必修二高中数学立体几何专题——空间几何角和距离计算
高三数学专题复习42立体几何中的向量方法(二)——空间角与距离求解强化练习试题

立体几何中的向量方法(二)——空间角与距离求解1.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150°2.若平面α,β的法向量分别为a =(-1,2,4),b =(x ,-1,-2),并且α⊥β,则x 的值为( )A .10B .-10 C.12 D .-123.两平行平面α,β分别经过坐标原点O 和点A (2,1,1),且两平面的一个法向量n =(-1,0,1),则两平面间的距离是( )A.32B.22C. 3 D .3 2 4.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A .(1,-1,1) B.⎝ ⎛⎭⎪⎫1,3,32C.⎝ ⎛⎭⎪⎫1,-3,32D.⎝⎛⎭⎪⎫-1,3,325.如图K42-1,长方体ABCD -A 1B 1C 1D 1中,底面是边长为2的正方形,高为1,则异面直线AD 1和C 1D 所成角的余弦值是( )图K42-1 A.55 B .-55 C.15 D.256.在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,将它沿对角线AC 折起,使AB 和CD 成60°角(如图K43-2),则B 、D 间的距离为( )图K42-2A.1 B.2 C. 2 D.2或 27.三棱锥的三条侧棱两两互相垂直,长度分别为6,4,4,则其顶点到底面的距离为( )A.143B.217 C.62211D.21738.在棱长为1的正方体ABCD-A1B1C1D1中,E、F分别为棱AA1、BB1的中点,G为棱A1B1上的一点,且A1G=λ(0≤λ≤1),则点G到平面D1EF的距离为( )A. 3B.22C.2λ3D.55图K42-39.如图K42-3,四棱锥P-ABCD中,底面ABCD是矩形,PD⊥平面ABCD,且PD=AD=1,AB=2,点E是AB上一点,当二面角P-EC-D的平面角为π4时,AE=( )A.1 B.12C.2- 2 D.2- 310.已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,E为OC的中点,且OA=1,OB=OC=2,则平面EAB与平面ABC夹角的余弦值是________.11.如图K42-4,已知四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为a的正方形,侧棱AA1长为b,且AA1与A1B1,A1D1的夹角都是60°,则AC1的长等于________.K42-4图K42-512.如图K42-5,AO⊥平面α,BC⊥OB,BC与平面α的夹角为30°,AO=BO=BC=a,则AC=________.13.如图K42-6,正方体ABCD-A1B1C1D1的棱长为2,M,N分别是C1D1,CC1的中点,则直线B1N与平面BDM所成角的正弦值为________.图K42-614.(10分)如图K42-7,放置在水平面上的组合体由直三棱柱ABC-A1B1C1与正三棱锥B-ACD组成,其中,AB⊥BC.它的正视图、俯视图、侧视图的面积分别为22+1,22+1,1.(1)求直线CA1与平面ACD所成角的正弦值;(2)在线段AC1上是否存在点P,使B1P⊥平面ACD?若存在,确定点P的位置;若不存在,说明理由.图K42-715.(13分) 如图K42-8,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.(1)求证:AF∥平面BCE;(2)求证:平面BCE⊥平面CDE;(3)求直线BF和平面BCE所成角的正弦值.图K42-816.(12分如图K42-9,已知正三棱柱ABC-A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC上,且不与点C重合.1(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tanθ的最小值.图K42-9。
专题8.8 立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)

专题8.7 立体几何中的向量方法(二)求空间角与距离一、考纲要求1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.二、考点梳理考点一 异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角β l 1与l 2所成的角θ范围 (0,π) ⎝⎛⎦⎤0,π2 求法cos β=a ·b|a ||b |cos θ=|cos β|=|a ·b ||a ||b |考点二 求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.考点三 求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【特别提醒】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.三、题型分析例1. (黑龙江鹤岗一中2019届期末)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( )A.3-225B.2-26C.12D.32【答案】A【解析】因为BC →=AC →-AB →,所以OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=-162+24. 所以cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.【变式训练1-1】、(天津新华中学2019届高三质检)如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.【解析】(1) 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC →1|=6,即AC 1的长为 6. (2)证明 ∵AC 1→=a +b +c ,BD →=b -a ,∴AC 1→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c =|b ||c |cos 60°-|a ||c |cos 60°=0.∴AC 1→⊥BD →,∴AC 1⊥BD .(3)解 BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.例2、(2018年天津卷)如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.