学业水平测试学案第三章 函数的应用+必须2空间几何体 2

合集下载

高中数学第三章函数的应用3.2.1函数模型及其应用课堂导学案新人教A版必修1(2021年整理)

高中数学第三章函数的应用3.2.1函数模型及其应用课堂导学案新人教A版必修1(2021年整理)

高中数学第三章函数的应用3.2.1 函数模型及其应用课堂导学案新人教A 版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章函数的应用3.2.1 函数模型及其应用课堂导学案新人教A版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章函数的应用3.2.1 函数模型及其应用课堂导学案新人教A版必修1的全部内容。

3.2。

1 函数模型及其应用课堂导学三点剖析一、常见函数模型【例1】(一次函数模型)某商店出售茶壶和茶杯,茶壶每个定价20元,茶杯每个定价5元,该店推出两种优惠办法:(1)买一个茶壶赠送一个茶杯;(2)按总价的92%付款。

某顾客需购茶壶4个,茶杯若干(不少于4个),若需茶杯x个,付款数为y(元),试分别建立两种优惠办法中y与x的函数关系,并讨论顾客选择哪种优惠方法更合算。

思路分析:本题考查的是建立一次函数模型,并应用一次函数模型解决实际问题的能力.第一种优惠方法中,实际付款是4个茶壶的钱和(x-4)个茶杯的钱.第二种优惠方法只需将货款总数乘以92%,而后再作差比较二者的大小即可。

解:由优惠办法(1)可得函数关系式:y1=20×4+5(x-4)=5x+60(x≥4),由优惠办法(2)可得函数关系式:y2=(5x+4×20)×92%=4.6x+73。

6.比较:y1-y2=0.4x—13。

6(x≥4)。

①当0.4x-13。

6>0,即x>34时,y1>y2,即当购买茶杯个数大于34时,优惠办法(2)合算。

②当0。

4x-13。

6=0,即x=34时,两种优惠办法一样合算.③当0.4x—13。

河北专版学业水平测试专题三函数的概念与性质(含答案解析)

河北专版学业水平测试专题三函数的概念与性质(含答案解析)

