分式培优训练题

合集下载

初中数学分式方程的应用培优训练(精选40道习题 附答案详解)

初中数学分式方程的应用培优训练(精选40道习题  附答案详解)
(1)求第一批采购的书包的单价是多少元?
(2)若商店按售价为每个书包 元,销售完这两批书包,总共获利多少元?
15.某服装加工厂计划加工4000套运动服,在加工完1600套后,采用了新技术,工作效率比原计划提高 ,结果共用了18天完成全部任务.求原计划每天加工多少套运动服.
16.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的 倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
13.科幻小说《流浪地球》的销量急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次购进该小说,第二次的数量比第一次多500套,且两次进价相同.
(1)该科幻小说第一次购进多少套?每套进价多少元?
(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.
11.小明家用 元网购的 型口罩与小磊家用 元在药店购买的 型口罩的数量相同, 型与 型口罩的单价之和为 元,求 两种口罩的单价各是多少元?
12.某市为治理污水,需要铺设一段全长为 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加 ,结果提前 天完成这一任务,实际每天铺设多长管道?
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
6.甲、乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做80个所用的时间与乙做60个所用的时间相等,问甲、乙两人每小时各做多少个零件?(用列方程的方法解答)
7.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价多少元?

八年级分式培优习题

八年级分式培优习题

八年级分式培优习题一、填空题1、下列分式中,有意义的分式是()A、 B、 C、 D、2、下列各分式中,最简分式是()A、 B、 C、 D、3、下列各分式中,当x取何值时,分式有意义?()A、 B、 C、 D、4、下列各分式中,分式的值等于零的是()A、 B、 C、 D、5、下列各分式中,分式的值不存在的是()A、 B、 C、 D、二、解答题6、请解以下分式方程:(1)(2)61、请解以下分式方程:(1)(2)611、请解以下分式方程:(1)(2)6111、请解以下分式方程:(1)(2)请解以下分式方程:(1)(2)八年级培优计划一、目标:通过培优,使优生更上一层楼,提高优生的学习能力和思维能力,提高他们的竞争意识和一定的应试技巧,但也帮助他们发现不足,进一步提高他们学习的自觉性,以真正取得理想的成绩。

二、具体措施:1、思想方面培优辅差。

做好学生的思想工作,经常和学生谈心,关心他们,关爱他们,让学生觉得老师是重视他们的,激发他们学习的积极性。

了解学生们的学习态度、学习习惯、学习方法等。

从而根据学生的思想心态进行相应的辅导。

定期与学生家长、班主任沟通了解学生的家庭、生活、思想等各方面的情况,以利于教师做好学生的思想引导工作。

2、培优辅差内容:数学方面:在讲完新课后,编拟一些较高思维层次的专题知识渗透到教学中,培养优生的发散思维能力、探究能力和创新思维能力。

3、辅差内容:对差生主要从以下几个方面进行:1)认真备课,设计好每一节课的层次教学,利用多种多样的教学手段吸引差生的注意力,让差生有机会表现自己,多设计一些对应差生的问题,提高差生的学习信心。

2)经常与家长,了解差生各方面的情况,对症下药,讲究方法。

3)采用“一帮一”的方法,安排学习优秀的学生对后进生进行辅导训练。

并开展“手拉手”活动,让优生和差生结成对子。

4)注意保持和蔼可亲的态度去面对学生,不能对他们采用强硬的态度和手段。

这样会使他们对老师既亲近又尊重,更愿意接近老师并乐于接受教育。

分式培优练习题(完整答案)

分式培优练习题(完整答案)