【变式训练2-1】、(吉林长春市实验中学2019届高三模拟)如图所示,在四棱锥P-ABCD中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过点E作EF⊥PB于点F.求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .【证明】以D 为坐标原点,射线DA ,DC ,DP 分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系D -xyz .设DC =a .(1)连接AC 交BD 于点G ,连接EG .依题意得A (a,0,0),P (0,0,a ),C (0,a,0),E ⎝⎛⎭⎫0,a 2,a 2. 因为底面ABCD 是正方形,所以G 为AC 的中点故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,所以PA ―→=(a,0,-a ),EG ―→=⎝⎛⎭⎫a2,0,-a 2, 则PA ―→=2EG ―→,故PA ∥EG .而EG ⊂平面EDB ,PA ⊄平面EDB ,所以PA ∥平面EDB . (2)依题意得B (a ,a,0),所以PB ―→=(a ,a ,-a ).又DE ―→=⎝⎛⎭⎫0,a 2,a 2, 故PB ―→·DE ―→=0+a 22-a 22=0,所以PB ⊥DE ,所以PB ⊥DE .由题可知EF ⊥PB ,且EF ∩DE =E ,所以PB ⊥平面EFD .例3、如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2,求异面直线BC 与AE 所成的角的大小.【解析】 建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,22,0),E(1,2,1),AE →=(1,2,1),BC →=(0,22,0).设AE →与BC →的夹角为θ,则cosθ=AE →·BC →|AE →|·|BC →|=42×22=22,所以θ=π4,所以异面直线BC 与AE 所成的角的大小是π4.【变式训练3-1】、 如图所示,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.【答案】55【解析】 不妨令CB =1,则CA =CC 1=2,可得C(0,0,0),B(0,0,1),C 1(0,2,0),A(2,0,0),B 1(0,2,1),所以BC 1→=(0,2,-1),AB 1→=(-2,2,1),所以cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→|·|AB 1→|=4-15×9=15=55>0,所以BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,所以直线BC 1与直线AB 1夹角的余弦值为55.【变式训练3-2】、如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点. (1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】 (1)证明:连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz . 不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎫32,32,23,C (0,2,0). 因此,EF ―→=⎝⎛⎭⎫32,32,23,BC ―→=(-3,1,0).由EF ―→·BC ―→=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ―→=(-3,1,0),A 1C ―→=(0,2,-23).设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC ―→·n =0,A 1C ―→·n =0,得⎩⎨⎧-3x +y =0,y -3z =0.取n =(1, 3,1),故sin θ=|cos 〈EF ―→,n 〉|=|EF ―→·n ||EF ―→|·|n |=45,∴cos θ=35.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.。
高中数学必修二立体几何角的问题-教师版(含几何法和向量法)

立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。
过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。
平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。
一条直线垂直于平面,我们就说它们所成的角是直角。
一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。
二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。
常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010 解析:建立空间直角坐标系如图.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010.答案:B例 2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥ ∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥又PA AE A ⋂=,∴DE ⊥平面PAE (2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,PD =Rt DCE ∆中,DE =在Rt DEP ∆中,2PD DE =,∴030DPE ∠=例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥ 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥ 且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥ 又BG AD ⊥,AD ∥BC ,∴BG BC ⊥∴PBG ∠为二面角A BC P --的平面角在Rt PBG ∆中,PG BG =,∴045PBG ∠=例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( D ) A.3 B.22C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。
高三数学总复习课件- 立体几何中的向量方法(二)——求空间角和距离

又PD∩CD=D,
所以AE⊥平面CDP.