河北专版学业水平测试专题三函数的概念与性质学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知函数()21,23,2x x f x x ⎧+<⎪=≥,则()()4f f 的值为()A .1-B .0C .1D .22.下列幂函数在区间()0,∞+内单调递减的是()A .y x=B .2y x =C .3y x =D .1y x -=3.下列函数中,值域是(0,)+∞的是()A .21(0)y x x =+>B .2y x =C .y =D .2y x=4.下列函数中,与函数y x =相同的是()A .2xy x=B .2y =C .lg10x y =D .2log 2xy =5.已知函数()y f x =是奇函数,当0x <时,()2()f x x ax a R =+∈且()26f =,则=a ()A .1B .5C .-1D .-56.某家庭利用十一长假外出自驾游,为保证行车顺利,每次加油都把油箱加满,如表记录了该家庭用车相邻两次加油时的情况.加油时间加油量/升加油时的累计里程/千米2020年10月1日12320002020年10月6日4832600(注:“累计里程”指汽车从出厂开始累计行驶的路程.)在这段时间内,该车每100千米平均耗油量为()A .6升B .8升C .10升D .12升7.已知[0,2]x ∈)8.下列函数中,在区间()0,1上是增函数的是()A .21y x =-+B .y =C .1yx=D .3y x=-9.函数1y x =+的图象是A .B .C .D .10.已知函数22,0()1,0x x x f x lnx x ⎧+-=⎨-+>⎩ ,若f (a )0=,则a 的值为()A .2-B .1C .1,eD .2-,e11.已知幂函数()y f x =的图象过点(8,,则()9f 的值为()A .2B .3C .4D .912.下列函数中为偶函数,且在()0,∞+上单调递增的是A .()lg 2y x =B .2y x =-C .2xy =D .y =13.给定函数2()f x x =,()2g x x =+,对于x ∀∈R ,用()M x 表示(),()f x g x 中较大者,记为()max{(),()}M x f x g x =,则()M x 的最小值为()A .1-B .1C .2D .414.函数x y x x=+的图象为()A .B .C.D .15.若函数()()()21xf x x x a =-+是奇函数,则实数=a ()A .12B .12-C .1D .1-16.设函数f (x )满足f 1-1x x ⎛⎫⎪+⎝⎭=1+x ,则f (x )的表达式为()A .21x +B .221x +C .2211x x -+D .11x x-+17.已知函数()f x 是定义在区间[1,2]a a --上的偶函数,且在区间[0,2]a 上单调递增,则不等式(1)()f x f a -<的解集为()A .[1,3]-B .(0,2)C .(0,1)(2,3]⋃D .[1,0)(1,2)-⋃18.已知函数22,2()(1),2x f x x x x ⎧⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有三个不同的实根,则数k的取值范围是()A .(0,1)B .(1,2)C .(0,2)D .(1,3)19.幂函数()()222af x a a x =--在()0,∞+上单调递增,则()()11x ag x b b +=+>过定点()A .()1,1B .()1,2C .()3,1-D .()3,2-20.若函数()y f x =的定义域是[0,4],则函数()g x =)A .(1,8)B .(1,2)C .(1,8]D .(1,2]21.下列四组函数,表示同一函数的是()A .f (x,g (x )=xB .f (x )=x ,g (x )=2x xC .f (x,g (x )=2x xD .f (x )=|x +1|,g (x )=1,11,1x x x x +≥-⎧⎨--<-⎩22.已知()f x 函数是定义在()()3,00,3- 上的奇函数,当03x <<时,()f x 的图象如图所示,则不等式()0f x x -⋅>的解集是().A .(1,0)(1,3)-B .(3,1)(1,3)--C .(1,0)(0,1)- D .(3,1)(0,1)--⋃23.已知函数()2f x ax =-[0,2]上单调递减,则a 的取值范围是()A .(0,1]B .(0,1)C .(0,2]D .[2,)+∞24.函数1(,0]()3(21)(1),(0,)xx f x a x a x ⎧⎛⎫∈-∞⎪ ⎪=⎨⎝⎭⎪-+-∈+∞⎩,在(),-∞+∞上是减函数,则a 的取值范围是()A .10,2⎛⎫⎪⎝⎭B .10,2⎡⎫⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .1,2⎛⎫+∞ ⎪⎝⎭25.已知函数f (2x -3)的定义域是[-1,4],则函数f (1-2x )的定义域()A .[2,1]-B .[1,2]C .[2,3]-D .[1,3]-26.已知奇函数()f x 在区间[)0,∞+上是单调递增的,则满足1(21)()3f x f -<的x 的取值范围是()A .2(,)3-∞B .12[)33,C .12()23,D .2[,)3+∞二、填空题27.已知幂函数()y f x =的图象过点22,则()f x =___________.28.设2,0(),0x x f x x x ⎧≤⎪=>,则((2))f f -=__________.29.函数22y ax x -+的定义域为[]2,1-,则实数a 的值为______.30.函数2()1f x x =-的定义域为[2,5),则其值域为__.31.已知函数53()7cf x ax bx x=+++, 3(5)f -=,则 ()3f =___________.32.已知)1fx x x =+()f x =________.33.设()f x 为偶函数,且在(0,)+∞上是增函数,则f (1),(2)f -,(3)f -的大小关系是__.34.函数(),01log ,016c ax b x f x x x +<⎧⎪=⎨⎛⎫+≥ ⎪⎪⎝⎭⎩的图象如图所示,则abc =______.35.已知函数()f x 满足()1221,0f x f x x x ⎛⎫-=-≠ ⎪⎝⎭,则()f x 的解析式为________36.若函数(),142,12x a x f x a x x ⎧≥⎪=⎨⎛⎫-+< ⎪⎪⎝⎭⎩满足对任意的实数12x x ≠都有()()12120f x f x x x ->-成立,则实数a 的取值范围是___________.37.若关于x 的不等式x 2-4x -m≥0对任意x ∈(0,1]恒成立,则m 的最大值为______.38.如果函数y =23,0(),0x x f x x ->⎧⎨<⎩是奇函数,则()f x =________.39.已知()2y f x x =+是奇函数,且()13f =,若()()2g x f x =+,则()1g -=________.40.函数()f x 是定义在R 上的奇函数,满足(2)()f x f x +=-,当[0x ∈,1)时,2()f x x =,则23()2f =_______.41.发展农村电商是“乡村振兴计划”的重要组成,某农村电商结合自己出售的商品,要购买3000个高为2分米,体积为18立方分米的长方体纸质包装盒.经过市场调研.此类包装盒按面积计价,每平方分米的的价格y (单位:元)与订购数量x (单位:个)之间有如下关系:0.011,100020000.01,200040000.009,4000x y x x ≤<⎧⎪=≤<⎨⎪≥⎩(说明:商家规定每个纸盒计费面积为六个面的面积之和),则该电商购入3000个包装盒至少需要____元.三、解答题42.已知函数2()f x x bx c =++的图像过点(1,3)-,且关于直线1x =对称.(1)求()f x 的解析式;(2)若3m <,求函数()f x 在区间[],3m 上的值域.43.已知函数f (x )=211x x -+.(1)证明:函数f (x )在区间(0,+∞)上是增函数;(2)求函数f (x )在区间[1,17]上的最大值和最小值.44.已知函数()f x 是定义在R 上的奇函数,()g x 是定义在R 上的偶函数,且对任意实数x 有()()x f x g x e +=成立.(1)求()f x 和()g x 的解折式;(2)证明:22[()][()](2)f x g x g x +=.45.已知二次函数()f x 的最小值为1,且()()023f f ==.(1)求()f x 的解析式;(2)若()f x 在区间[3, 1]a a +上不单调,求实数a 的取值范围;(3)当[1,1]x ∈-时,()f x 的图象恒在2y x m =+的图象的上方,试求实数m 的取值范围.46.已知幂函数()af x x =的图象经过点(.(1)求幂函数()f x 的解析式;(2)试求满足()()13f a f a +>-的实数a 的取值范围.47.已知二次函数()f x 满足()()12f x f x x +-=且()01f =.(1)求()f x 的解析式;(2)若方程()f x ax =,[]2,3x ∈时有唯一一个零点,且不是重根,求a 的取值范围;(3)当[]1,1x ∈-时,不等式()2f x x m >+恒成立,求实数m 的范围.48.已知函数()21x bf x x +=-是定义域()1,1-上的奇函数.