10最简二次根式(一)

合集下载

完整版)最简二次根式练习含答案

完整版)最简二次根式练习含答案

完整版)最简二次根式练习含答案最简二次根式基础练一、填空题:1.把下列二次根式化成最简二次根式。

1) $\sqrt{120}=\sqrt{4\times30}=2\sqrt{30}$;2) $\sqrt{27}=\sqrt{9\times3}=3\sqrt{3}$;3)$\sqrt{\frac{1}{8}}=\sqrt{\frac{1}{2}\times\frac{1}{4}}=\frac{1 }{2}\sqrt{2}$;4)$\sqrt{\frac{1}{2}}=\sqrt{\frac{2}{4}}=\frac{\sqrt{2}}{2}$;5) $\sqrt{84}=\sqrt{4\times21}=2\sqrt{21}$;6) $\sqrt{250}=\sqrt{25\times10}=5\sqrt{10}$;7) $\sqrt{\frac{24}{8}}=\sqrt{3}$;8) $\sqrt{\frac{8}{32}}=\sqrt{\frac{1}{4}}=\frac{1}{2}$。

2.若$\sqrt{3}\approx1.732$,则$\sqrt{227}\approx15.0$(保留三个有效数字)。

3.设$x<0$,则$\sqrt{-8x}=2i\sqrt{2}\sqrt{-x}$。

4.下列二次根式$45a$,$30$,$\frac{1}{2}$,$40b^2$,$\sqrt{54}$中是最简二次根式有$30$,$\frac{1}{2}$,$\sqrt{54}=3\sqrt{6}$。

二、选择题1.在二次根式$\sqrt{72}$,$5a\sqrt{3}$,$\sqrt{3}$,$9\sqrt{x^2}$中,最简二次根式的个数是(C)3个。

2.下列各式中是最简二次根式的是(A)$\sqrt{5}$。

3.下列各式中,不是最简二次根式的是(A)$\sqrt{6}$。

4.下列计算中正确的是(A)$\frac{1}{2}$。

《二次根式的化简》教案(1) (3)

《二次根式的化简》教案(1)  (3)

5.1.2 二次根式的化简〔3〕教学目标1 进一步加深对积的算式平方根的性质的理解,进一步掌握二次根式的化简。

重点、难点重难点:积的算式平方根的性质进行二次根式的化简。

教学过程一 、创设情景,导入新课二、 合作交流,探究新知上面问题中用到了:546⋅= 546⨯,这样计算对吗?你是根据什么法那么想到这样计算的呢?(00)(00)ab a b a b a b ab a b =≥≥∴=≥≥,, P158 例4 化简以下二次根式〔1〕 18 〔2〕 20 〔3〕 72化简二次根式时,可以直接把根号下的每一个平方因子去掉平方号以后移到根号外 〔注意:从根号下直接移到根号外的数必须是非负数〕 P158 例5 化简以下二次根式 〔1〕21 〔2〕53最简二次根式:(1) 被开方数中不含得尽方的因数〔或因式〕; (2) 被开方数不含分母。

一次函数复习〔二〕课题第四章一次函数复习〔二〕本课〔章节〕需13课时 ,本节课为第12—13课时,为本学期总第46—47课时教学目标知识与技能:1、使学生理解一次函数的意义,掌握根据条件确定一次函数表达式的方法,会画一次函数图像。