所以 AD
=(0,1,0), AE =
(0,1,1) 分别是平面ABP,平面CDP的法向量,
22
且< AD,AE >=45°,
所以平面ABP与平面CDP所成的二面角为45°.
考点1 向量法求异面直线所成的角
【典例1】(1)(2015·上饶模拟)如图所示,已知三棱
|n| | 2 6 2 | 2. 22 (2)2 1
(4)(2015·济南模拟)过正方形ABCD的顶点A作线段PA⊥平面ABCD,
若AB=PA,则平面ABP与平面CDP所成的二面角为( )
A.30°
B.45°
C.60°
D.90°
【解析】选B.建立如图所示空间直角坐标系, 设AB=PA=1,知A(0,0,0), B(1,0,0),D(0,1,0),C(1,1,0),P(0,0,1), 由题意,AD⊥平面ABP,设E为PD的中点, 连接AE,则AE⊥PD, 又因为CD⊥平面PAD, 所以AE⊥CD,
柱ABC-A1B1C1的所有棱长都相等,且AA1⊥面ABC,M是
侧棱CC1的中点,则异面直线AB1和BM所成的角的大小
是
.
(2)(2015·岳阳模拟)如图,已知两个正四棱锥 P-ABCD与Q-ABCD的高分别为1,2,AB=4. ①证明:PQ⊥平面ABCD. ②求异面直线AQ与PB所成角的余弦值.
直角坐标系Oxyz,由条件得P(0,0,1),A(2 2 ,0,0),Q(0,0,-2),
B(0,2 2 ,0),
所以 AQ (2 2,0, 2),PB 0,2 2, 1 .
于是 | cos〈AQ, PB〉| | AQ PB | 3 .
课时作业5:§8.8 立体几何中的向量方法(二)——求空间角和距离

§8.8 立体几何中的向量方法(二)——求空间角和距离1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( )A .120°B .60°C .30°D .60°或30°2.(2016·广州模拟)二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.224.(2016·长春模拟)在三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,P A =2,则直线P A 与平面DEF 所成角的正弦值为( ) A.15 B.255 C.55 D.255.如图,△ABC 是等腰直角三角形,其中∠A =90°,且DB ⊥BC ,∠BCD =30°,现将△ABC 折起,使得二面角A -BC -D 为直角,则下列叙述正确的是( )①BD →·AC →=0;②平面BCD 的法向量与平面ACD 的法向量垂直;③异面直线BC 与AD 所成的角为60°;④直线DC 与平面ABC 所成的角为30°.A .①③B .①④C .①③④D .①②③④6.如图所示,三棱柱ABC -A 1B 1C 1的侧棱长为3,底面边长A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°,D 点在棱AA 1上且AD =2DA 1,P 点在棱C 1C 上,则PD →·PB 1→的最小值为( )A.52 B .-14 C.14 D .-527.(2016·合肥模拟)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则直线D 1C 1与平面A 1BC 1所成角的正弦值为________.8.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则直线CD 与平面BDC 1所成角的正弦值等于________.9.(2017·石家庄月考)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________.10.(2016·南昌模拟)如图(1),在边长为4的菱形ABCD 中,∠DAB =60°,点E ,F 分别是边CD ,CB 的中点,AC ∩EF =O ,沿EF 将△CEF 翻折到△PEF ,连接P A ,PB ,PD ,得到如图(2)的五棱锥P -ABFED ,且PB =10.(1)求证:BD ⊥平面POA ;(2)求二面角B -AP -O 的正切值.11.(2016·四川)如图,在四棱锥P ABCD 中,AD ∥BC ,∠ADC =∠P AB=90°,BC =CD =12AD .E 为棱AD 的中点,异面直线P A 与CD 所成的角为90°.(1)在平面P AB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由;(2)若二面角PCDA 的大小为45°,求直线P A 与平面PCE 所成角的正弦值.12.