(1)确定()f x 的解析式;(2)用定义证明:()f x 在区间()1,1-上是减函数;(3)解不等式()()10f t f t -+<.参考答案:1.D【分析】带入数据直接计算得到答案.【详解】()21,23,2x x f x x ⎧+<⎪=≥,()431f ==-,()()()41112f f f =-=+=.故选:D 2.D【解析】由幂函数的知识可直接选出答案.【详解】y x =、2y x =、3y x =在区间()0,∞+内单调递增,1y x -=在区间()0,∞+内单调递减故选:D 3.C【分析】利用反比例函数,复合函数,一次函数,二次函数的单调性即可求得各个函数的值域,可得答案.【详解】解:A 、函数21y x =+在(0,)+∞上是增函数,∴函数的值域为(1,)+∞,故错;B 、函数20y x =,函数的值域为[)0,∞+,故错;C 、函数y =(,1)(1,)-∞-+∞ 00>,故函数的值域为(0,)+∞D 、函数2y x=的值域为{|0}y y ≠,故错;故选:C .【点睛】本题考查,二次函数,一次函数的值域,考查学生发现问题解决问题的能力,属于基础题.4.C【分析】根据函数的定义判断.注意对数函数的性质.【详解】解:由题意,函数y x =的定义域为R .对于A :2x y x=定义域为{}0x x ≠他们的定义域不相同,∴不是同一函数;对于B :2y =定义域为{}0x x ≥他们的定义域不相同,∴不是同一函数;对于C :lg10y x ==,定义域为R ,他们的定义域相同,对应关系也相同,∴是同一函数;对于D :2log 2x y =定义域为{}0x x >,他们的定义域不相同,∴不是同一函数;故选:C .5.B【解析】利用奇函数的性质()()22f f -=-即可得到答案.【详解】因为函数()y f x =是奇函数,所以()()24226f a f -=-=-=-,解得5a =.故选:B 6.B【分析】根据表格数据求出行驶里程与耗油量,即可解得.【详解】由表格中的信息可知,2020年10月1日油箱加满了油,此时的累计里程为32000千米,到2020年10月6日,油箱加满油需要48升,说明这段时间的耗油量为48升,累计里程为32600千米,说明这段时间汽车行驶了3260032000600-=千米,则在这段时间内,该车每100千米平均耗油量为4886=(升).故选:B .7.C.1x =时有最大值为1故选:C【点睛】本题考查了函数的最值问题,也可以利用均值不等式得到答案.8.B【分析】根据基本函数的单调性即可判断.【详解】对A ,21y x =-+在()0,1上单调递减,不符合题意;对于B ,y =[0),+∞上单调递增,所以在区间()0,1上单调递增,符合题意;对于C ,1y x=在()0+∞,上单调递减,所以在区间()0,1上单调递减,不符合题意;对于D ,3y x =-在()0,1上单调递减,不符合题意.故选:B 9.A【分析】去掉绝对值,根据一次函数的单调性即可作出判断.【详解】1,111,1x x y x x x +≥-⎧=+=⎨--<-⎩,1y x =+在()1,-+∞上单调递增,在(),1-∞-上单调递减,故选:A【点睛】本题考查分段函数的图象与性质,属于基础题.10.D【分析】根据题意,分0a ≤与0a >两种情况讨论()f a 的解析式,求出a 的值,综合即可得答案.【详解】根据题意,22,0()1,0x x x f x lnx x ⎧+-≤=⎨-+>⎩,若()0f a =,分2种情况讨论:当0a ≤时,()220f a a a =+-=,解可得2a =-或1(舍去),当0a >时,()1ln 0f a a =-+=,解可得a e =,综合可得:2a =-或e ;故选:D.【点睛】本题主要考查分段函数的求值,注意分段函数分段讨论,属于基础题.11.B【分析】设幂函数为()af x x =,代入点计算得到12a =,计算得到答案.【详解】设幂函数为()a f x x =,图象过点(8,,故()88af ==12a =,()12f x x =,()93f ==.故选:B 12.D【解析】分析各选项中函数单调性以及在区间()0,∞+上的单调性,可得出合适的选项.【详解】对于A 选项,函数()lg 2y x =定义域为()0,∞+,该函数为非奇非偶函数,且在区间()0,∞+上为增函数;对于B 选项,函数2y x =-为偶函数,且在区间()0,∞+上为减函数;对于C 选项,函数2x y =为非奇非偶函数,且在区间()0,∞+上为增函数;对于D 选项,函数y x =为偶函数,且在区间()0,∞+上为增函数.故选:D.【点睛】本题考查函数奇偶性与单调性的判断,熟悉几种常见的基本初等函数的基本性质是判断的关键,考查推理能力,属于基础题.13.B【解析】利用函数值的大小关系得到22,12(),21x x M x x x x +-≤≤⎧=⎨><-⎩或,画出函数图像得到答案.【详解】{}22,12()max (),(),21x x M x f x g x x x x +-≤≤⎧==⎨><-⎩或,画出函数图像,如图所示:则min ()(1)1M x M =-=故选:B【点睛】本题考查了函数的最值,根据题意得到分段函数画出函数图像是解题的关键.14.D【分析】化简函数解析式,即可得出合适的选项.【详解】因为1,01,0x x xy x x x -<⎧=+=⎨+>⎩,故函数x y x x =+的图象如D 选项中的图象.故选:D.15.A【分析】根据函数的定义域和奇函数的性质得到12a -=-,解得答案并验证即可.【详解】()()()21xf x x x a =-+为奇函数,定义域满足()()210x x a -+≠,故12x ≠且x a ¹-,故12a -=-,12a =,当12a =时,()()21122122x xf x x x x ==⎛⎫--+ ⎪⎝⎭,函数定义域为1111,,,2222⎛⎫⎛⎫⎛⎫-∞--+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()()2122xf x f x x -==--,函数为奇函数.故选:A 16.A 【分析】令11xx-+=t ,利用换元法即可容易求得函数解析式.【详解】令11x x -+=t ,则x =11t t -+,代入f 1-1x x ⎛⎫⎪+⎝⎭=1+x ,得f (t )=1+11t t -+=21t+,即f (x )=21x+.故选:A.【点睛】本题考查利用换元法求函数解析式,属基础题.17.B【解析】根据偶函数的定义域关于原点对称可得1a =,根据(1)(|1|)f x f x -=-以及函数()f x 的单调性可解得结果.【详解】因为函数()f x 是定义在区间[1,2]a a --上的偶函数,所以120a a --+=,解得1a =,(1)()f x f a -<可化为(1)(1)f x f -<,因为()f x 在区间[0,2]a 上单调递增,所以11x -<,解得02x <<.故选:B【点睛】关键点点睛:根据(1)(|1|)f x f x -=-以及函数()f x 的单调性解不等式是解题关键.18.A【分析】作出()f x 的图象,数形结合,即可容易求得参数的范围.【详解】作出函数()f x 的图象如图:根据图象可知,1()0,k ∈.故选:A .【点睛】本题考查通过数形结合由方程根的个数求参数范围,属基础题.19.D【解析】利用已知条件得到2221a a --=求出a 的值,再利用指数型函数过定点问题求解即可.【详解】由题意得:22211a a a --=⇒=-或3a =,又函数()f x 在()0,∞+上单调递增,则3a =,则()()311x g x bb +=+>,当303x x +=⇒=-时,()32g -=,则()()11x ag x bb +=+>过定点()3,2-.20.D【解析】根据抽象函数定义域以及分母不为零、偶次根式被开方数非负列不等式,解得结果.【详解】因为函数()y f x =的定义域是[0,4],所以0240212101x x x x x ≤≤≤≤⎧⎧∴∴<≤⎨⎨->>⎩⎩.故选:D【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.21.D【分析】分别判断每组函数的定义域和对应关系是否一致即可.【详解】对A ,()f x x ==,对应关系不一致,故A 错误;对B ,()f x 的定义域为R ,()g x 的定义域为{}0x x ≠,定义域不同,故B 错误;对C ,()f x 和()g x 的对应关系不一致,故C 错误;对D ,()f x 和()g x 的定义域都为R ,且()1,111,1x x f x x x x +≥-⎧=+=⎨--<-⎩,对应关系一致,故D 正确.故选:D.22.C【解析】不等式等价于()0f x x ⋅<,由奇函数的图象特点,再分0x >和0x <两种情况解不等式.【详解】()f x 是奇函数,()()f x f x ∴-=-,由图可知,当()0,1x ∈时,()0f x <,则当()1,0x ∈-时,()0f x >,当()1,3x ∈时,()0f x >,则当()3,1x ∈--时,()0f x <,()()00f x x f x x -⋅>⇔-⋅>,即()0f x x ⋅<,当()00x f x >⎧⎨<⎩或()00x f x <⎧⎨>⎩,()()0,11,0x ∴∈- .23.A【解析】根据函数()f x =[0,2]上单调递减,则由2t ax =-在[0,2]上单调递减,且0t ≥恒成立求解.【详解】因为函数()f x =[0,2]上单调递减,所以0220a a >⎧⎨-≥⎩,解得01a <≤,所以a 的取值范围是(0,1],故选:A 24.B【解析】依题意,当0x >时,(21)))((1a x x a f =-+-为减函数,再比较分段点处函数值大小,即可得答案.