探究并掌握一次函数性质,并用之解决实际问题。

过程与方法:通过例题讲解,使学生体会一次函数性质及应用。

情感态度与价值观:体会函数作为数学模型在分析解决实际问题中的重要作用。

重点 应用一次函数的概念、图像和性质解题难点 一次函数在实际问题中的应用教学方法课型练习 教具 多媒体教学过程: 一、根底练习1.如图1,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,那么不等式20x kx b <+<的解集为〔 〕 A .2x <- B .21x -<<- C .20x -<< D .10x -<< 2.如图2,点A 的坐标为(-1,0),点B 在直线x y =上 运动,当线段AB 最短时,点B 的坐标为〔 〕 A.〔0,0〕 B.〔-1,-1〕个案修改yxO BA〔2题〕yOxB A〔1题〕C.〔-21,-21〕 D.〔-22,-22〕3.沪杭高速铁路已开工建设,在研究列车的行驶速度时,得到一个数学问题.如图3,假设v 是关于t 的函数,图象为折线C B A O ---,其中)350,(1t A ,)350,(2t B ,)0,8017(C ,四边形OABC 的面积为70,那么=-12t t 〔 〕 A .51B .163 C .807 D .160314.甲、乙两名运发动进行长跑训练,两人距终点的路程y 〔米〕与跑步时间x 〔分〕之间的函数图 象如以下图,根据图象所提供的信息解答问题: ⑴求甲距终点的路程y 〔米〕和跑步时间 x 〔分〕 之间的函数关系式;⑵当x =15时,两人相距多少米?在15<x <20的 时段内,求两人速度之差. 能力提升:1. 如图,过点Q 〔0,3.5〕的一次函数与正比例函数y =2x 的图象相交于点P ,能表示这个一次函数图象的方程是 〔 〕A .3x -2y+3.5=0B .3x -2y -3.5=0C .3x -2y+7=0D .3x +2y -7=0 y =-3x -2的图象不经过〔 〕A .第一象限B .第二象限C .第三象限D .第四象限 3. 函数y=kx 的函数值随x 的增大而增大,那么函数的图像经过〔 〕 A .一、二象限 B . 一、三象限 C .二、三象限 D .二、四象限 4. 将直线 y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是______________.5. 假设一次函数y kx b =+,当x 得值减小1,y 的值就减小2,那么当x 的值增加2时,y 的值〔 〕A .增加4B .减小4C .增加2D .减小2 二、拓展探究1.某加油站五月份营销一种油品的销售利润y 〔万元〕与销售量x 〔万升〕之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.〔销售利润=〔售价-本钱价〕×销售量〕请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答以下问题:⑴求销售量x 为多少时,销售利润为4万元;⑵分别求出线段AB 与BC 所对应的函数关系式;⑶我们把销售每升油所获得的利润称为利润率,那么,在OA 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?〔直接写出答案〕Ox 〔万升〕y 〔万元〕 CB A 4 10 1日:有库存6万升,本钱价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,本钱价4.5元/升. 31日:本月共销售10万升.五月份销售记录一次函数复习〔二〕A .2x <-B .21x -<<- C .20x -<< D .10x -<< 2.如图2,点A 的坐标为(-1,0),点B 在直线x y =上 运动,当线段AB 最短时,点B 的坐标为〔 〕 A.〔0,0〕 B.〔-1,-1〕C.〔-21,-21〕 D.〔-22,-22〕3.沪杭高速铁路已开工建设,在研究列车的行驶速度时,得到一个数学问题.如图3,假设v 是关于t 的函数,图象为折线C B A O ---,其中)350,(1t A ,)350,(2t B ,)0,8017(C ,四边形OABC 的面积为70,那么=-12t t 〔 〕 A .51B .163 C .807 D .160315.甲、乙两名运发动进行长跑训练,两人距终点的路程y 〔米〕与跑步时间x 〔分〕之间的函数图 象如以下图,根据图象所提供的信息解答问题: ⑴求甲距终点的路程y 〔米〕和跑步时间 x 〔分〕 之间的函数关系式;⑵当x =15时,两人相距多少米?在15<x <20的 时段内,求两人速度之差. 能力提升:1. 如图,过点Q 〔0,3.5〕的一次函数与正比例函数y =2x 的图象相交于点P ,能表示这个一次函数图象的方程是 〔 〕A .3x -2y+3.5=0B .3x -2y -3.5=0C .3x -2y+7=0D .3x +2y -7=0 y =-3x -2的图象不经过〔 〕A .第一象限B .第二象限C .第三象限D .第四象限 3. 函数y=kx 的函数值随x 的增大而增大,那么函数的图像经过〔 〕 A .一、二象限 B . 一、三象限 C .二、三象限 D .二、四象限 4. 将直线 y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是______________.5. 假设一次函数y kx b =+,当x 得值减小1,y 的值就减小2,那么当x 的值增加2时,y 的值〔 〕A .增加4B .减小4C .增加2D .减小2 二、拓展探究1.某加油站五月份营销一种油品的销售利润y 〔万元〕与销售量x 〔万升〕之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.〔销售利润=〔售价-本钱价〕×销售量〕请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答以下问题:⑴求销售量x 为多少时,销售利润为4万元;⑵分别求出线段AB 与BC 所对应的函数关系式;⑶我们把销售每升油所获得的利润称为利润率,那么,在OA 、AB 、BC 三段所表示的销售信息中,哪一段的C1日:有库存6万升,本钱价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,本钱五月份销售记录。