(2016·潍坊模拟)如图,边长为2的正方形ADEF 与梯形ABCD 所在的平面互相垂直.已知AB ∥CD ,AB ⊥BC ,DC =BC =12AB =1,点M 在线段EC 上.(1)证明:平面BDM ⊥平面ADEF ;π(2)判断点M的位置,使得平面BDM与平面ABF所成的锐二面角为3.答案精析1.C 2.C 3.B 4.C 5.B 6.B 7.13 8.23 9.2310.(1)证明 ∵点E ,F 分别是边CD ,CB 的中点,∴BD ∥EF .∵菱形ABCD 的对角线互相垂直,∴BD ⊥AC ,∴EF ⊥AC ,∴EF ⊥AO ,EF ⊥PO .∵AO ⊂平面POA ,PO ⊂平面POA ,AO ∩PO =O ,∴EF ⊥平面POA ,∴BD ⊥平面POA .(2)解 设AO ∩BD =H ,连接BO .∵∠DAB =60°,∴△ABD 为等边三角形,∴BD =4,BH =2,HA =23,HO =PO =3,在Rt △BHO 中,BO =HB 2+HO 2=7.在△PBO 中,BO 2+PO 2=10=PB 2,∴PO ⊥BO .∵PO ⊥EF ,EF ∩BO =O ,EF ⊂平面BFED ,BO ⊂平面BFED ,∴PO ⊥平面BFED .以O 为原点,OF 所在直线为x 轴,AO 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系Oxyz ,如图所示,则A (0,-33,0),B (2,-3,0),P (0,0,3),H (0,-3,0),∴AP →=(0,33,3),AB →=(2,23,0).设平面P AB 的法向量为n =(x ,y ,z ),由n ⊥AP →,n ⊥AB →,得⎩⎨⎧ 33y +3z =0,2x +23y =0.令y =1,得z =-3,x =- 3.∴平面P AB 的一个法向量为n =(-3,1,-3).由(1)知平面P AO 的一个法向量为BH →=(-2,0,0),设二面角B -AP -O 的平面角为θ,则cos θ=|cos 〈n ,BH →〉|=n ·BH →|n ||BH →|=2313×2=3913, ∴sin θ=1-cos 2θ=13013, tan θ=sin θcos θ=303, ∴二面角B -AP -O 的正切值为303. 11.解 (1)在梯形ABCD 中,AB 与CD 不平行.延长AB ,DC ,相交于点M (M ∈平面P AB ),点M 即为所求的一个点.理由如下:由已知,BC ∥ED 且BC =ED .所以四边形BCDE 是平行四边形,从而CM ∥EB .又EB ⊂平面PBE ,CM ⊄平面PBE ,所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点)(2)方法一 由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A ,所以CD ⊥平面P AD ,从而CD ⊥PD .所以∠PDA 是二面角PCDA 的平面角,所以∠PDA =45°,设BC =1,则在Rt △P AD 中,P A =AD =2.过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH ,易知P A ⊥平面ABCD ,从而P A ⊥CE ,且P A ∩AH =A ,于是CE ⊥平面P AH .又CE ⊂平面PCE ,所以平面PCE ⊥平面P AH .过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE ,所以∠APH 是P A 与平面PCE 所成的角.在Rt △AEH 中,∠AEH =45°,AE =1,所以AH =22. 在Rt △P AH 中,PH =P A 2+AH 2=322. 所以sin ∠APH =AH PH =13.方法二 由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A ,所以CD ⊥平面P AD .于是CD ⊥PD .从而∠PDA 是二面角PCDA 的平面角.所以∠PDA =45°.由∠P AB =90°,且P A 与CD 所成的角为90°,可得P A ⊥平面ABCD .设BC =1,则在Rt △P AD 中,P A =AD =2.作Ay ⊥AD ,以A 为原点,以AD →,AP →的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0).所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2).