分式 (一)一 选择1 下列运算正确的是( )A -40=1B (-3)-1=31 C (-2m-n )2=4m-n D (a+b )-1=a -1+b -12 分式28,9,12zy x xy z x x z y -+-的最简公分母是( ) A 72xyz 2 B 108xyz C 72xyz D 96xyz 23 用科学计数法表示的树-3.6×10-4写成小数是( )A 0.00036B -0.0036C -0.00036D -360004 若分式6522+--x x x 的值为0,则x 的值为( )A 2B -2C 2或-2D 2或35计算⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1111112x x 的结果是( ) A 1 B x+1 C x x 1+ D 11-x 6 工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-xx 上述所列方程,正确的有( )个 A 1 B 2 C 3 D 47 在ma y x xy x x 1,3,3,21,21,12+++π中,分式的个数是( ) A 2 B 3 C 4 D 58 若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 29 若3,111--+=-ba ab b a b a 则的值是( ) A -2 B 2 C 3 D -3 10 已知k b a c c a b c b a =+=+=+,则直线y=kx+2k 一定经过( ) A 第1、2象限 B 第2、3象限 C 第3、4象限 D 第 1、4象限二 填空1 一组按规律排列的式子:()0,,,,41138252≠--ab a b a b a b a b ,其中第7个式子是 第n 个式子是2 7m =3,7n =5,则72m-n =3 ()2312008410-+⎪⎭⎫ ⎝⎛--+-=4 若2222,2b a b ab a b a ++-=则= 三 化简 1 ()d cd b a c ab 234322222-∙-÷ 2 111122----÷-a a a a a a 3 ⎪⎭⎫ ⎝⎛---÷--225262x x x x 四 解下列各题1 已知b ab a b ab a b a ---+=-2232,311求 的值2 若0<x<1,且xx x x 1,61-=+求 的值 五 (5)先化简代数式()()n m n m mn n m n m n m n m -+÷⎪⎪⎭⎫ ⎝⎛+---+222222,然后在取一组m,n 的值代入求值六 解方程 1 12332-=-x x 2 1412112-=-++x x x 七 2008年5月12日,四川省发生8.0级地震,我校师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?分式(二)一、选择题:1.已知230.5x y z ==,则32x y z x y z +--+的值是( ) A .17 B.7 C.1 D.132.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( ) A .12 B.35 C.24 D.473.已知226a b ab +=,且0a b >>,则a b a b +-的值为( ) A .2 B .2± C .2 D .2±二、填空题:4. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 5.若分式231-+x x 的值为负数,则x 的取值范围是__________. 6. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______. 三、解答题:7. 计算: ()3322232n m n m --⋅8. 计算(1)168422+--x x x x (2)m n n n m m m n n m -+-+--2 9. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==- 10. 解下列分式方程.11. 计算:(1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111x x x x ++++++- 12.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值. 13.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).14. A 、B 两地相距20 km ,甲骑车自A 地出发向B 地方向行进30分钟后,乙骑车自B 地出发,以每小时比甲快2倍的速度向A 地驶去,两车在距B 地12 km 的C 地相遇,求甲、乙两人的车速.分式(三)一、填空题1、在有理式22xy ,πx ,11+a ,y x +1,122-m 中属于分式的有 .2、分式33+-x x 的值为0,则x= .3、分式x x 2-和它的倒数都有意义,则x 的取值范围是 .4、当_____=x 时,x --11的值为负数;当x 、y 满足 时,)(3)(2y x y x ++的值为32; 5、若分式y x y -3的值为4,则x,y 都扩大两倍后,这个分式的值为6、当x= 时,分式11+x 与11-x 互为相反数.7、若分式方程=-1x m 1-x -11有增根,则m= .8、要使方程=-11x a x -2有正数解,则a 的取值范围是9、+++)2)(1(1 x x )3)(2(1++x x +)2007)(2006(1.....+++x x =_____________10、若=a 3b 4=c 5,则分式222c b a ac bc ab +++-=____________二、选择题11、已知m 、n 互为相反数,a 、b 互为倒数,|x|=2,则ab x x n m -++2的值为( )A 、2B 、3C 、4D 、512. 下列式子:(1)y x y x yx -=--122;(2)c a b a a c a b --=--;(3)1-=--b a a b ;(4)y x yx y x yx +-=--+-中正确的是 ( )A 、1个B 、2 个C 、3 个D 、4 个13. 下列分式方程有解的是( )A 、++12x 13-x =162-x B 、012=+x x C 、0122=-x D 、111=-x14. 若分式m x x ++212不论m 取何实数总有意义,则m 的取值范围是( )A 、m ≥1B 、m >1C 、m ≤1D 、m <115、晓晓根据下表,作了三个推测:①3-x-1x (x>0)的值随着x 的增大越来越小;②3-x-1x (x>0)的值有可能等于2;③3-x-1x (x>O)的值随着x 的增大越来越接近于2.则推测正确的有( ) A 、0个 B 、1个 C 、2个 D 、3个16. 已知分式xy yx -+1的值是a ,如果用x 、y 的相反数代入这个分式所得的值为b ,则a 、b 关系()A 、相等B 、互为相反数C 、互为倒数D 、乘积为-1三、解答题17、化简:[22222a b a ab b -+++2ab ÷(1a +1b )2]·2222a b ab -+.18、当21,23-==b a 时,求⎪⎭⎫⎝⎛-+⋅⎪⎭⎫ ⎝⎛-+-b a ab b a b a ab b a +44的值.19、A 玉米试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下部分,B 玉米试验田是边长为(a -1)米的正方形,两块试验田的玉米都收获了500千克.(1)那种玉米的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?四、探索题20、观察以下式子:1112122132+→=+>,5527544264+→=+<,3354355555+→=+>, 773722232+→=+<.请你猜想,将一个正分数的分子分母同时加上一个正数,这个分数的变化情况,并证明你的结论.21、甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.谁的购货方式更合算?22、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元,①这个八年级的学生总数在什么范围内?②若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?分式(一)参考答案一 CACBC CBBA B二 1 -()n n n ab a b 137201,--, 2 9/5, 3 2, 4 53 三 1 ac1 ,2 1-a a ,3 32+-x 四 1 提示:将所求式子的分子、分母同时除以ab 。

济南市八年级数学上册第十五章《分式》经典测试题(培优练)