《二次根式》期末复习知识清单及典型例题

《二次根式》期末复习知识清单及典型例题

二次根式期末复习知识清单及典型例题知识点1:二次根式的定义:形如()0≥a a 的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,a 才有意义.【例1】下列各式()511,()52-,()232+-x ,()44,()2315⎪⎭⎫ ⎝⎛-,()a -16,()1272+-a a 其中是,二次根式的是_________(填序号).变式:1、下列各式中,一定是二次根式的是()A 、a B 、10-C 、1a +D 、21a+2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______个【例2】若式子13x -有意义,则x 的取值范围是. 变式:1、使代数式43--x x 有意义的x 的取值范围是() A 、x>3B 、x ≥3C 、x>4D 、x ≥3且x ≠4 2、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、使代数式221x x -+-有意义的x 的取值范围是 【例3】若y=5-x +x -5+2009,则x+y=变式:1、若11x x ---2()x y =+,则x -y 的值为()A .-1B .1C .2D .3 2、当a 取什么值时,代数式112++a 取值最小,并求出这个最小值。

【例4】已知a 是5整数部分,b 是5的小数部分,求12a b ++的值。

变式:1、若3的整数部分是a ,小数部分是b ,则=-b a 3。

2、若17的整数部分为x ,小数部分为y ,求yx 12+的值. 知识点2:2、双重非负性:a a ()≥0是一个非负数.即①0≥a;②0≥a3、平方的形式(双胞胎公式):(1)()()a aa 20=≥;(2)a a a a a a 200==≥-<⎧⎨⎩||()().公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系:(1)a 2表示求一个数的平方的算术根,a 的范围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的. 【例5】若()04322=-+-+-c b a 则c b a +-=.变式:若1+-b a 与42++b a 互为相反数,则()2017b a -=。

二次根式知识点归纳

二次根式知识点归纳

二次根式知识点归纳定义:一般的,式子a (a ≥0)叫做二次根式。

其中“”叫做二次根号,二次根号下的a 叫做被开方数。

性质:1、2≥0,等于a;a<0,等于-a3、45612789一.1.【05A.25 B.52 C.542.【05南京】9的算术平方根是(???).A.-3B.3C.±3D.813.【05南通】已知2x <,的结果是(???).A 、2x -B 、2x +C 、2x --D 、2x -4.【05泰州】下列运算正确的是(???).A .a 2+a 3=a 5B .(-2x)3=-2x 3C .(a -b)(-a +b)=-a 2-2ab -b 2D =5.【05无锡】下列各式中,与y x 2是同类项的是()A 、2xyB 、2xyC 、-y x 2D 、223y x6.【05武汉】若a ≤1,则化简后为(???). A.??B. C.???D.7.【05绵阳】化简时,甲的解法是:==,乙的解法是:,以下判断正确的是(???).A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确8.【05(A)a >9.【05A.8 10.【05A.2411.【05A.(-1)312.【05A 、x 213.【05A .114.【05 A 15.【05A .aa b ++b a b +=1B .1÷b a ×a b =1 C .21()a b +·22a b a b --=1a b +二、填空题1.【05连云港】计算:)13)(13(-+=.2.【05南京】10在两个连续整数a 和b 之间,a<10<b,那么a,b 的值分别是。