设平面PCE 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧ n ·PE →=0,n ·EC →=0,得⎩⎪⎨⎪⎧x -2z =0,x +y =0.设x =2, 解得n =(2,-2,1).设直线P A 与平面PCE 所成角为α,则sin α=|cos 〈n ,AP →〉|=|n ·AP →||n ||AP →|=22×22+(-2)2+12=13. 所以直线P A 与平面PCE 所成角的正弦值为13. 12.(1)证明 ∵DC =BC =1,DC ⊥BC ,∴BD =2,又AD =2,AB =2,∴AD 2+BD 2=AB 2,∴∠ADB =90°,∴AD ⊥BD .又平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,∴BD ⊥平面ADEF ,又BD ⊂平面BDM ,∴平面BDM ⊥平面ADEF .(2)解 在平面DAB 内过点D 作DN ⊥AB ,垂足为N ,∵AB ∥CD ,∴DN ⊥CD ,又平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,DE ⊥AD ,∴ED ⊥平面ABCD ,∴DN ⊥ED ,以D 为坐标原点,DN 所在的直线为x 轴,DC 所在的直线为y 轴,DE 所在的直线为z 轴,建立空间直角坐标系如图所示.∴B (1,1,0),C (0,1,0),E (0,0,2),N (1,0,0),设M (x 0,y 0,z 0),EM →=λEC →(0≤λ<1),∴(x 0,y 0,z 0-2)=λ(0,1,-2), ∴x 0=0,y 0=λ,z 0=2(1-λ),∴M (0,λ,2(1-λ)).设平面BDM 的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·DM →=0,n 1·DB →=0, 又DM →=(0,λ,2(1-λ)),DB →=(1,1,0), ∴⎩⎨⎧ λy +2(1-λ)z =0,x +y =0, 令x =1,得y =-1,z =λ2(1-λ), 故n 1=(1,-1,λ2(1-λ))是平面BDM 的一个法向量. ∵平面ABF 的一个法向量为DN →=(1,0,0),∴|cos 〈n 1,DN →〉|= 11+1+λ22(1-λ)2=12,得λ=23, ∴M (0,23,23), ∴点M 在线段CE 的三等分点且靠近点C 处.。
立体几何空间距离与角高一

立体几何空间距离与角高一立体几何是研究空间中点、线、面、体之间的位置关系与数量关系的一门数学学科。
在立体几何中,距离是一个重要的概念,它是指两个点之间的长度,可以用于测量空间中的物体之间的远近关系。
而角高是指一个立体体的顶点到它所在的底面的垂直距离。
本文将介绍立体几何空间中的距离与角高的计算方法和应用。
空间距离在立体几何中,空间距离是指两点之间的直线距离。
对于平面上的点,我们可以直接计算其距离,而在空间中,我们需要考虑三维坐标系中的点之间的距离计算。
常用的空间距离计算方法有以下几种:欧氏距离欧氏距离是最常见的空间距离计算方法,它是指两点之间的直线距离。
在三维坐标系中,欧氏距离的计算公式如下:d = sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)其中,(x1, y1, z1)和(x2, y2, z2)分别是两点的坐标。
曼哈顿距离曼哈顿距离是指两点之间的垂直距离加水平距离。
在三维坐标系中,曼哈顿距离的计算公式如下:d = |x2 - x1| + |y2 - y1| + |z2 - z1|切比雪夫距离切比雪夫距离是指两点之间的最大距离。
在三维坐标系中,切比雪夫距离的计算公式如下:d = max(|x2 - x1|, |y2 - y1|, |z2 - z1|)根据不同的应用需求,选择合适的距离计算方法可以提高计算的准确性和效率。
角高角高是指一个立体体的顶点到它所在的底面的垂直距离。
在立体几何中,角高通常用于计算体积和表面积等问题。
角高的计算方法取决于不同的几何体类型,下面将介绍几种常见几何体的角高计算方法。
圆柱的角高圆柱是一种常见的几何体,它由一个圆面和一个平行于圆面的矩形面组成。
圆柱的角高等于它的顶点到底面的垂直距离,即圆柱的高度。
圆柱的角高计算方法非常简单,只需直接测量圆柱的高度即可。
锥体的角高锥体是一种类似于圆柱的几何体,它由一个圆锥面和一个平行于圆锥面的底面组成。
高中数学优质课件【立体几何中的向量方法——求空间角与距离】

面直线 AB 和 CD 所成角的余弦值为________.