济南市八年级数学上册第十五章《分式》经典测试题(培优练)

一、选择题1.关于分式2634m nm n--,下列说法正确的是( )A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变D 解析:D 【分析】根据分式的基本性质即可求出答案. 【详解】 解:A 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m nm n m n ⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意;C 、226212=32438m n m nm n m n -⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意;D 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意; 故选:D . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 2.关于x 的分式方程5222m x x +=--有增根,则m 的值为( ) A .2m = B .2m =- C .5m = D .5m =- D解析:D 【分析】先把分式方程化为整式方程,再把增根代入整式方程,即可求解. 【详解】5222mx x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5,故选D . 【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.3.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x -= B .6000600052x x-= C .6000600052x x -=+ D .6000600052x x-=+ A 解析:A 【分析】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天列分式方程. 【详解】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 根据题意得:6000600052x x-=, 故选:A . 【点睛】此题考查分式方程的实际应用,正确理解题意找到等量关系从而列出方程是解题的关键.4.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m = B解析:B 【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可. 【详解】 解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1. 故选B . 【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.5.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④B解析:B 【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择. 【详解】原式221(1)71211543(1)x x x x x x x-++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x -++=-++++ 1111x x x-=-++ 1x x =+ 又因为x 为正整数,所以1121x x ≤<+, 故选B . 【点睛】本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.6.小红用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小红和小丽买到相同数量的笔记本.设硬面笔记本每本售价为x 元,根据题意可列出的方程为( ) A .1524x x 3=+ B .1524x x 3=- C .1524x 3x=+ D .1524x 3x=- D 解析:D【分析】由设硬面笔记本每本售价为x 元,可得软面笔记本每本售价为()x 3-元,根据小红和小丽买到相同数量的笔记本列得方程. 【详解】解:设硬面笔记本每本售价为x 元,则软面笔记本每本售价为()x 3-元, 根据题意可列出的方程为:1524x 3x=-. 故选:D . 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程是解题的关键.7.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>- B .x 4<-C .x 2>D .x 2< C解析:C 【分析】根据题意列得2x 131x x 1+<---,求解即可得到答案.【详解】∵2x 131x x 1+<---, ∴2x 131x-<--, ∴()()x 1x 131x+-<--,即x 13--<-,∴x 2-<-, 解得x 2>. 又x 1≠, ∴x 2>符合题意. 故选:C. 【点睛】此题考查列式计算,掌握分式的加减法计算法则,整式的因式分解方法,解一元一次不等式是解题的关键.8.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每名同学比原来少分摊3元车费.设原来参加游览的学生共x 人.则所列方程是( )A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=- D .18018032x x -=+ D 解析:D 【分析】设原来参加游览的学生共x 人,增加2人后的人数为(x+2)人,用租价180元除以人数,根据后来每名同学比原来少分摊3元车费列方程. 【详解】设原来参加游览的学生共x 人,由题意得18018032x x -=+, 故选:D . 【点睛】此题考查分式的实际应用,正确理解题意是解题的关键. 9.计算221(1)(1)x x x +++的结果是( )A .1B .1+1x C .x +1 D .21(+1)x B 解析:B 【分析】根据同分母分式加法法则计算. 【详解】221(1)(1)x x x +++=211(1)1x x x +=++,故选:B . 【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键. 10.下列各式中错误的是( ) A .2c d c d c d c d da a a a-+-----== B .5212525aa a +=++ C .1x y x y y x-=--- D .2211(1)(1)1x x x x -=--- C解析:C 【分析】按同分母分式加减法则计算即可. 【详解】 A.2c d c d c d c d da a a a-+-----==,正确;B.52521252525a aa a a ++==+++,正确; C.x y x y x y x y y x x y x y x y +-=+=-----,错误; D.222111(1)(1)(1)1x x x x x x --==----,正确.故选:C 【点睛】此题考查同分母分式的加减法的法则:同分母分式相加减,分母不变,分子相加减.二、填空题11.当m=______时,解分式方程1m 233(2x 1)2x 1+=--会出现增根.6【分析】分式方程的增根使分式中分母为0所以分式方程会出现增根只能是x=增根不符合原分式方程但是适合分式方程去分母后的整式方程于是将x=代入该分式方程去分母后的整式方程中即可求出m 的值【详解】解:由解析:6 【分析】分式方程的增根使分式中分母为0,所以分式方程1m 233(2x 1)2x 1+=--会出现增根只能是x=12,增根不符合原分式方程,但是适合分式方程去分母后的整式方程,于是将x=12代入该分式方程去分母后的整式方程中即可求出m 的值. 