运用公式法
因式分解的常用方法(基本公式法,分拆法,配方法,换元法,待定系数法)

因式分解方法归纳总结第一部分:方法介绍初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,进一步着重换元法,待定系数法的介绍.、提公因式法.:ma+mb=m(a+b)、运用公式法.(1) (a+b)(a -b) = a 2-b2 ---------- a 2-b2=(a+b)(a -b);, 2 2, 2 2 , 2,2(2) (a ± b) = a ± 2ab+b ----------------- a ± 2ab+b =(a ± b);(3) (a+b)(a 2-ab+b2) =a 3+b3------ a 3+b3=(a+b)(a 2-ab+b2);2 2、33 3 3 2 2、(4) (a -b)(a +ab+b ) = a -b -------------- a -b =(a -b)(a +ab+b ).F面再补充两个常用的公式:(5) a 2+b2+c2+2ab+2bc+2ca=(a+b+c) 2;3,3 3 2,2 2(6) a +b +c -3abc=(a+b+c)(a +b +c -ab-bc-ca);例.已知a, b, c是ABC的三边,且a2 b2 c2则ABC的形状是()(二)分组后能直接运用公式ab bc ca,A.直角三角形B等腰三角形C等边三角形D等腰直角三角形解: a2 b2 c2 ab bc ca 2 2 22a 2b 2c 2ab 2bc 2ca(a b)2 2 2(b c) (c a)三、,分组分解法例 2、分解因式:2ax 10ay 5by解法一:第、二项为一组;第三、四项为一组。
解:原式=(2ax 10ay) (5by bx)= 2a(x 5y) b(x 5y)=(x 5y)(2a b)bx解法二:第一、四项为一组;第二、三项为一组。
原式=(2ax bx) ( 10ay 5by) =x(2a b)5y(2a b) =(2a b)(x 5y)练习:分解因式1、a2 ab ac bc 2、xy x y 1例3、分解因式:x2 y2 ax ay分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
运用公式法

运用公式法篇一:运用公式法运用公式法平方差公式22(a+b)(a-b)=a-b公式中的字母可以表示任何数、单项式或多项式。
因此,计算时公式中的字母以可以表示任何数、单项式或多项式,只要符合公式特点,就可以运用平方差公式平方差公式多项式必须是两个数(或式)的平方差,能2够指明二项式中,哪一项相当于公式中的a,哪一项相当于222公式中的b。
并且把给出的多项式经过简单变形,写成a-b的形式,以便于分解,当公式中的字母表示多项式时,分解过程中需要加中括号,但结果中不能含有中括号,在添、去括号时都应注意是否需要变号。
有些题表面看不符合平方差公式的特点,但仔细观察,它们符合平方差公式的特点,可以应用公式计算。
再次鼓励与提倡解决问题策略的多样化,满足不同学生发展的需求,丰富学生的学习经验,提高思维水平,培养创新意识。
通过介绍同一问题的不同解决方法,让学生感受到分解因式中的一些技巧。
篇二:运用公式法数学微格教学教案科目:数学课题:分解因式——运用公式法执教:袁媛训练技能:设计理念:一、教学内容:北师大版初二下册第二章p54-58页内容。
二、教学目标:1、回固因式分解的概念和复习提公因式法;2、复习平方差公式与完全平方公式,并灵活运用到分解因式中;3、结合提公因式法进行分解因式;4、掌握分解因式与整式乘法的关系。
三、教学重点:本章内容是分解因式,分成了三小节。
前两节分别讲的是因式分解的概念和提公因式法进行分解因式。
本节要讲的是用公式法进行因式分解。
其重点是熟记乘法公式中的平方差公式与完全平方公式,并结合前两节知识进行因式分解。