1 4
解析:设等边三角形的边长为 2.取 BC 的
中点 O,连接 OA,OD.因为等边三角形 ABC 和
BCD 所在平面互相垂直,所以 OA,OC,OD 两
两垂直,以 O 为坐标原点,OD,OC,OA 所在
直线分别为 x 轴、y 轴、z 轴建立如图所示的空间
直角坐标系.
则 A(0,0, 3),B(0,-1,0),C(0,1,0),D( 3,0,0), 所以A→B=(0,-1,- 3),C→D=( 3,-1,0), 所以 cos〈A→B,C→D〉=|AA→→BB|·|CC→→DD|=2×1 2=14, 所以异面直线 AB 和 CD 所成角的余弦值为14.
1 2 3 45
4.在空间直角坐标系 Oxyz 中,平面 OAB 的一个法向量为 n=(2,
-2,1),已知点 P(-1,3,2),则点 P 到平面 OAB 的距离 d 等于( )
A.4
B.2
C.3
D.1
B 解析:P 点到平面 OAB 的距离为 d=|O→|Pn·|n|=|-2-96+2|=2.
12345
B1(1,1, 3),所以A→D1=(-1,0, 3),D→B1=(1,1, 3).设异面直线
AD1 与 DB1 所成的角为 θ,
所以 cos θ=|AA→→DD11|·|DD→→BB11|=2×2
5=5 5.Fra bibliotek所以异面直线
AD1
与
DB1
所成角的余弦值为
5 5.
2.有公共边的等边三角形 ABC 和 BCD 所在平面互相垂直,则异
l1与l2所成的角θ
a与b的夹角β
范围
高中数学必修二立体几何角的问题-学生版(含几何法和向量法)

立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。
过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。
平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。
一条直线垂直于平面,我们就说它们所成的角是直角。
一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。
二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。
常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010例2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角.例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( ) A.3 B.22 C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何专题:空间角和距离的计算一 线线角 1。
直三棱柱A1B 1C1-A BC,∠BCA =900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值。
B 12.在四棱锥P —AB CD 中,底面AB CD是直角梯形,∠B AD=900,AD ∥BC ,A B=BC=a,AD=2a ,且PA ⊥面ABC D,P D与底面成300角,(1)若A E⊥P D,E为垂足,求证:BE ⊥PD ;(2)若AE ⊥PD ,求异面直线AE 与C D所成角的大小;D二.线面角1.正方体ABCD -A 1B 1C1D1中,E,F 分别为BB 1、CD 的中点,且正方体的棱长为2,(1)求直线D 1F 和AB 和所成的角;(2)求D1F 与平面AED 所成的角。
12.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,A B=4,C 1B 1=3,∠ABB 1=600,求A C1与平面BCC 1B 1所成角的大小。
B 1三。
二面角1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点,(1)证明AB 1∥平面DBC 1;(2)设AB 1⊥BC 1,求以B C1为棱,DB C1与CBC 1为面的二面角的大小。
B 12.A BCD 是直角梯形,∠A BC=900,SA ⊥面ABC D,SA=AB=BC=1,AD =0.5,(1)求面SC D与面SB A所成的二面角的大小;(2)求SC 与面ABCD 所成的角.BC3.已知A 1B1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B—AA 1—C的大小。