【详解】依题意()f x 在R 上为减函数,所以02101(13a a -<⎧⎪⎨≥-⎪⎩,解得102a ≤<,故选:B.25.C【解析】根据抽象函数定义域的求法,利用代换法求解即可.【详解】因为函数f (2x -3)的定义域是[-1,4],所以14x -≤≤,所以5235x -≤-≤,令5125x -≤-≤,解得23x -≤≤,所以函数f (1-2x )的定义域为[2,3]-,故选:C 26.A【解析】首先由已知证明函数在区间(),0∞-的单调性,再利用函数的单调性解抽象不等式.【详解】令120x x <<,则120x x ->->,奇函数()f x 在区间[)0,∞+单调递增,()()()1200f x f x f ∴->->=,即()()120f x f x ->->,()()120f x f x ∴<<,()f x \在区间(),-∞+∞是单调递增函数,()1213f x f ⎛⎫-< ⎪⎝⎭,1213x ∴-<,即23x <,所以满足()1213f x f ⎛⎫-< ⎪⎝⎭的x 的取值范围是2,3⎛⎫-∞ ⎪⎝⎭.故选:A【点睛】方法点睛:一般利用函数奇偶性和单调性,解抽象不等式包含以下几点:1.若函数是奇函数,首先确定函数在给定区间的单调性,然后将不等式转化为()()12f x f x <的形式,最后运用函数的单调性去掉“f ”,转化为一般不等式求解;2.若函数是偶函数,利用偶函数的性质()()()f x f x f x -==,将不等式()()12f x f x <转化为()()12f x f x <,再利用函数在[)0,∞+的单调性,去掉“f ”,转化为一般不等式求解.27.12x -【分析】根据条件,设幂函数为()(y f x x αα==为常数),再根据幂函数过点)2即可求解.【详解】设幂函数为()(y f x x αα==为常数),因为幂函数过点,所以2α=,则12α=-,所以12()f x x -=,故答案为:12x -.28.12【分析】先求21(2)24f --==,再代入求解即可.【详解】根据分段函数先求21(2)24f --==,所以11((2))(42f f f -===,故答案为:12.29.1-【分析】函数定义域满足220ax x -+≥,根据解集结合根与系数的关系解得答案.【详解】y =的定义域满足:220ax x -+≥,解集为[]2,1-,故a<0且121221aa⎧=-+⎪⎪⎨⎪=-⨯⎪⎩,解得1a =-.故答案为:1-30.1,22⎛⎤⎥⎝⎦【分析】根据x 的范围即可求出114x ≤-<,从而可求出 11x -的范围,进而得出21x -的范围,即求出()f x 的值域.【详解】∵25x ≤<,∴114x ≤-<,∴11411 x ≤-<,∴12221x <≤-,∴()f x 的值域为1,22⎛⎤ ⎥⎝⎦,故答案为:1,22⎛⎤⎥⎝⎦.【点睛】本题主要考查函数定义域、值域的概念及求法,以及不等式的性质,属于基础题.31.9;【解析】得出()()14f x f x +-=即可【详解】因为53()7c f x ax bx x--=--+所以()()14f x f x +-=(3)(3)7714f f +-=+=,所以(3)1459f =-=.故答案为:9【点睛】若()f x 是奇函数,则()()g x f x a =+的图象关于()0,a 对称,满足()()2g x g x a -+=.32.21x -,()1x ≥【分析】先利用换元法求得函数的解析式2()1f x x =-,注意定义域.【详解】令1t ,则1t ≥,且2(1)x t =-,可得22()(1)2(1)1f t t t t =-+-=-,所以2()1f x x =-(1x ≥).故答案为:21x -,()1x ≥.【点睛】本题主要考查了函数的解析式的求解及应用,其中解答中合理利用换元法求得函数的解析式是解答的关键,属于基础题目.33.f (1)<f (﹣2)<f (﹣3);【分析】根据题意,由偶函数的性质可得()22f f -=(),()33f f -=(),结合函数的单调性即可得结果.【详解】根据题意,若()f x 为偶函数,则()22f f -=(),()33f f -=(),又由函数()f x 在(0,)+∞上是增函数,则()()()123f f f <<,则有()()()123f f f <-<-,故答案为:()()()123f f f <-<-.【点睛】本题考查函数的单调性与奇偶性的综合应用,关键是掌握函数奇偶性与单调性的定义,属于基础题.34.1【解析】因为函数过点(0,2),(1,0)-,分别求出直线方程与对数函数方程,从而求得,,a b c ,相乘即可.【详解】因为函数过点(0,2),(1,0)-,则直线方程为112x y+=-即22y x =+,所以2a b ==,因为函数过点(0,2),所以1log 0216c ⎛⎫+= ⎪⎝⎭,解得14c =,所以1abc =.故答案为:1【点睛】本题考查分段函数图像与解析式的求法,属于基础题.35.()24133f x x x=--+【分析】由已知可得f (1x )-2f (x )21x =-,联立两式消去f (1x),解方程组可得.【详解】∵()1221,f x f x x ⎛⎫-=- ⎪⎝⎭∴f (1x )-2f (x )21x=-,联立两式消去f (1x),可得f (x )=24133x x --+故答案为f (x )=24133x x--+【点睛】本题考查函数解析式的求解,考查整体换元,属于基础题.36.[)4,8【解析】若对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立,则函数()f x 在R 上单调递增,进而可得答案.【详解】 对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立,∴函数,1()(4)2,12x a x f x ax x ⎧⎪=⎨-+<⎪⎩ 在R 上单调递增,∴1402422a a a a ⎧⎪>⎪⎪->⎨⎪⎪-+⎪⎩ ,解得:[4a ∈,8),故答案为:[)4,8.37.-3【分析】由题意可得m ≤x 2﹣4x 对一切x ∈(0,1]恒成立,再根据f (x )=x 2﹣4x 在(0,1]上为减函数,求得f (x )的最小值,可得m 的最大值.【详解】解:由已知可关于x 的不等式x 2﹣4x ﹣m ≥0对任意x ∈(0,1]恒成立,可得m ≤x 2﹣4x 对一切x ∈(0,1]恒成立,又f (x )=x 2﹣4x 在(0,1]上为减函数,∴f (x )min =f (1)=﹣3,∴m ≤﹣3,即m 的最大值为﹣3,故答案为-3.【点睛】本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,函数的恒成立问题,属于中档题.38.23x +.【分析】利用原函数为奇函数求出当0x <时的解析式,然后写出()f x 的表达式.【详解】设0x <,则0x ->,所以()2323x x ⋅--=--.又原函数为奇函数,所以()()2323f x x x =---=+,故答案为:23x +.【点睛】本题考查利用函数的奇偶性求函数的解析式,属于基础题.39.–3.【分析】由已知可知,22()()f x x f x x -+=--,然后结合f (1)3=,可求(1)f -,然后代入即可求解(1)g -.【详解】()2y f x x =+ 是奇函数,()()22f x x f x x ∴-+=--,()()22x f x f x -+=-∴,()13f = ,()15f ∴-=-,()()2g x f x =+,则()()1123g f -=-+=-.故答案为:–3【点睛】本题主要考查了利用函数的奇偶性求解函数值,解题的关键是奇函数定义的灵活应用,属于容易题.40.14-【分析】根据题意,分析可得(4)(2)()f x f x f x +=-+=,则函数()f x 是周期为4的周期函数,由此可得231()()22f f =-,结合函数的解析式计算可得答案.【详解】根据题意,函数()f x 是定义在R 上的奇函数,满足(2)()f x f x +=-,则(2)()()f x f x f x +=-=-,则有(4)(2)()f x f x f x +=-+=,则函数()f x 是周期为4的周期函数,则23111((12)()()2222f f f f =-+=-=-,又由当[0x ∈,1)时,2()f x x =,则2111(()224f ==,则2311(()224f f =-=-,故答案为:14-.41.1260【解析】设长方体长为a ,则宽为9a ,则表面积为36418a a ++,利用均值不等式得到表面积最小值,代入数据计算得到答案.【详解】设长方体长为a ,则宽为9a ,则表面积为364181842a a++≥+=当364a a=即3a =时等号成立费用为:0.013000421260⨯⨯=故答案为:1260【点睛】本题考查了均值不等式的应用,意在考查学生的计算能力和应用能力.42.(1)()22f x x x =-;(2)当13m ≤<时,值域为22,3m m ⎡⎤-⎣⎦;当11m -≤<时,值域为[]1,3-;当1m <-时,值域为21,2m m ⎡⎤--⎣⎦.【解析】(1)根据对称轴可得2b =-,再根据图象过(1,3)-可求c 的值,从而得到()f x 的解析式.(2)就13m ≤<、11m -≤<、1m <-分类讨论后可得函数相应的值域.【详解】(1)2()f x x bx c =++图象的对称轴为2bx =-,所以12b -=即2b =-.