四、教学难点:难点是用公式法结合前一节内容进行因式分解。
教学过程:训练技能执教者教学目标袁媛教学课题教学时间分解因式——运用公式法20XX-9-261、复习巩固因式分解定义和提公因式法;2、复习平方差公式与完全平方公式,并灵活运用到分解因式中;3、结合提公因式法进行分解因式;4、掌握分解因式与整式乘法的关系。
《运用公式法》教学教案

《运用公式法》教学教案第一章:引言1.1 教学目标让学生理解公式法的基本概念和应用领域。
引导学生掌握公式法的原理和步骤。
培养学生运用公式法解决实际问题的能力。
1.2 教学内容公式法的定义和特点公式法的应用领域公式法的基本原理和步骤1.3 教学方法采用案例导入的方式,引导学生了解公式法的应用领域。
通过讲解和示例,让学生掌握公式法的基本原理和步骤。
提供实际问题,让学生运用公式法解决,并进行小组讨论和分享。
1.4 教学评估课堂参与度评估:学生参与小组讨论和分享的积极性。
练习题评估:学生完成练习题的正确率和理解程度。
第二章:公式法的基本原理2.1 教学目标让学生理解公式法的基本原理。
引导学生掌握公式的推导和应用。
2.2 教学内容公式法的基本原理公式的推导和应用示例2.3 教学方法通过讲解和示例,让学生掌握公式法的基本原理。
提供练习题,让学生巩固公式的推导和应用。
2.4 教学评估练习题评估:学生完成练习题的正确率和理解程度。
学生提问和解答评估:学生对公式法的基本原理的理解和应用能力。
第三章:公式法的步骤3.1 教学目标让学生掌握公式法的步骤。
引导学生运用公式法解决实际问题。
3.2 教学内容公式法的步骤实际问题解决示例3.3 教学方法通过讲解和示例,让学生掌握公式法的步骤。
提供实际问题,让学生运用公式法解决,并进行小组讨论和分享。
3.4 教学评估练习题评估:学生完成练习题的正确率和理解程度。
学生提问和解答评估:学生对公式法的步骤的理解和应用能力。
第四章:公式法的应用领域让学生了解公式法在不同领域的应用。
引导学生运用公式法解决实际问题。
4.2 教学内容公式法在不同领域的应用示例实际问题解决示例4.3 教学方法通过讲解和示例,让学生了解公式法在不同领域的应用。
提供实际问题,让学生运用公式法解决,并进行小组讨论和分享。
4.4 教学评估练习题评估:学生完成练习题的正确率和理解程度。
学生提问和解答评估:学生对公式法在不同领域的应用的理解和应用能力。
数学运用公式法一

(反)
思
逸夫初级中学“三导三学五环节”导学案
年级:八年级科目:数学
课题
2.3运用公式法(一)
主备人
李驰
审核人
李驰
授课人
编号
04
授课
时间
班级
姓名
学习
目标
1、经历通过整式乘法的平方差的逆向得出公式法分解因式的方法的过程,发展学生的逆向思维。
2、:平方差公式分解因式.
难点:观察平方差特点并利用平方差公式分解因式
预习展示
分解下列因式(平方差公式):
(1)、1-4x2;(2)、m2-4;(3)、x2-4y2;
(4)、3x3-12x;(5)、 。
学
习
流
程
引领探究
1、a2-b2= (a+b)(a-b)中a,b都表示单项式吗?它们可以是多项式吗?
2、(1)9(m+n)2-(m-n)2;(2)4(m+n)2-(m-n)2
有效检测
把下列各式分解因式
(1)-(x+y)2+z2
(2)9(a+b)2-4(a-b)2
(3)m4-16m4
(4)x2-(a+b-c)2
(5)
梳理拓展
1、对于任意的自然数 , 能被24整除吗?为什么?
2、如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分拼成一个矩形,通过计算两个阴影部分的面积,可以得到一个矩形,通过计算两个阴影部分的面积,可以得到一个分解因式的公式,这个公式是怎样的?
学
习
流
程
学 案
导 案
导学预习
1、什么是因式分解?我们已经学过的因式分解的方法有什么?
