴转动,其下端靠在张力杠杆上。
当进气管中的增压压力增大时,膜片带动阀杆向下运动,与阀杆锥体相接触的补偿杠杆绕销轴顺时针方向转动,张力杠杆在调速弹簧的作用下绕销轴N逆时针方向转动,从而使起动杠杆下端的球头销向右拨动供油量调节套筒,供油量增加;反之亦然。
2.转矩校正装置根据需要可在VE型分配泵上装备正转矩校正或负转矩校正装置。
正转矩校正可以改善柴油机高速范围内的转矩特性。
当柴油机转速升高到校正转速时,随着转速继续升高,作用在起动杠杆上的飞锤离心力的轴向分力F 对销轴N 的力矩,逐渐超过校正弹簧的预紧力对校正杠杆的支点即挡销5的力矩,这时起动杠杆及销轴S 开始绕销轴N 向右摆动。
与此同时,校正杠杆绕挡销顺时针方向转动,其下端通过校正销将校正弹簧压缩,直至校正销的大端靠在起动杠杆上为止,校正过程结束;负转矩校正可以防止柴油机低速时冒黑烟。
在负转矩校正装置中,调速套筒的轴向分力F 直接作用在转矩校正杠杆上,使校正杠杆靠在张力杠杆的挡销上,转矩校正销靠在张力杠杆的停驻点上。
当柴油机转速升高时,调速套筒的轴向分力F 增大。
若轴向分力F 对挡销的力矩大于校正弹簧的弹簧力对挡销的力矩,则使校正杠杆以挡销为支点逆时针方向转动,并通过销轴S 带动起动杠杆绕销轴N 向左摆动,球头销则向右拨动供油量调节套筒,增加供油量,从而实现柴油机在低速范围内随转速增加而自动增加供油量的负转矩校正。
当校正杠杆靠在校正销大端上时,校正结束。
3.负荷传感供油提前装置负荷传感供油提前装置的功用是根据柴油机负荷的变化自动改变供油提前角。
当柴油机转速一定时,若负荷减小,则喷油泵体内腔的燃油通过调速套筒上的量孔,经调速器轴的中心油道泄入二级滑片式输油泵的进油口,使喷油泵体内腔的油压降低,液压式喷油提前器内的活塞向右移动,供油提前角减小。
反之,若柴油机负荷增加,调速套筒上的量孔被关闭,喷油泵体内腔的油压升高,喷油提前器内的活塞向左移动,供油提前角增大。