【详解】解:由题意知分式方程()1m 2332x 12x 1+=--会出现增根是x=12,去分母得7-2x=m 将x=12代入得m=6 即当m=6时,原分式方程会出现增根. 故答案为6. 【点睛】本题考查了分式方程增根的性质,增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.12.计算:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=_____.2a4b5【分析】直接利用积的乘方运算法则化简再利用整式的除法运算法则计算得出答案【详解】解:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=4a ﹣4b2÷2a ﹣8b ﹣3=2a-4-(-8)b2-(-3)=2a解析:2a 4b 5. 【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案. 【详解】解:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=4a ﹣4b 2÷2a ﹣8b ﹣3 =2a -4-(-8)b 2-(-3), =2a 4b 5. 故答案为:2a 4b 5. 【点睛】本题考查了整数指数幂的运算,熟练应用法则是解题关键.13.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1aa =+_________; (2)①将321a a +-变形为满足以上结果要求的形式:321a a +=-_________;②若321a a +-为正整数,且a 也为正整数,则a 的值为__________.2或6【分析】(1)根据材料中分式转化变形的方法即可把变形为满足要求的形式;(2)①根据材料中分式转化变形的方法即可把变形为满足要求的形式;②令可先求出a 与x 是整数时的对应值再从所得结果中找出符合条解析:111a -+ 531a +- 2或6 【分析】(1)根据材料中分式转化变形的方法,即可把1aa +变形为满足要求的形式; (2)①根据材料中分式转化变形的方法,即可把321a a +-变形为满足要求的形式;②令325311a x a a +==+--,可先求出a 与x 是整数时的对应值,再从所得结果中找出符合条件的a ,x 的值,即可得出结论. 【详解】 解:(1)1111111a a a a a +-==-+++; 故答案为:111a -+; (2)①323(1)553111a a a a a +-+==+---;故答案为:531a +-; ②∵323(1)553111a a a a a +-+==+--- 令531x a =+-, 当x , a 都为整数时,11a -=±或15a -=±, 解得a =2或a =0或a =6或a =-4, 当a =2时,x =8; 当a =0时,x =-2; 当a =6时,x =4; 当a =-4时,x =2; ∵x , a 都为正整数, ∴符合条件的a 的值为2或6. 故答案为:2或6. 【点睛】此题考查了分式的加减及求分式的值等知识,理解题意并熟练掌握分式的基本性质及运算法则是解本题的关键. 14.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4 【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可. 【详解】解:去分母得:2x-3- mx+9 =x-3, 整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3, 把x=3代入(m-1)x=9, 解得:m=4,综上,m 的值为1或4. 故答案为:1或4. 【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 15.席卷全世界的新型冠状病毒是个肉眼看不见的小个子,它的身高(直径)约为0.0000012米,将数0.0000012用科学记数法表示为_________.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指整数数幂指数n 由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:000 解析:61.210-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指整数数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.0000012=1.2×10-6. 故答案为:1.2×10-6. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 16.当x _______时,分式22x x-的值为负.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠ 【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围. 【详解】 解:依题意,得220x x -<⎧⎨≠⎩ 解得x <2且x≠0, 故答案为:x <2且x≠0. 【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0. 17.若13x x +=,则231x x x ++的值是_______.【分析】把原分式分子分母除以x 然后利用整体代入的方法计算【详解】当原式=故答案为:【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算解析:34【分析】把原分式分子分母除以x ,然后利用整体代入的方法计算. 【详解】233111x x x x x=++++,当13x x +=,原式=33314=+. 故答案为:34. 【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算.18.已知0534x y z==≠,则2222x y z xy xz yz -+=+-______.1【分析】设从而可得再代入所求的分式化简求值即可得【详解】由题意设则因此故答案为:1【点睛】本题考查了分式的求值根据已知等式将字母用同一个字母表示出来是解题关键解析:1 【分析】设0534x y zk ===≠,从而可得5,3,4x k y k z k ===,再代入所求的分式化简求值即可得. 【详解】由题意,设0534x y zk ===≠,则5,3,4x k y k z k ===, 因此22222222(3)(4(5))535434x y z k k xy x k z yz k k k k k k -+-⋅+=+-⋅+⋅-⋅,222222181615201252k k k k k k -+=+-, 222323k k =, 1=,故答案为:1. 【点睛】本题考查了分式的求值,根据已知等式,将字母,,x y z 用同一个字母表示出来是解题关键.19.计算:11|1|3-⎛⎫-= ⎪⎝⎭______.【分析】根据实数的性质即可化简求解【详解】解:故答案为:【点睛】本题主要考查了实数的运算解题的关键是掌握负指数幂的运算解析:4【分析】根据实数的性质即可化简求解.【详解】解:1|131(14)3--==-故答案为:4【点睛】本题主要考查了实数的运算,解题的关键是掌握负指数幂的运算. 