1四 空间距离计算(点到点、异面直线间距离)1.在棱长为a的正方体AB CD -A 1B 1C 1D1中,P 是BC 的中点,DP 交AC 于M,B1P 交B C1于N ,(1)求证:MN 上异面直线A C和B C1的公垂线;(2)求异面直线AC 和BC 1间的距离;C1A(点到线,点到面的距离)2.点P 为矩形 ABCD所在平面外一点,PA ⊥面A BCD ,Q 为线段AP 的中点,A B=3,CB=4,PA=2,求(1)点Q 到直线BD 的距离;(2)点P到平面BDQ 的距离;3.边长为a的菱形AB CD中,∠ABC=600,PC ⊥平面AB CD,E 是PA 的中点,求E 到平面PB C的距离.(线到面、面到面的距离)4。
已知斜三棱柱A 1B1C1-A BC 的侧面A 1ACC 1与底面ABC 垂直,∠ABC=900,BC =2,AC=23,且A A1⊥A 1C ,AA 1=A 1C,(1)求侧棱AA 1与底面ABC 所成角的大小;(2)求侧面A 1AB B1与底面A BC 所成二面角的大小;(3)求侧棱B 1B 和侧面A1ACC 1距离;B 1C 1BACA 15。
正方形AB CD 和正方形ABEF 的边长都是1,且平面ABCD 、ABF E互相垂直,点M 在AC 上移动,点N 在BF上移动,若CM=NB=a(20<<a ),(1)求MN 的长;(2)当a 为何值时,MN 的长最小;立体几何中的向量问题空间角与距离基础自测1.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为。
答案45°或135°2.二面角的棱上有A、B 两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB。
已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为.答案60°3。
如图所示,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点,那么异面直线OE和FD1所成角的余弦值等于。
15答案54。
如图所示,在空间直角坐标系中,有一棱长为a的正方体ABCO-A′B′C′D′,A′C的中点E与AB的中点F的距离为。
2答案a25.(2008·福建理,6)如图所示,在长方体ABCD—A1B1C1D1中,AB=BC=1,则BC1与平面BB1D1D所成角的正弦值为 .=2,AA110答案5例1(2008·海南理,18)如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线BD′上,∠PDA=60°.(1)求DP与CC′所成角的大小;(2)求DP与平面AA′D′D所成角的大小.解如图所示,以D为原点,DA为单位长度建立空间直角坐标系D—xyz。
则DA=(1,0,0),CC =(0,0,1)。
连接BD,B′D′.在平面BB′D′D中,延长DP交B′D′于H。
设DH=(m,m,1) (m>0),由已知<DH,DA〉=60°,由DA·DH=|DA||DH|cos〈DH, DA〉,可得2m=122+m .解得m=22,所以DH =(22,22,1)。
(1)因为cos 〈DH ,C C '〉=2111022022⨯⨯+⨯+⨯=22, 所以〈DH ,C C '〉=45°,即DP与CC ′所成的角为45°。
(2)平面A A′D ′D的一个法向量是DC =(0,1,0)。
因为co s<DH ,DC >=2101122022⨯⨯+⨯+⨯=21,所以<DH ,DC >=60°,可得D P与平面AA ′D′D 所成的角为30°。
例2 在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,S A=S C=23,M 、N分别为AB 、SB 的中点,如图所示。
求点B 到平面CM N的距离。
解 取A C的中点O,连接OS 、OB. ∵SA=SC,AB=BC ,∴A C⊥SO ,AC ⊥BO 。
∵平面SA C⊥平面AB C, 平面S AC∩平面ABC=AC ,∴SO ⊥平面ABC ,∴SO ⊥BO。
如图所示,建立空间直角坐标系O-xy z, 则B(0,23,0),C(—2,0,0),S (0,0,22),M(1,3,0),N(0,3,2)。