因式分解技巧讲解002

七、综合运用及技巧
1、换元(即整体法)
因式分解时可以用一个字母代替一个整式,也可以将原式中的某个部分变形后的式子用
一个字母代替,(一般都是既约多项式),分解完后再将其带入。
2、主次分清
我们在处理一个项数多的多项式的时候,可以按照一个主要字母(任选)的降幂整理后,
然后分解。
十字相乘法解决。
[例]分解因式:6x2-7x+2
解:采用类似的办法:把6分解成2×3,写在第一列;把2分解成(-1)×(-2),写在第二
列;然后交叉相乘,把积相加,最后把得到的和写在横线下面。如下:
2 -1
3 -2
-7
这个和恰好是一次项的系数,于是有:
上面的算式称之为长十字相乘,式子中的三个十字,就是上面所说的三个十字相乘,我
们省略了横线及其底下的数。
如果二次式中的缺少一项或几项,长十字相乘仍然可用。
[例]分解因式:x2-y2+5x+3y+4[缺少含有字母的项]
解:由如下算式
(x) (y) (1)
1 1 1
=2a2b(x+y)(b+c)[(x+y)+3a3b3(b+c)]
=2a2b(x+y)(b+c)(x+y+3a3b4+3a3b3c)
其实这是一种整体的思想,在因式分解中应用广泛。
3、切勿漏1
4、注意符号
在提出的公因式为负的时候,注意各项符号的改变。
5、化“分”为整
数学论文——因式巧分解
史虓
◎综述
所谓多项式的因式分解,是把一个多项式写成几个整式的积的形式。因式分解并不复杂,
整式乘除法的运算技巧

(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a^2-b^2=(a+b)(a-b)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子: a^2-b^2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)^2=a^2+2ab+b^2 和(a-b)^2=a^2-2ab+b^2反过来,就可以得到:a^2+2ab+b^2 =(a+b)^2a^2-2ab+b^2 =(a-b)^2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x^2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)^2=(y-x)^2,(x-y)^3=-(y-x)^3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
因式分解法(提公因式法、公式法)

【知识要点】1、提取公因式:型如()ma mb mc m a b c ++=++,把多项式中的公共部分提取出来。
☆提公因式分解因式要特别注意:(1)如果多项式的首项系数是负的,提公因式时要将负号提出,使括号内第一项的系数是正的,并且注意括号内其它各项要变号。
(2)如果公因式是多项式时,只要把这个多项式整体看成一个字母,按照提字母公因式的办法提出。
(3)有时要对多项式的项进行适当的恒等变形之后(如将a+b-c 变成-(c-a-b )才能提公因式,这时要特别注意各项的符号)。
(4)提公因式后,剩下的另一因式须加以整理,不能在括号中还含有括号,并且有公因式的还应继续提。
(5)分解因式时,单项式因式应写在多项式因式的前面。
2、运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式:()()22a b a b a b -=+-; ()2222a ab b a b ±+=±。
平方差公式的特点是:(1) 左侧为两项;(2) 两项都是平方项;(3) 两项的符号相反。
完全平方公式特点是: (1) 左侧为三项;(2) 首、末两项是平方项,并且首末两项的符号相同; (3) 中间项是首末两项的底数的积的2倍。
☆运用公式法分解因式,需要掌握下列要领:(1)我们学过的三个乘法公式都可用于因式分解。
具体使用时可先判断能否用公式分解,然后再选择适当公式。
(2)各个乘法公式中的字母可以是数,单项式或多项式。
(3)具体操作时,应先考虑是否可提公因式,有公因式的要先提公因式再运用公式。
(4)因式分解一定要分解到不能继续分解为止,分解之后一定要将同类项合并。
【典例分析】例1.分解下列因式:(1)22321084y x y x y x -+ (2)233272114a b c ab c abc --+(3)323111248ab a b a b --+ (4)y x y x y x x 32223313231+-+-(5)23)(2)(m n a n m -+- (6)32)(4)(2y z y z y x -+-练习:因式分解(1)a(x-y)+b(x-y)-(x-y) (2)6(x+y)-12z(x+y) (3)(2x+1)y 2+(2x+1)2y(4)p(a 2+b 2)+q(a 2+b 2)-l(a 2+b 2) (5)2a(b+c)-3(b+c) (6)6(x-2)+x(2-x)(7)m(a-b)-n(b-a) (8)2a(x+y-z)-3b(x+y-z)+5c(z-x-y);(9)m(m-n)2-n(n-m)2 (10)2(x-y)(a-2b+3c)-3(x+y)(2b-a-3c).例2. 把下列各式分解因式:(1)x 2-4y 2 (2)22331b a +-(3)22)2()2(y x y x +-- (4)11622-b a练习:把下列各式分解因式: (1)224b a -(2)11622-y x(3)22481916b a +-(4)2916a -例3.