20.方程2111x x x =--的解是___________.【分析】根据分式方程的性质求解即可得到答案【详解】∵∴∴∵时即分母为0故舍去∴故答案为:【点睛】本题考查了分式方程一元二次方程的知识;解题的关键是熟练掌握分式方程的性质从而完成求解解析:1x =-【分析】根据分式方程的性质求解,即可得到答案.【详解】 ∵2111x x x =-- ∴21x =∴1x =±∵1x =时,10x -=,即分母为0,故舍去∴1x =-故答案为:1x =-.【点睛】本题考查了分式方程、一元二次方程的知识;解题的关键是熟练掌握分式方程的性质,从而完成求解.三、解答题21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为30元,用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共50件,其中甲种玩具不低于22件,商场决定此次进货的总资金不超过750元,求商场共有几种进货方案?解析:(1)甲,乙两种玩具分别是16元/件,14元/件;(2)4种【分析】(1)设甲种玩具进价x 元/件,则乙种玩具进价为(30﹣x )元/件,然后根据用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同列分式方程求解,注意结果要检验;(2)设购进甲种玩具y 件,则购进乙种玩具(50﹣y )件,然后利用甲种玩具不低于22件,商场决定此次进货的总资金不超过750元列不等式求解,从而确定y 的取值【详解】解:(1)设甲种玩具进价x 元/件,则乙种玩具进价为(30﹣x )元/件依题意得:80x =7030x- 解得:x =16, 经检验x =16是原方程的解.∴30﹣x =14.甲,乙两种玩具分别是16元/件,14元/件;(2)设购进甲种玩具y 件,则购进乙种玩具(50﹣y )件,依题意得: 16y +14(50-y )≤750,解得:y≤25,又∵y≥22∴22≤y≤25因为y 为非负整数,∴y 取22,23,24, 25共有4种方案.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式组. 22.先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中1a =解析:1a -【分析】先把括号里分式通分,后变除法为乘法,因式分解后进行约分即可,将a 的值代入.【详解】原式=11(1)(1)1a a a a a +-+-⎛⎫⨯⎪+⎝⎭ =(1)(1)(1)a a a a a+-⨯+ 1a =-,当1a =时,原式=【点睛】本题考查了分式的化简求值,按照运算顺序,通分,因式分解,约分是解题的关键. 23.(1)解分式方程:23193x x x +=--(2)先化简代数式+⎛⎫+÷⎪---+⎝⎭2a 11a a 1a 1a 2a 1,然后选取一个使原式有意义的a 值代入求值. 解析:(1)x=-4(2)化简为:1a a -,当a=2时,原式=2 【分析】 (1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)先算括号内的加减,把除法变成乘法,再根据分式的乘法法则求出答案即可.【详解】解:(1)两边都乘最简公分母(x 2-9)得:3+x (x+3)=x 2-9,解这个整式方程得:x=-4,经检验x=-4时,x 2-9≠0,所以,x=-4是分式方程的解.(2)原式=()()()()22a 1a 11a a 1a 1a 1⎛⎫+- ⎪+÷ ⎪---⎝⎭ ()()=222a 11a a 1a 1a 1⎛⎫- ⎪+÷ ⎪---⎝⎭()=22a a 1aa 1-⋅- =a a 1- 当a=2时,原式=2.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解分式方程:(1)1171.572x x += (2)21533x x x-+=-- 解析:(1)1207x =;(2)无解 【分析】(1)先去分母,解整式方程,求解后检验是否为原分式方程的解即可;(2)先去分母,解整式方程,求解后检验是否为原分式方程的解即可.【详解】(1)解:1171.572x x +=方程两边都乘72x , 得:72+48=7x , 解得:1207x =, 经检验:1207x =是原方程的解; (2)21533x x x-+=--方程两边都乘(3x -), 得:x-2-1=5(x-3),解得:3x =,检验:当3x =时,x-3=3-3=0,是增根,故原方程无解.【点睛】此题考查解分式方程,掌握解分式方程的步骤:去分母化为整式方程,解整式方程,检验解的情况.25.先化简,再求值:21122m m m m ⎭-+÷-⎛⎫ ⎪-⎝,其中12m =-. 解析:11m m -+,3-. 【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将m 的值代入计算即可求出值.【详解】 解:21122m m m m ⎭-+÷-⎛⎫ ⎪-⎝ ()()2212211m m m m m m -+-=⋅-+- ()()()212211m m m m m --=⋅-+- 11m m -=+; 当12m =-时,原式1123112--==--+. 【点睛】考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算. 26.计算与求值(1)计算:)01π; (2)求)(2316x +=中x 的值.解析:(15;(2)1x =或7x =-【分析】(1)先进行绝对值、开方、0指数运算,再相加即可;(1)先开方,再解一元一次方程即可.【详解】解:(1))01π+1515=++= (2))(2316x +=开方得,34x +=±, 343-4x x +=+=或,解得,1x =或7x =-.【点睛】本题考查了绝对值、平方根和0指数,掌握基本知识点,熟练运用绝对值法则、0指数的意义和开平方运算是解题关键.27.先化简,再求值:22131x x x x x ---+-,其中2x =. 解析:()11x x -,12【分析】此题需先根据分式的混合运算顺序和法则把22131x x x x x ---+-进行化简,然后把x 代入即可.【详解】 解:原式=()13(1)(1)1x x x x x x ---++- =()(1)(1)(3)(1)(1)(1)1x x x x x x x x x x ----+-+- =22(1)(11)23x x x x x x x -+--++ ()11x x =- 当2x =时,原式12=【点睛】此题考查了分式的化简求值,分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.28.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中5x =. 解析:21(2)x -,19【分析】先计算括号内的运算,然后进行化简,得到最简分式,再把5x =代入计算,即可得到答案.【详解】 解:22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭ =221[](2)(2)4x x x x x x x +--⨯--- =22224[](2)(2)4x x x x x x x x x ---⨯--- =24(2)4x x x x x -⨯-- =21(2)x -; 当5x =时,原式=211(52)9=-. 【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则,正确的进行化简.。