又图象过(1,3)-,故()123c --+=,故0c =,所以()22f x x x =-.(2)当13m ≤<时,()f x 在[],3m 上为增函数,而()22f m m m =-,()3963f =-=,故()f x 的值域为22,3m m ⎡⎤-⎣⎦.当11m -≤<时,()f x 在[],1m 上为减函数,在[]1,3为增函数,故()()min 11f x f ==-,131m -≤-,故()()max 33f x f ==,故()f x 的值域为[]1,3-.当1m <-时,()f x 在[],1m 上为减函数,在[]1,3为增函数,故()()min 11f x f ==-,131m ->-,故()2max 2f x m m =-,故()f x 的值域为21,2m m ⎡⎤--⎣⎦.综上,当13m ≤<时,值域为22,3m m ⎡⎤-⎣⎦;当11m -≤<时,值域为[]1,3-;当1m <-时,值域为21,2m m ⎡⎤--⎣⎦.【点睛】本题考查二次函数解析式的求法以及二次函数在动区间上的值域,后者需根据区间的端点与对称轴的位置关系来分类讨论,本题属于中档题.43.(1)证明见解析;(2)最小值为12,最大值为116.【分析】(1)根据函数单调性定义进行证明;(2)根据函数单调性求最值.【详解】(1)证明:f (x )=211x x -+=2-31x +;设x 1,x 2为(0,+∞)上任意两数,且x 1>x 2则f (x 1)-f (x 2)=231x +-131x +=()()()1212311x x x x -++,∵x 1>x 2>0,∴x 1-x 2>0,x 1+1>0,x 2+1>0,∴()()()1212311x x x x -++>0,∴f (x 1)>f (x 2),∴f (x )在区间(0,+∞)上是增函数.(2)∵f (x )在(0,+∞)上是增函数,∴f (x )在区间[1,17]上的最小值为f (1)=12,最大值为f (17)=116.【点睛】本题考查单调性定义、利用单调性求最值,考查基本分析论证与求解能力,属基础题.44.(1)()2x x e e f x --=,()2x x e e g x -+=,(2)证明见解析【分析】(1)首先函数的奇偶性得到方程组()()()()xx f x g x e f x g x e -⎧+=⎨-+=⎩,解方程组即可.(2)分别化简22[()][()]f x g x +和右边(2)g x ,得到左边=右边,即证22[()][()](2)f x g x g x +=.【详解】(1)已知()()x f x g x e +=,因为函数()f x 是定义在R 上的奇函数,()g x 是定义在R 上的偶函数,所以()()--+-=x f x g x e ,即()()x f x g x e --+=.得到()()()()x x f x g x e f x g x e -⎧+=⎨-+=⎩,解得()2x xe e g x -+=,()2x x e ef x --=.(2)22222222[()][()]44222x x x x x xe e e e e ef xg x ---+-=++++=+,22(2)2x x e e g x -+=,左边=右边,即证22[()][()](2)f x g x g x +=.【点睛】本题第一问考查函数的奇偶性,第二问考查指数式的运算,属于简单题.45.(1)2()243f x x x =-+;(2)10,3⎛⎫ ⎪⎝⎭;(3)(,1)-∞-.【分析】(1)根据题意设出二次函数的顶点式,根据(0)3f =得2a =,可得解;(2)由311a a <<+可解得结果;(3)转化为22630x x m -+->在区间[1,1]-上恒成立,根据二次函数求出最小值可得解.【详解】(1)(0)(2)f f = ,故二次函数()f x 的图象关于直线1x =对称,又由()f x 的最小值为1,故可设2()(1)1f x a x =-+,由(0)3f =,得2a =,故2()243f x x x =-+.(2)要使函数不单调,则有311a a <<+,解得103a <<.(3)由题意,2()2432f x x x x m =-+>+在区间[1,1]-上恒成立,即22630x x m -+->在区间[1,1]-上恒成立,设2()263g x x x m =-+-,则只要()g x 的最小值min ()g x 大于0即可,而min ()(1)1g x g m ==--,则10m -->,得1m <-,即(,1)m ∈-∞-.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥;②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≥;③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥;④若()k f x ≤在[,]a b 上有解,则max ()k f x ≥;46.(1)())0f x x =≥;(2)(]1,3.【分析】(1)把点的坐标代入函数解析式求出a 的值,即可写出()f x 的解析式;(2)根据()f x 在定义域上的单调性,把不等式(1)(3)f a f a +>-化为关于a 的不等式组,求出解集即可.【详解】(1)幂函数()a f x x =的图象经过点(,2a ∴,解得12a =,∴幂函数())120x x f x ==≥;(2)由(1)知()f x 在定义域[)0,∞+上单调递增,则不等式()()13f a f a +>-可化为103013a a a a +≥⎧⎪-≥⎨⎪+>-⎩解得13a <£,∴实数a 的取值范围是(]1,3.【点睛】本题考查了幂函数的定义与应用问题,属于容易题.47.(1)()21f x x x =-+(2)37,23⎡⎤⎢⎥⎣⎦(3)(),1-∞-【分析】(1)设()2f x ax bx c =++,()01f =,得到1c =,代入函数计算得到11a b =⎧⎨=-⎩,得到解析式.(2)令()()h x f x ax =-,只需()()230h h ⋅≤,解不等式并验证得到答案.(3)设()231g x x x m =-+-,确定函数的单调性,计算最值得到答案.【详解】(1)设()2f x ax bx c =++,则由()01f =,1c =.()()12f x f x x +-=,即22ax a b x ++=,220a a b =⎧⎨+=⎩,即11a b =⎧⎨=-⎩,()f x 的解析式为()21f x x x =-+.(2)令()()()211h x f x ax x a x =-=-++,则()232h a =-,()373h a =-,由()0h x =在[]2,3上有唯一零点且不是重根,只需()()230h h ⋅≤,()()32730a a --≤,解得3723a ≤≤,经检验32a =时,方程()0h x =在[]2,3上有唯一解2x =;73a =时,方程()0h x =在[]2,3上有唯一解3x =,故实数a 的取值范围为37,23⎡⎤⎢⎥⎣⎦.(3)212x x x m -+>+在[]1,1-上恒成立,即2310x x m -+->在[]1,1-上恒成立.设()231g x x x m =-+-,其图象的对称轴为直线32x =,所以()g x 在[]1,1-上单调递减.故只需()10g >,即213110m -⨯+->,解得1m <-,(),1m ∈-∞-48.(1)()21x f x x =-;(2)证明见解析;(3)1,12⎛⎫ ⎪⎝⎭.【解析】(1)利用奇函数的定义()()f x f x -=-,经过化简计算可求得实数b ,进而可得出函数()y f x =的解析式;(2)任取1x 、()21,1x ∈-,且12x x <,作差()()12f x f x -,化简变形后判断()()12f x f x -的符号,即可证得结论;(3)利用奇函数的性质将所求不等式变形为()()1f t f t -<-,再利用函数()y f x =的定义域和单调性可得出关于t 的不等式组,即可解得实数t 的取值范围.【详解】(1)由于函数()21x b f x x +=-是定义域()1,1-上的奇函数,则()()f x f x -=-,即()2211x bx b x x -++=-+-+,化简得0b =,因此,()21x f x x =-;(2)任取1x 、()21,1x ∈-,且12x x <,即1211x x -<<<,则()()()()()()()()()()()()2212212112121222221211221211111111111x x x x x x x x x x f x f x x x x x x x x x ----+-=-==---+-+--,1211x x -<<< ,210x x ∴->,1210x x +>,110x -<,110x +>,210x -<,210x +>.()()120f x f x ∴->,()()12f x f x ∴>,因此,函数()y f x =在区间()1,1-上是减函数;(3)由(2)可知,函数()y f x =是定义域为()1,1-的减函数,且为奇函数,由()()10f t f t -+<得()()()1f t f t f t -<-=-,所以111111t t t t ->-⎧⎪-<-<⎨⎪-<<⎩,解得112t <<.因此,不等式()()10f t f t -+<的解集为1,12⎛⎫ ⎪⎝⎭.【点睛】本题考查利用函数的奇偶性求参数、利用定义法证明函数的单调性以及函数不等式的求解,考查推理能力与运算求解能力,属于中等题.。