运用完全平方公式因式分解:(1)21449x x ++ (2)25102+-a a(3)229124b ab a +- (4)42242b b a a +-(5)21222+-x x (6)x x x 2718323+-(7)2()6()9m n m n +-++ (8)22224)1(4)1(a a a a ++-+(9)161)(21)(2+---y x y x (10)9)(6)(222+-+-x x x x练习:把下列各式分解因式:(1)221025x xy y -+ (2)222y xy x -+-(3)1692+-t t (4)22816y x xy +-(5)2411x x ++ (6)xy y x 4422-+(7)81224-+-x x (8)ax y ax y ax ++2232(9) 161)(21)(2+---y x y x (10) )(12)(9422n m m n m m ++++例4. 把下列各式分解因式:(1)32231212x x y xy -+ (2)442444)(y x y x -+(3)222)1(4+-a a (4)2222)(4)(12)(9b a b a b a ++-+-练习:把下列各式分解因式:(1)222224)(b a b a -+ (2)222)41(+-m m(3)22248)4(3ax x a -+ (4)4224168b b a a +-(5))()(2x y y x a -+- (6))()(422m n b n m a -+-例5.已知2=+b a ,利用分解因式,求代数式222121b ab a ++。
2.3运用公式法

任何一个正奇 你发现了什么规 数都可以表示 律?能用因式分 解来说明你发现 成两个相邻自 的规律吗? 然数的平方差。 对于正奇数 2n+1(n为自然 2 2 数),有 n 1 n
1 3 5 7 …
1 12 02
3 22 12
5 32 22
7 42 32
…
ห้องสมุดไป่ตู้
n 1 n n 1 n 2n 1
1.把下列各式分解因式
(1)(a 2 b 2 ) 2 4 a 2 b 2
(1)x -12xy+36y (1)18a2-50 4 2 2 4 (2)16a +24a b +9b (2)-3ax2+3ay4 2 2 (3)-2xy-x -y (3)(a+b)2-4a2 2 (4)4-12(x-y)+9(x-y) (4)-25x2y2+100 2+2a2x+a3; (5) ax 2 2 (5)4(a-b) -9(2a+3b) 2+6xy-3y2. (6) - 3 x 2 2 2 (6)(x +3x) -(x+1)
已知3a+b=10000,3a-b=0.0001, 求 b2-9a2 的值.
3.下列各式中,不能用完全平方公式分解的是( ) A、x4+6x2y2+9y4 B、x2n-2xnyn+y2n C、x6-4x3y3+4y6 D、x4+x2y2+y4
4.如果100x2+kxy+y2可以分解为(10x-y)2,那么k的值是( A、20 B、-20 C、10 D、-10 5.如果x2+mxy+9y2是一个完全平方式,那么m的值为( A 、6 B、±6 C、3 D、±3 ) )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学微格教学教案
科目:数学
课题:分解因式——运用公式法
执教:袁媛
训练技能:
设计理念:一、教学内容:北师大版初二下册第二章P54-58页内容。
二、教学目标:1、回固因式分解的概念和复习提公因式法;
2、复习平方差公式与完全平方公式,并灵活运用到分解因式中;
3、结合提公因式法进行分解因式;
4、掌握分解因式与整式乘法的关系。
三、教学重点:本章内容是分解因式,分成了三小节。
前两节分别讲
的是因式分解的概念和提公因式法进行分解因式。
本节要讲的是
用公式法进行因式分解。
其重点是熟记乘法公式中的平方差公式
与完全平方公式,并结合前两节知识进行因式分解。
四、教学难点:难点是用公式法结合前一节内容进行因式分解。
教学过程:
训练技能教学课题分解因式——运用公式法
执教者袁媛教学时间2012-9-26
教学目标1、复习巩固因式分解定义和提公因式法;
2、复习平方差公式与完全平方公式,并灵活运用到分解因式中;
3、结合提公因式法进行分解因式;
4、掌握分解因式与整式乘法的关系。
时间教师的教学行为教学技能要素学生学习行为
一、复习巩固——因式分解与提公因式法。
五分钟左右师:前两节课我们学习了分解因式的定义以及
用提公因式法来分解因式,那我先问问,
你对因式分解是怎么理解的?
生:把一个多项式化成几个整式的积的形式,
这种变形叫做把这个多项式因式分解。
师:这位同学说得很好。
请坐!简单地说就是
和差化积,是不是!好,那你学过哪些因
式分解的方法?
生:提公因式法。
师:好的,请坐!那么对于提公因式法你觉得
应该注意些什么呢?
生1:要正确的寻找公因式。
师:也就是我们要找准谁才是它的公因式,是不
是!好的,请坐!还有吗?你觉得还有没有
要注意的地方?
生2:分解时要彻底。
师:好,分解要彻底,要分解到每个因式不能
分解为止是不是。
根据回答问题复
习前面所学知
识,并回答问题,
引出新课,发散
学生思维。
学生积极主动参
与问题的解答与
思考,达到复习
效果。
二、引入新课——运用公式法分解因式
师:好的!大家看到课本54页,再看到黑板,
观察一下下面两个式子:
225
x-与22
9x y
-前面我们学了提公因式
法,那这个能不能提公因式?