冀教版初中数学八年级上册12.1分式同步分层训练培优卷(附答案解析)

冀教版初中数学八年级上册12.1分式同步分层训练培优卷(附答案解析)

冀教版初中数学八年级上册 12.1 分式同步分层训练培优卷班级:姓名:同学们:练习开始了,希望你认真审题,细致做题,运用所学知识解决本练习。

祝你收获满满,学习进步,榜上有名!一、选择题1.若分式x−1x+1的值为0,则x=()A.−1B.1 C.±1D.02.若把分式3xyx+y中x和y的值都扩大为原来的2倍,则分式的值()A.扩大为原来的2倍B.缩小为原来的12 C.缩小为原来的14D.扩大为原来的4倍3.将分式x 2yx−y中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大为原来的6倍B.扩大为原来的9倍C.不变D.扩大为原来的3倍4.下列各式从左往右变形正确的是()A.ab+2=ab B.ab=a2b2C.a b=a−3b−3D.ab=13a13b5.如果把分式3xx2+y2中的x和y都扩大3倍,那么分式的值()A .扩大9倍B .扩大3倍C .不变D .缩小3倍6.对于非负整数x ,使得 x 2+3x+3是一个正整数,则符合条件x 的个数有( )A .3个B .4个C .5个D .6个7.关于x ,y 的方程xy ﹣x +y =﹣3的整数解(x ,y )的对数为( ) A .3B .4C .5D .68.若 12y 2+3y+7 的值为 18 ,则 14y 2+6y−9 的值是( )A .−12B .−117C .−17D .17二、填空题 9.若分式x+3x 2−9有意义,则x 应满足的条件是 . 10.若分式x 2−4x+1的值为0,则x 的值为 .11.若a 3+3a 2+a =0,则2022a 2a 4+2015a 2+1= .12.某段高速公路全长280公里,交警部门在高速公路上距入口3千米处设立了限速标志牌,并在以后每隔5公里处设置一块限速标志牌;此外交警部门还在距离入口10千米处设置了摄像头,并在以后每隔16千米处都设置一个摄像头(如图),则在此段高速公路上,离入口 千米处刚好同时设置有标志牌和摄像头.13.如图,在长方形ABCD 中,AB=10,BC=13.E ,F ,G ,H 分别是线段AB ,BC ,CD ,AD 上的定点.现分别以BE ,BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH的重合部分恰好是一个正方形,且BE=DG,Q,I均在长方形ABCD内部.记图中的阴影部分面积分别为S1,S2,S3.若S2S1=37,则S3= .三、解答题14.综艺类节目《奔跑吧》火爆荧幕﹐给观众带来激情和欢乐的同时,也启示我们,团队合作、互助友爱是成功的重要因素,瞧!“撕名牌”游戏正在火热进行,下列“名牌”上的分式中,哪些是最简分式,哪些不是最简分式?如果不是最简分式,请你将其化成最简分式.15.已知实数a,b,c满足a+b+c=0,a2+b2+c2=1,求(a5+b5+c5)÷abc的值.四、综合题16.阅读下列材料,解答下面的问题:我们知道方程2x+3y=12有无数个解,但在实际生活中我们往往只需求出其正整数解.例:由2x+3y=12,得:y= 12−2x3,根据x、y为正整数,运用尝试法可以知道方程2x+3y=12的正整数解为{x=3y=2.问题:(1)请你直接写出方程3x﹣y=6的一组正整数解.(2)若12x−3为自然数,则满足条件的正整数x的值有()个.A.5 B.6 C.7 D.8(3) 2020-2021学年七年级某班为了奖励学生学习的进步,购买单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费48元,问有哪几种购买方案?17.我们知道,假分数可以化为整数与真分数的和的形式,例如:32=1+12,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:x+1x−2,x2x+2·····像这样的分式是假分式;像1x−2,xx2−1·····这样的分式是真分式,类似的,假分式也可以化为整式与真分式的和的形式.例如:x+1x−2=(x−2)+3x−2=1+3x−2;x2x+2=(x+2)(x−2)+4x+2=x−2+4x+2,解决下列问题:(1)将分式x−2x+3化为整式与真分式的和的形式为:(直接写出结果即可)(2)如果分式x 2+2xx+3的值为整数,求x的整数值1.【答案】B【解析】【解答】解:∵分式x−1x+1的值为0,∴{x−1=0x+1≠0,∴x=1,故答案为:B.【分析】当分子为零分母不为零时,分式的值为零.2.【答案】A【解析】【解答】解:把原式中x和y都扩大为原来的2倍得,3·2x·2y 2x+2y=12xy2(x+y)=6xy x+y=23xy x+y∴把原式中x和y都扩大为原来的2倍后,分式的值扩大为原来的2倍。