高中数学学业水平考试知识点

高中数学学业水平考试知识点

高中数学学业水平考试知识点(必修一)第一章集合与函数概念1. 集合的含义(1)元素:。

(2)集合:。

2. 集合的表示方法a.列举法: 。

b.描述法: 。

3. 集合之间的包含与相等的含义(1)子集:。

(2)A=B:。

4. 全集与空集的含义(1)空集:,记为:。

(2)全集:,记为:。

5. 两个集合的并集与交集的含义及计算(1)并集:,记为:。

(2)交集:,记为:。

6. 补集的含义及求法补集:,记为:。

7.用Venn图表示集合的关系及运算8. 函数的概念函数:。

9.映射的概念映射:。

10. 求简单函数的定义域和值域(1)求函数的定义域时列不等式组的主要依据是:a.分式: ;b.偶次方根: ;c.对数式的真数: ;d.指数、对数式的底: .e.如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.f.零指数的底:;g.实际问题中的函数的定义域还要保证实际问题有意义.(2)求函数值域的方法:a.观察法; b.配凑法;c.分离常数法;d.判别法;e.换元法等。

11. 函数的表示法(1)解析法:;(2)图象法:;(3) 列表法:.12. 简单的分段函数(1) 定义:;(2) 定义域:;(3) 值域:;13. 分段函数的简单应用(略)14. 函数的单调性、最大(小)值及其几何意义(1)单调性设函数y=f(x)的定义域为I,a.如果对于定义域I内的某个区间D内的任意两个自变量x1、x2,当时,都有,那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间;b.如果对于区间D上的任意两个自变量的值x1、x2,当,都有,那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质!(2)单调性的几何意义如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间具有(严格的)单调性,在单调区间上增函数的图象从左到右是的,减函数的图象从左到右是的.(3). 函数最大(小)值a. 最大值:。

江苏中职数学学业水平测试指导书第三章函数

江苏中职数学学业水平测试指导书第三章函数

第三章 函 数§3.1函数的概念【知识要点】 1.函数的概念如果在一个变化过程中有两个变量x 和y ,并且对于变量x 的每一个值,变量y 都有唯一确定的值与之对应,那么我们就称y 是x 的函数,其中x 是自变量,y 是因变量.用集合语言表述为:设A 是一个非空数集,如果对于集合A 内的任意一个数x ,按照某个确定的对应法则f ,有唯一确定的数y 与它对应,那么这种对应关系f 就称为集合A 上的函数,记作y=f (x ),其中x 是自变量,y 是因变量.函数y=f (x )可以简记为f (x ).2.函数值函数y=f (x )在x=a 时的函数值记作y=f (a ). 3.函数的定义域和值域在函数y=f (x )中,自变量x 的取值集合(范围)叫做函数的定义域,所有函数值组成的集合叫做函数的值域.4.函数定义域的求法对于用解析式表示的函数,如果没有特别说明,其定义域就是使函数式子有意义的所有实数组成的集合,即(1)分式中分母不为0;(2)偶次根式中被开方式不小于0;(3)对数式中真数大于0,底数大于0且不等于1.对于实际问题中的函数,其定义域根据自变量的实际意义确定. 【基础训练】1.已知f (x ) =2x -1,则f (2)= . 2.已知g (x ) =125+-x x ,则g (2)= ,g (0)= ,g (-1)= . 3.已知h (x ) =12+x ,则h (0)= ,h (1.5)= ,h (1)= . 4.函数15-+=x x y 的定义域是 . 5.函数2+=x y 的定义域是 . 6.下列各点中,在函数y =x -2图象上的是( ). A .(0,2) B . (-1,-2) C .(2,0) D .(-1,2)【能力训练】1.下列函数中,定义域是[0,+∞)的函数是( ).A .y =2xB .y=x 1C .y=xD . y=log 2x2.求下列函数的定义域:(1)f (x )=log 10(5x-2) (2) f (x)=(3)f (x )= x x -++121.§3.2函数的表示法【知识要点】函数的常用表示法有三种:列表法、图象法和解析法. 【基础训练】1.圆柱体的体积V =底面积S ⨯高h .已知S =2,则体积V 可以表示为变量h 的函数,其表达式为 ,其定义域为 .2.下图是气象台自动温度记录仪的描图针描绘的某一天从0点~24点温度随时间变化的曲线.在每一时刻t ,都对应着惟一一个温度T (单位:︒C ),因此,温度是时间t 的函数:T =f (t ),则f (t )的定义域D = ,f (6)= ,下午一点钟时的气温是 .t第2题图246810 12 14 18 20 22【能力训练】1.根据实验数据得知,在不同大气压下,水的沸点T (单位: C)与大气压P ((单位:105Pa)(1)在此函数关系中,自变量是 ,因变量是 ; (2)当自变量的值为2.0时,对应的函数值为 ; (3)此函数的定义域是 .§3.3 函数的单调性【知识要点】 1.增函数如果函数y=f (x )在区间(a ,b )上满足:随着自变量x 的增大,函数值(因变量)y 也增大,那么称函数y=f (x )在区间(a ,b )上单调增加,也称y=f (x )在区间(a ,b )上是增函数;区间(a ,b )称为函数y=f (x )的单调增区间,单调增函数的图象自左向右逐渐上升.2.减函数如果函数y=f (x )在区间(a ,b )上满足:随着自变量x 的增大,函数值(因变量)y 反而减小,那么称函数y=f (x )在区间(a ,b )上单调减少,也称y=f (x )在区间(a ,b )上是减函数;区间(a ,b )称为函数y=f (x )的单调减区间,单调减函数的图象自左向右逐渐下降.3.单调区间函数y=f (x )的单调增区间和单调减区间统称为函数的单调区间. 【基础训练】1.已知函数f (x )的图象(如图),则函数f (x )在区间(-1,0)内是函数(填“增”或 “减”),在区间(0,1)内是 函数(填“增”或 “减”).第1题图第2题图第3题图2.设函数f (x )在区间(-∞,+∞)内为增函数(如图),则f (4) f (2)(填“>”或“<”). 3.设函数f (x )在区间(-3,3)内为减函数(如图),则f (2) f (-2)(填“>”或“<”). 【能力训练】1.下列函数中,在(0,+∞)内为增函数的是( ). A .y =x⎪⎭⎫⎝⎛21 B .y=x 1 C .y= -x 2 D . y=2x 22.下列函数中,在(-∞,0)内为减函数的是( ). A . y =7x +2 B .xy 1-= C .y= -x 2+2 D . y=2x 2-13.已知函数y= f (x ),y= g (x )的图像如下图所示,根据图象说出函数的单调区间以及在各单调区间内函数的单调性.§3.4 函数的奇偶性【知识要点】如果函数y= f (x )的定义域关于原点O 对称,并且对定义域内的任意一个值x ,y=g (x )(1)若f (-x )= f (x ),就称函数y= f (x )为偶函数,y= f (x )为偶函数⇔ y= f (x )的图象关于y 轴对称;(2)若f (-x )= - f (x ),就称函数y= f (x )为奇函数,y= f (x )为奇函数⇔ y= f (x )的图象关于原点对称.【基础训练】1.下列图象表示的函数中,奇函数是( ).2.下列函数中的偶函数是( ).A .y =3xB .y=x 1C .y=2x 2D . y=31-x3.下列函数中的奇函数是( ). A .y =3x -2 B .y=x 3C .y=2x 2D . y=x 2-x4.下列函数中的偶函数是( ).A . y =-3x ²B .y =x 32C .y =∣x-1∣D . y =x +1【能力训练】1(1(3)f (x )= x 2-1 (4)f (x )=2x 3-x .AB§3.5 函数的实际应用【知识要点】函数是描述客观世界变化规律的基本数学模型,是研究变量之间依赖关系的有效工具。