3.【05上海】计算:)11=4.【05嘉兴5.【05丽水】当a ≥0.6.【05南平=.7.【05漳州,2,(第n 个数).8.【05曲靖】在实数-2,31,0,-1.2,2中,无理数是. 9.【05黄石】若最简根式b a a +3与b a 2+是同类二次根式,则ab =.10.【05太原】将棱长分别为a cm 和bcm 的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为.(不计损耗)11.【05黄岗】立方等于–64的数是。

第1课时:《二次根式》知识点总结复习(学生版)

第1课时:《二次根式》知识点总结复习(学生版)

《二次根式》题型分类知识点一:二次根式的概念【知识要点】二次根式的定义: 形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【例1】下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号). 1、下列各式中,一定是二次根式的是( ) A 、a B 、10- C 、1a + D 、21a+2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______个【例2】若式子13x -有意义,则x 的取值范围是 . 1、使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42、使代数式221x x-+-有意义的x 的取值范围是3、如果代数式m nm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限【例3】若y=5-x +x -5+2009,则x+y=1、若11x x ---2()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .32、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值3、当a 取什么值时,代数式211a ++取值最小,并求出这个最小值。

1.已知a 是5整数部分,b 是 5的小数部分,求12a b ++的值。

2.若7-3的整数部分是a ,小数部分是b ,则=-b a 3 。

3.若172+的整数部分为x ,小数部分为y ,求y x 12+的值.知识点二:二次根式的性质【知识要点】1. 非负性:a a ()≥0是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到.2. ()()a aa 20=≥. 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a a a =≥()()203. a a a a a a 200==≥-<⎧⎨⎩||()() 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系 (1)a 2表示求一个数的平方的算术根,a 的范围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的.【例4】若()22340a b c -+-+-=,则=+-c b a .1、若0)1(32=++-n m ,则m n +的值为 。