分式培优专题训练

分式培优专题训练

1.(辨析题)不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(• )A .10B .9C .45D .902.(探究题)下列等式:①()a b a b c c ---=-;②x y x y x x -+-=-;③a b a b c c -++=-;④m n m n m m ---=-中,成立的是( )A .①②B .③④C .①③D .②④3.(探究题)不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++- C .2332523x x x x +--+ D .2332523x x x x ---+ 【题型2:分式的约分】4.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个5.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m-+-.【题型3:分式的定义及有无意义】1.(辨析题)下列各式πa ,11x +,15x y +,22a b a b --,23x -,0中,是分式的有___ ________;是整式的有_____ ____。

2.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x + 3.(探究题)当x _______时,分式2212x x x -+-的值为零. 4.分式24x x -,当x _______时,分式有意义;当x _______时,分式的值为零. 5.分式31x a x +-中,当x a =-时,下列结论正确的是( ) A .分式的值为零;B .分式无意义C .若13a -≠时,分式的值为零; D .若13a ≠时,分式的值为零7.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 8.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .1- D .1±9.(2005.杭州市)当m =________时,分式2(1)(3)32mm m m ---+的值为零. 10.(妙法巧解题)已知13x y 1-=,求5352x xy y x xy y+---的值.1.下列运算正确的是( ) A.326x xx = B.0=++y x y x C.1-=-+-y x y x D.ba xb x a =++ 2.下列分式运算,结果正确的是( ) A.n m m n n m =•3454; B.bc ad d c b a =• C . 222242b a a b a a -=⎪⎭⎫ ⎝⎛-; D.3334343y x y x =⎪⎪⎭⎫ ⎝⎛3.已知a-b 0≠,且2a-3b=0,则代数式ba b a --2的值是( )A.-12B.0C.4D.4或-124.已知72=y x ,则222273223y xy x y xy x +-+-的值是( ) A.10328 B.1034 C.10320 D.1037 5.如果y=1-x x ,那么用y 的代数式表示x 为( ) A. 1+-=y y x B. 1--=y y x C. 1+=y y x D. 1-=y y x 7.若将分式x x x +22化简得1+x x ,则x 应满足的条件是( ) A. x>0 B. x<0 C.x 0≠ D. x 1-≠8.计算:(1)222210522y x ab b a y x -⋅+;(2) 232222)()()(x y xyxy x y y x -⋅+÷-;(3) (3))22(2222a b ab b a a b ab aba -÷-÷+--9.若m 等于它的倒数,求分式22444222-+÷-++m mm m m m 的值;1. 若432zyx ==,求222z y x zxyz xy ++++的值.2. 如果32=b a ,且a ≠2,求51-++-b a b a 的值。

分式培优练习题(完整标准答案)

分式培优练习题(完整标准答案)

分式培优练习题(完整标准答案)分式(一)选择1.下列运算正确的是()。

A。

-4=1 B。

(-3)-1=1 C。

(-2m-n)2=4m-n D。

(a+b)-1=a-1+b-12.分式 y-z/x+z+x-y 的最简公分母是()。

A。

2 B。

C。

D。

23.用科学计数法表示的数-3.6×10-4写成小数是()。

A。

0. B。

-0.0036 C。

-0. D。

-0.若分式 x-2/x-5x+6 的值为 k,则 x 的值为()。

A。

2 B。

-2 C。

2或-2 D。

2或35.计算 |1+(1/x-1)/(x-1)| 的结果是()。

A。

1 B。

x+1 C。

x+1/x-1 D。

x/(x-1)6.工地调来 72 人参加挖土和运土,已知 3 人挖出的土 1 人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派 x 人挖土,其它的人运土,列方程①72-x=3x+72④=3.上述所列方程,正确的有()个。

A。

1 B。

2 C。

3 D。

47.在分式a/(x^2+2πx+y)+m/(x-2) 中,分式的个数是()。

A。

2 B。

3 C。

4 D。

58.若分式方程 (1-a)/(x-2)+(a+x)/(x-1)=3 有增根,则 a 的值是()。

A。

-1 B。

C。

1 D。

29.若 1/(11-ba)=1/(ab+ba)=-3,则 (a-b)/(a+b) 的值是()。

A。

-2 B。

2 C。

3 D。

-310.已知 b0,且ab≠0,其中第 7 个式子是 1/(a+7b),一组按规律排列的式子:-b^2/a,-b^5/a^2,-b^8/a^3,-b^11/a^4,……,其中第 n 个式子是 -b^(3n-2)/a^n。