学业水平考试复习系列(05)——必修2第1章《空间几何体》

学业水平考试复习系列(05)——必修2第1章《空间几何体》

学业水平考试复习系列 (05)必修 2 第 1 章《空间几何体》( 有参照答案 )1. 三视图包括的三种视图是哪三种 ?答:正视图、侧视图、俯视图。

2. 圆柱的表面积 S;圆锥的表面积 S;圆台的表面积S。

答:2 r 22 rlr 2rlr 2r 2rr l3. 圆柱或棱柱的体积VSh ( S 为底面面积,h 为高 ) ;圆锥或棱锥的体积 V;圆台或棱台的体积V。

答:1 1SS S S hSh334R 3, S 球4. 请写出半径为 R 的球的体积公式和表面积公式。

答:V 球4 R 2 。

3考点 1 三视图三视图是考试的热点,这类试题难度一般不大。

例 1 (2010 年第 3 题) 以下几何体中,正视图、侧视图和俯视图都相同的是 ( )A. 圆柱B.圆锥C.球D.三菱柱考点 2 由三视图想象出空间几何体的形状由三视图想象出空间几何体的形状再求面积或体积,是近几年考试的热点,要点是依照三视图的知识进行正确想象。

例 2 (2009 年第 14 题 ) 如图是一个几何体的三视图,该几何体的体积为 。

2233正视图侧视图2俯视图考点 3 多面体 (或组合体 )的表面积和体积由若干个平面多边形围成的几何体叫做多面体。

学业水平考试一般观察棱柱、棱锥、棱台的表面积和体积。

组合体的观察,一般也是由这些常有的几何体组合而成。

例 3 长方体 ABCD A 1B 1C 1D 1 中, BB 1 3 ,AB BC4 ,过 A 、 B 1 、 D 1 三点的平面将长方体截去一角,求剩下的几何体B 1C 1D 1 ABCD 的表面积和体积。

1B 1CD 11ACBDA考点 4 几何体表面上的最值问题求空间几何体表面上的最值问题,一般是利用几何体的表面张开图,由张开图确定最值。

例 4已知一长方体三条棱长分别为a 、b 、c ,且 a b c ,一质点从长方体的一个极点出发,沿长方体表面运动到相对极点,则搬动的最短行程为 ()A. a 2 b 2c 2 2abB.a 2b 2c 22acC. a 2b 2c22bcD. 无法确定考点 5 球的表面积和体积球的表面积和体积是必考内容之一,掌握球的表面积公式和体积公式是解答这类题的要点。

高中数学人教B版第3章3.3函数的应用(一)学案(2)

高中数学人教B版第3章3.3函数的应用(一)学案(2)

3.3 函数的应用(一)学习目标:1.知识目标:能够运用一次函数、二次函数、分段函数的性质解决某些简单的实际问题.(1)能通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学道理,弄清题中出现的量及其数学含义.(2)能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题(即建立数学模型),并运用函数的相关性质解决问题。

(3)能处理有民生、经济、物里等方面的实际问题。

2.能力目标:通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体见了函敞知识的应用价值,也渗透了训练的价值.3.情感目标:通过对实际问题的研究解决,渗透了数学建模的思想.提高了学生学习数学的兴趣,使学生对函数思想等有了进一步的了解。

重点1.通过运用函数的有关知识解决实际生活中的问题,加深对函数概念的理解2.会应用一次函数、二次函数、分段函数模型解决实际问题3.了解数学知识来于生活,又服务于生活.难点1、增强运用函数思想理解和处理问题的意识,理解数学建模中将实际问题抽象、转化为数学问题的一般方法。

知识梳理1.形如f(x)= 叫一次函数,当为增函数;当为减函数。

2.二次函数的解析式三种常见形式为:、、3.f(x)=a x2+bx+c(a≠0),当a>0,其图象开口向,函数有最值,为;当a<0,其图象开口向,函数有最值,为4.f(x)=a x2+bx+c(a≠0)当a>0时,增区间为;减区间为 .因为函数可以描述一个量依赖于另外一个量变化而变化的情况,所以函数的知识在实际生活中有着广泛的应用,下面我们通过例子来说明.【典型例题】例1 为了鼓励大家节约用水,自2013年以后,上海市实行了阶梯水价制度,其中每户的综合用水单价与户年用水量的关系如下表所示。

例 2 城镇化是国家现代化的重要指标,据有关资料显示,19782013年,我国城镇常住人口从1.7亿增加到7.3亿。

2024版高考数学全程学习复习导学案第三章函数及其应用第七节函数的应用第2课时函数模型及其应用课件

2024版高考数学全程学习复习导学案第三章函数及其应用第七节函数的应用第2课时函数模型及其应用课件
是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.
【对点训练】
1.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P
运动的路程为x,△ABP的面积为S,则函数S=f(x)的图象是( D )
2.(2022·泰州模拟)中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.
为分析泡制一杯最佳口感茶水所需时间,某研究人员每隔1 min测量一次茶水的
温度,根据所得数据得到如图所示的散点图.观察散点图的分布情况,下列哪个函
数模型可以近似地刻画茶水温度y随时间x变化的规律 ( B )
A.y=mx2+n(m>0)
B.y=max+n(m>0,0<a<1)
C.y=max+n(m>0,a>1)
第七节
第2课时
函数的应用
函数模型
及其应用
【课程标准】
1.了解指数函数、对数函数与一元一次函数增长速度的差异.
2.理解“指数爆炸”“对数增长”“直线上升”等术语的现实含义.
3.会选择合适的函数类型刻画现实问题的变化规律,了解函数模型在社会生活中
的广泛应用.
知识梳理·思维激活
【必备知识·精归纳】
1.三种函数模型的性质
生物大概生活在( C )
(参考资料:log23≈1.585.西周:公元前1046年~公元前771年;晋代:公元266年~公元420年;
宋代:公元960年~公元1279年;明代:公元1368年~公元1644年)
A.西周
B.晋代
C.宋代
D.明代
2.“百日冲刺”是各个学校针对高三学生进行的高考前的激情教育,它能在短时间
C.每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用

山东高中学业水平考试数学必修2考点梳理+精选习题

山东高中学业水平考试数学必修2考点梳理+精选习题

第四章 圆与方程 1.圆的定义、方程
定义 标 准 方程 一 般 平面内到定点的距离等于定长的点的集合叫做圆
(x-a)2+(y-b)2=r2(r>0)
x2+y2+Dx+Ey+F=0
圆心坐标(a,b) 半径为 r 充要条件:D2+E2-4F>0 D E - ,- 圆心坐标: 2 2 2 2 D +E -4F 半径 r= 2
A.2 3
B. 3
C.2 2
D.4
5
泰安点金教育
一切成功均源自积累
19.某几何体的三视图如图所示,则该几何体的体积是(