二十分钟左右生:不能。
它们没有公因式。
师:那像这种没有公因式的式子是不是就不能
分解了呢?大家想想。
当然不是了是不是。
我们知道整式的乘法,
多项式的乘法,它与因式分解是互逆运算。
我们学到过乘法公式对不对!那么,我们
能不能利用乘法公式来得到分解因式的其
他方法?今天我们所要研究的就是这个内
容。
首先啊,大家来看一下,这个式子等
于什么?(5)(5)
x x
+-=?
生:用平方差公式。
结果是:
2
(5)(5)25
x x x
+-=-.
师:这用的是乘法公式中的平方差公式,那谁
能告诉我什么是平方差公式?知道的举
手。
生:22
()()
a b a b a b
+-=-
师:对,这就是平方差公式,和乘差等于平方
差。
那么它是互逆的,我们可以把它倒过
来写22()()
a b a b a b
-=+-,写成两个因
式的乘积。
大家来看一下,x和25没有公因
式,但是啊,它可以分解成(5)(5)
x x
+-。
这就是我们学到的一个新的方法——平方
差公式来分解因式。
好,我们来看一下平
通过思考,让学
生把已有的知识
用到新课中,达
到教学目的,好
对新课易懂及印
象深刻。
学生积极主动的
思考,以问答的
形式师生交流互
动。
方差公式的具体内容:
22()()a b a b a b -=+-
两个数的平方差,等于两个数的和与这两个数差的积。
到这里很好理解,我们以前学过的是,两个数的和与差的积,是这两个数的平方差,对不对。
那么,大家想一下,这两个数是不是只能表示数呢?在这里我告诉大家,不是,它呀,还可以表示单项式或者是多项式。
接着,我们来看一下这个公式的特点: 特点:
① 左边:二项式,两项都能写成平方的形式,并且符号相反;(如果是2
2
a b +就不行了)
② 右边:两个数的和与这两个数差的积。
那我们现在就把刚刚观察的两个式子和例题
22516x -因式分解出来试试。
生:……
师:好,那么,这乘法公式是不是有两个呀同
学们?它还有哪一个?
生:完全平方公式。
师:还有完全平方公式,那谁能在黑板上写出
来?
新课引入之后,通过详细讲解两个公式的特点,让学生掌握分解方法,并做题加以巩固。
学生积极主动的思考,以复习讲解的形式师生交流互动并接受新知识,。
生:222
()2a b a ab b ±=±+
师:大家说是不是这个?很对是不是!好,那
我们接着来看一下完全平方公式。
完全平方公式使它倒过来写就是:
2222()a ab b a b ++=+ 2222()a ab b a b -+=-
已经写过来了,它可以分解成这样的形式。
两个数的平方加上这两个数积的2倍,等于这两个数和的平方。
两边是平方,2倍在中央。
符号问题呢,是看后面是加号就是加号,是减号它就是减号,跟两边的没有关系。
它的特点是: 特点:
① 项数必须是三项;(才能用完全平方公
式,有三项才可以得到它,一定要记住它的特点同学们,如果你记不住,那你就没有办法利用它来解决问题了。
) ② 其中有两项是平方项且都是正的; ③ 还有一项是两平方项底数的两倍。
好,大家看到黑板上的题目,我们一起来做一下:
21449x x ++
再请两位同学上来做一下这两个题目: (1)229()()m n m n +--
(2)2()6()9m n m n +-++
注意:当多项式的各项含有公因式时,优先
考虑提出公因式,再进一步分解因式;有负号先提负号;分解要彻底;a 和b 不仅可以表示数,还可以表示单项式或者多项式。
三分钟左右
三、课堂总结——分解因式
今天这节课我们是讲了因式分解的另一种方法——运用公式法。
这一节内容看似简单,两个乘法公式以前也学过,但要达到熟练运用到题目中还是有点难度的,所以大家课外也多花点时间。
归纳总结本节课内容,以及简单的小节本章内容,使学生更容易掌握知识的重难点。
反思学习成果,
做练习加以巩固。
四、课外作业
P61,复习题(第1题和第2题)
第一章 一元一次不等式和一元一次不等式组 (P1-P41) 第一章 (第3节)运用公式法 (P54-P58) 第二章 分式 (P65-P99)。