若 7m=3,7n=5,则 72m-n=()。

A。

-1 B。

1 C。

2 D。

311.化简 (a^2-ab+b^2)/(a-b)^2.2.若 0<x<1,且 x+1/x=6,求 x-1/x 的值。

浙教版七下数学第5章《分式》单元培优测试题(含参考答案)

浙教版七下数学第5章《分式》单元培优测试题(含参考答案)

浙教版七下数学第5章《分式》单元培优测试题考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.在﹣3x、、﹣、、﹣、、中,分式的个数是( )A. 3个B. 4个C. 5个D. 6个【答案】A【考点】分式的定义【解析】【解答】解:、、是分式,其余都是整式。

故答案为:A【分析】根据分母中含有字母的有理式是分式,逐个判断即可。

2.下列运算正确的是()A. B. C. D.【答案】C【考点】分式的约分,分式的加减法【解析】解答: A、分式的分子和分母同时乘以一个不为0的数时,分式的值才不改变,故A错误。

B、分式的分子和分母同时加上一个不为0的数时,分式的值改变,故B错误,C、,故C正确,D、,故D错误,故选C.分析: 根据分式的基本性质对前三项进行判断,D是同分母的分式加减运算,分母不变,分子直接相加即可.3.若分式的值为0,则的取值范围为()A. 或B.C.D.【答案】B【考点】分式的值为零的条件【解析】【解答】解:由题意得:(x+2)(x-1)=0,且∣x∣-2≠0,解得:x=1;故答案为:B。

【分析】根据分子为0,且分母不为0时分式的值为0,列出混合组,求解即可。

4.计算的结果为()A. 1B. xC.D.【答案】A【考点】分式的加减法【解析】【解答】解:原式==1故答案为:A.【分析】根据同分母分式的减法,分母不变,分子相减,并将计算的结果约分化为最简形式。

A. x=1B. x=2C. 无解D. x=4【答案】C【考点】解分式方程【解析】【解答】方程两边都乘以x-2得:1=x-2+1,解这个方程得:-x=-2+1-1-x=-2,x=2,检验:∵把x=2代入x-2=0,∴x=2是原方程的增根,即原方程无解,故答案为:C.【分析】方程两边都乘以最简公分母x-2,化分式方程为整式方程,解这个整式方程求出x的值,把x的值代入最简公分母中检验,若最简公分母不为0,则x的值是原分式方程的解,若最简公分母为0,则x的值是原分式方程的增根,原分式方程无解.6.计算的结果是()A. ﹣yB.C.D.【答案】B【考点】分式的乘除法【解析】解答: 原式=故选B.分析: 在计算过程中需要注意的是运算顺序.分式的乘除运算实际就是分式的约分7.已知公式(),则表示的公式是()A. B. C. D.【答案】D【考点】解分式方程【解析】【解答】解:∵,∴,∴,∴,∴∴,∵,∴;故答案为:D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B 卷
一、填空题。

1、分式方程133
x m x x +=--有增根,则m=_______________。

2、若关于x 的分式方程
1121x m x x -=+--无解,则m=_________。

3、计算2221113256
x x x x x x ++=+++++_______________。

4、若某工厂计划a 天完成b 件产品,由于情况发生变化,要求提前x 天完成任务,则现在每天要比原计划每天多生产___________件。

5、解方程:
11112176x x x x -=-----得x=__________。

二、解答题
1、甲、乙二人一个月里两次同时到一家粮油商店买大米,两次大米的价格有变化,但他们两人购买的方式不一样,其中甲每次总是购买相同重量的大米,乙每次只能拿出相同数量的钱来买米,而不管能买多少,问这两种买米方式哪一种更合算?请说明理由.
2、当a 为何值时,
12221(2)(1)x x x a x x x x --+-=-+-+的解是负数?
3、已知2222000,2001,2004,a x b x c x +=+=+=且abc=24, 求
111a b c bc ca ab a b c
++---的值。

4、若关于x的分式方程
23
11
a
x x x
=+
--
无解,求a的值。

5、当k满足什么条件时,关于x的分式方程
63
1(1)
x k
x x x x
+
=+
--
的解为非负数?
6、如果
2
42
1
14
x
x x
=
++
,求
42
2
535
3
x x
x
-+
的值。

7、已知111
a b c
++=,2221
a b c
++=,求a+b+c的值。

8、(2001•哈尔滨)某公司生产的960件新产品,需要精加工后才能投放市场.现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完这批产品多用20天,而乙工厂每天加工产品是甲工厂每天加工产品的1.5倍,公司需付甲工厂加工费用每天80元,乙工厂费用每天120元.
(1)求甲乙两个工厂每天各能加工多少件产品?
(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家同时合作完成.在加工过程中,公司派一名工程师每天到厂进行指导,并负担每天5元的误餐补助.请你帮助公司选择一种既省时又省钱的加工方案,并说明理由.。

相关文档
最新文档