∴CM =(3,3,0),MN =(—1,0,2),MB =(-1,3,0).设n=(x ,y,z )为平面CMN 的一个法向量,则⎪⎩⎪⎨⎧=+=⋅=+=⋅020z -x 33x n n MN y CM ,取z=1,则x=2,y=-6,∴n =(2,—6,1).∴点B到平面CMN 的距离d =324=⋅nn MB . 例3 (16分)如图所示,四棱锥P —ABCD 中,底面ABCD 是矩形,PA⊥底面ABC D,P A=AB=1,A D=3,点F是PB的中点,点E 在边BC上移动。
(1)点E 为BC 的中点时,试判断EF 与平面PAC 的位置关系,并说明理由; (2)求证:无论点E 在BC 边的何处,都有PE ⊥AF ;(3)当BE 为何值时,PA 与平面PDE 所成角的大小为45°. (1)解 当点E 为BC 的中点时,EF 与平面PAC 平行.∵在△P BC中,E 、F 分别为BC 、P B的中点,∴E F∥PC. 又EF ⊄平面P AC,而PC ⊂平面P AC , ∴EF ∥平面P AC 。
ﻩﻩﻩ ﻩ ﻩ ﻩﻩﻩ 4分 (2)证明 以A 为坐标原点建立如图所示的空间直角坐标系则P (0,0,1),B (0,1,0), F (0,21,21),D(3,0,0)。
设BE=x ,则E(x ,1,0),PE·AF =(x,1,—1)·(0,21,21)=0,∴PE ⊥AF 。
ﻩﻩ ﻩ ﻩ ﻩﻩ ﻩ ﻩ10分 (3)解 设平面PDE 的法向量为m =(p ,q ,1), 由(2)知PD =(3,0,—1),PE =(x,1,-1)由⎪⎩⎪⎨⎧=⋅=⋅00PE PD m m ,得m =⎪⎪⎭⎫⎝⎛-1,31,31x 。
ﻩ ﻩ ﻩ ﻩ12分而AP =(0,0,1),依题意P A与平面PDE 所成角为45°, ∴sin 45°=22=APAP m m ⋅,∴1313112+⎪⎪⎭⎫ ⎝⎛-+x =21, ﻩ ﻩﻩ ﻩﻩ 14分得BE=x=3-2或BE=x=3+2>3(舍去).故BE=3-2时,PA 与平面PDE 所成角为45°。
ﻩﻩﻩﻩﻩ16分1。
如图所示,AF 、DE 分别是⊙O、⊙O 1的直径,AD 与两圆所在的平面均垂直,AD=8。
BC 是⊙O 的直径,AB=AC =6, OE ∥AD 。
(1)求二面角B —AD-F 的大小;(2)求直线BD 与EF 所成的角的余弦值。
解 (1)∵A D与两圆所在的平面均垂直, ∴AD ⊥AB ,AD ⊥AF,故∠BAF 是二面角B—AD-F 的平面角. 依题意可知,ABF C是正方形, ∴∠BA F=45°.即二面角B —AD-F的大小为45°;(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示), 则O (0,0,0), A(0,—32,0),B (32,0,0),D(0,-32,8), E (0,0,8),F(0,32,0), ∴BD =(—32,—32,8),EF =(0,32,-8). co s〈BD ,EF 〉=EFBD EF BD ⋅ =8210064180⨯--=-1082. 设异面直线BD 与EF 所成角为α,则 cos α=|c os<BD ,EF 〉|=1082. 即直线BD 与EF所成的角的余弦值为1082。
2.已知:正四棱柱AB CD —A 1B 1C 1D1中,底面边长为22,侧棱长为4,E、F 分别为棱A B、BC 的中点。
(1)求证:平面B 1EF⊥平面BD D1B 1; (2)求点D 1到平面B 1EF 的距离。
(1)证明 建立如图所示的空间直角坐标系,则D(0,0,0), B(22,22,0),E(22,2,0), F(2,22,0),D1(0,0,4), B1(22,22,4).EF=(—2,2,0),DB =(22,22,0),1DD =(0,0,4),∴EF ·BD =0,EF ·1DD =0.∴EF⊥DB ,EF ⊥DD 1,DD 1∩BD=D , ∴EF ⊥平面B DD 1B1.又EF ⊂平面B1EF,∴平面B 1EF ⊥平面BD D1B 1. (2)解 由(1)知11B D =(22,22,0),EF=(-2,2,0),E B 1=(0,—2,-4).设平面B1EF 的法向量为n ,且n =(x,y ,z ) 则n ⊥EF ,n ⊥E B 1即n·EF =(x,y ,z )·(—2,2,0)=-2x+2y=0,n ·E B 1=(x,y,z)·(0,-2,—4)=—2y-4z =0,令x=1,则y=1,z=—42,∴n=(1,1,— 42)∴D 1到平面B 1EF 的距离 d=nn ⋅11B D =22242112222⎪⎪⎭⎫ ⎝⎛-+++=171716。