(A) 12 (B) 36 (C) 24 (D) 72 20.若一个空间几何体的三视图如图所示,则这个几何体的表面积为
(A) 4 4 10
2.平行 (1)直线与平面平行的判定定理和性质定理
文字语言 平面外一条直线与此平 面内的一条直线平行, 则 该直线与此平面平行(线 线平行⇒线面平行) 图形语言 符号语言
判定定理
l∥a,a⊂α,l⊄α⇒l∥α
性质定理
一条直线与一个平面平 行, 则过这条直线的任一 平面与此平面的交线与 该直线平行(简记为“线 面平行⇒线线平行”)
0

B 45Leabharlann 0C 600
D 90
0
15.已知一个半球的俯视图是一个半径为 4 的圆,则它的主(正)视图的面积是 A. 2 B. 4 C. 8 D. 16
16.一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是( ) A.球 B.三棱锥 C.正方体 D.圆柱 17.将边长为 1 的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为( ) A. 4 B. 3 C. 2 D. 18.[2013·宁波质检]如图,水平放置的三棱柱的侧棱长和底边长均为 2,且侧棱 AA1⊥平面 A1B1C1,正视图是正方形, 俯视图是正三角形,该三棱柱的侧视图面积为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 函数的应用
本章主干知识是:零点与方程根,用二分法求方程的近似解,函数的模型及其应用 1.函数与方程
(1)方程的根与函数的零点:如果函数)(x f y =在区间 [a , b ] 上的图象是连续不断的一条曲线,并且有 ,那么,函数)(x f y =在区间 (a , b ) 内有零点,即存在),(b a c ∈,使得 ,这个c 也就是方程0)(=x f 的根。

(2)二分法:二分法主要应用在求函数的 零点当中,牢记二分法的基本计算步骤,即基本思路为
2.函数的模型及其应用
(1)几类不同增长的函数模型
利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

(2) 函数模型及其应用
建立函数模型解决实际问题的一般步骤: .
解函数实际应用问题的关键:耐心读题,理解题意,分析题中所包含的数量关系(包括等量关系和不等关系).
★学法指导
1.函数零点的求法
【方法点拨】对于一些比较简单的方程,我们可以通过因式分解、公式等方法求函数的零点,对于不能
用公式解决的方程,我们可以把这些方程()0=x f 与函数()x f y =联系起来,并利用函数的图象和性质找出零点,从而求出方程的根。

【案例剖析】求函数y =x 3
-2x 2
-x +2的零点.
2.二分法求方程近似解
【方法点拨】对于在区间a [,]b 上连续不断,且满足)(a f ·)(b f 0<的函数)(x f y =,通过不断地
把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值.
【案例剖析】借助计算器或计算机,用二分法求方程()x x 3262ln =++在区间(1,2)内的近似解(精
确到0.1)。

3.利用给定函数模型解决实际问题
【方法点拨】这类问题是指在问题中明确了函数关系式,我们需要根据函数关系式来处理实际问题,有
时关系式中带有需确定的参数,这些参数需要根据问题的内容或性质来确定之后,才能使问题本身获解.
【案例剖析】有甲乙两种产品,生产这两种产品所能获得的利润依次是P 和Q 万元,它们与投入资金x
(万元)的关系为:4
32
x P -=,)3(43+-=x Q ,今投入3万元资金生产甲、乙两种产品,为获得最大
利润,对甲、乙两种产品的资金投入分别应为多少?最大利润是多少?
4.建立确定的函数模型解决实际问题
【方法点拨】通过观察图表,判断问题适用的函数模型,借助计算器或计算机对数据进行处理,利用待
定系数法得出具体的函数解析式,再利用得到的函数模型解决相应的问题。

【案例剖析】2008年5月12日,四川汶川地区发生里氏8.0级特大地震.在随后的几天中,地震专家
对汶川地区发生的余震进行了监测,记录的部分数据如下表:
注:地震强度是指地震时释放的能量
(1)画出震级(y )随地震强度(x )变化的散点图;
(2)根据散点图,从下列函数中选取选取一个函数描述震级(y )随地震强度(x )变化关系:
,b kx y +=b x a y +=lg ,b a y x +⋅=10
(3)四川汶川地区发生里氏8.0级特大地震时释放的能量是多少?(取lg 20.3=)
数学2:
第一章 空间几何体
本章主干知识 常见几何体及其简单组合体的结构特征;平行投影、中心投影和几何体的视图、直观图,斜二测法,柱、锥、台、球的表面积和体积公式。

1.棱柱、棱锥、棱(圆)台的本质特征
⑴棱柱:①有两个 的面(即底面 ),②其余各面(即侧面) (即侧棱都 )。

⑵棱锥:①有一个面(即底面)是 ,②其余各面(即侧面)是 的三角形。

⑶棱台:①每条侧棱延长后 ,②两底面是 的多边形。

⑷圆台:①平行于底面的截面都是 ,②过轴的截面都是 梯形,③母线长都 ,每条母线延长后都与 交于同一点。

2.中心投影、平行投影及空间几何体的三视图、直观图 ⑴一点发出的光照射下形成的投影叫 。

⑵平行光线照射下形成的投影叫 ,投影线正对着投影面时,叫 ,否则叫 。

⑶平行投影下的正投影包括斜 。

三视图的正视图、左视图、俯视图分别是从物体的 方、
方、 方看到的物体轮廓线即正投影(被遮挡的轮廓线要画 )。

直观图

平齐
俯视图
宽相等
侧视图
长对正
正视图
3.棱柱、棱锥、棱台的展开图与表面积
直棱柱、正棱锥、正棱台的侧面展开图分别是 若干个小矩形拼成的一个大矩形,
若干个全等的等腰三角形,若干个全等的等腰梯形
4.圆柱、圆锥、圆台的展开图、表面积和体积的计算公式
⑴ S
圆锥表
= → S 圆柱表=
⑵ V 圆锥 = ← V 圆台= → V 圆柱=
⑶ 球面无法展开铺平,用无限逼近法得: S

= , V 球 =
★学法指导
1、抓几何体的本质特征
【方法点拨】从掌握柱、锥、台、球的本质结构特征入手进行分析,才能作出正确判断。

【案例剖析】下列命题中正确命题的个数( )
⑴有两个面平行,其余各个面都是平面四边形的几何体叫棱柱 ⑵有两个面平行,其余各个面都是平行四边形的几何体叫棱柱 ⑶有两个面平行,其余各个面都是梯形的几何体叫棱台
⑷用一个平面去截棱锥,棱锥的底面和截面之间的部分叫棱台 A. 3 B. 2 C. 1 D. 0
2.正确认识三视图,寻找斜高和高是计算出单个几何体表面面积与体积的关键
【方法点拨】正确地转换三视图与直观图,找出棱长与斜高、高的位置及长度关系是关键。

【案例剖析】 一个几何体的三视图如图所示,尺寸单位:cm ,试画出该几何体的直观图,并求出其侧
面积和体积。

3. 组合体的表面积及体积
【方法点拨】计算组合体的表面积和体积时,⑴分析清楚由哪几个几何体构成,⑵是否空心:内外表面
积及体积的加减问题,⑶内外接与切的问题,⑷多个球的组合,先以各个球心连成多面体进行考察,再转化。

【案例剖析】如图1,直角梯形ABCD 中,∠A=∠B=90 AD ∥BC ,AD=2,AB=3,BC=6,把直角梯形ABCD 绕
底边AD 旋转一周得到一个旋转体,
求:⑴旋转体的表面积,⑵旋转体的体积。

相关文档
最新文档