二次根式最简定义

二次根式最简定义

二次根式最简定义二次根式是数学中的一个重要概念,它是指一个形如√a的数。

在二次根式中,a代表一个非负实数。

二次根式可以用来表示一些几何问题中的长度或者表示一些物理问题中的量。

二次根式最简的定义是指将一个二次根式化简为最简形式。

化简的过程实际上是对根号下的数进行约分,使得根号下的数不能再被约分。

化简后的二次根式通常具有如下特点:1.根号下的数不含有平方数因子;2.根号下的数是一个质数;3.根号下的数为最简形式。

为了更好地理解二次根式的最简定义,我们可以通过几个例子来说明:例1:将√12化简为最简形式。

我们可以将12分解为2和6的积,即12=2*6。

然后,我们继续将6分解为2和3的积,即6=2*3。

因此,我们可以得到√12=√(2*2*3)。

接下来,我们可以将根号下的数进行约分,即将二次根式中所有平方数因子提出来。

在这个例子中,2是一个平方数因子,因此我们可以将它提出来。

√12=√(2*2*3)=2√3。

我们得到了化简后的最简形式,即√12=2√3。

例2:将√20化简为最简形式。

我们可以将20分解为2和10的积,即20=2*10。

然后,我们继续将10分解为2和5的积,即10=2*5。

因此,我们可以得到√20=√(2*2*5)。

接下来,我们进行约分,将二次根式中所有平方数因子提出来。

在这个例子中,2是一个平方数因子,因此我们可以将它提出来。

√20=√(2*2*5)=2√5。

我们得到了化简后的最简形式,即√20=2√5。

通过以上两个例子,我们可以看出,化简二次根式的过程就是将根号下的数进行约分,使其成为最简形式。

化简后的二次根式更加简洁,更符合数学中的规范形式。

需要注意的是,有些二次根式无法化简为最简形式,例如√2。

在这种情况下,我们不能再对根号下的数进行约分,因此√2就是它的最简形式。

这是因为2是一个质数,没有其他的因子可以约分。

在实际应用中,二次根式最简定义的概念经常出现在几何学和物理学等领域。

例如,在解决三角形的边长或面积问题时,常常需要使用到二次根式的最简形式。

最简二次根式

最简二次根式

在二次根式的运算中,最后结果要求 分母中不含二次根式。
x 2 x y xy(x y)
3 2 2
x 3 2 x 2 y xy 2
x( x 2 xy y )
2 2
x( x y )
2
又 x y, x y 0,原式 (x y) x
当被开方数是多项式时,应先把它因式分解, 再化解。
最简二次根式
3 2 a 观察2 2、 、 等,可以发现这些式子有如下两个特点: 10 a
1被开方数不含分母或小数,即被开方数中
1 因数是整数,因式是整式。如 ,,0.1等不是 5 最简二次根式。
2被开方数不含能开得尽方的因数或因式。
如 4a 2bc3 , ( x y ) 2 不是最简二次根式。
一、最简二次根式的概念
如果一个二次根式满足以下两个条件,那么这 个二次根式叫做最简二次根式。
1被开方数不含分母或小数,即被开方数中
因数是整数,因式是整式。
2被开方数不含能开得尽方的因数或因式。
1,4,9等; 能开得尽方的因数指完全平方数,如 能开得尽方的因式指的是含字母的式子, 最简二次根式中被开方 数中的字母次数只能为 1 .
1 1 如: 5 5Biblioteka 1 5 5 55 5
0.1
1 1 10 10 10 10 10 10
17 2
1 17 17 4 4 4 4
提示:当被开方数是小数时,先化为分数, 然后再进行化简;当被开方数是带分数时, 首先要把它化成假分数,然后进行化简。
把分母中的根号化去,是分母变成有理数, 这个过程叫分母有理化。
1 1 x x x x x x

16.2最简二次根式和同类二次根式(1)

16.2最简二次根式和同类二次根式(1)

1课题:16.2最简二次根式和同类二次根式(1)【学习目标】 理解最简二次根式的概念,会判别最简二次根式;会将非最简二次根式化为最简二次根式.【重点难点】会判别最简二次根式,并能将非最简二次根式化为最简二次根式.【导学提纲】探索活动问题一观察下列所化简得二次根式,比较前后的被开方数发生了怎样的变化?有什么共同特征?18 23 ; 3a 33a )0(92>b ab )0(3>b a a b 得出结论:得出概念:最简二次根式: . 对照二次根式的定义,判断下列根式哪些是最简二次根式,若不是,请说明:32, 1.0,b a 2 , 22b a + 【例题讲解】例1:判断下列二次根式是不是最简二次根式:(1)35a (2)a 42 (3)324x (4))1()12(32-≥++a a a【当堂反馈】完成书本P 7练习16.2(1)1例2:将下列二次根式化成最简二次根式:(1))0(423>y y x (2))0())((22≥≥+-b a b a b a (3))0(>>-+n m nm n m2【当堂反馈】1. 完成书本P 8练习16.2(1)2,32.化简(1) (y >0) (2)(a >0) (3) (ab >1)【盘点收获】【课堂反馈】1.把下列二次根式化成最简二次根式:(1)_____32=(2)____40=(3)____5.1=(4)____34= 2.化简:(1) (2) 2925xy (x ≥0)(x ≥0)≥0,y ≤0)【拓展提高】 化简二次根式22a a a +-的结果是( ) A.2--a B.-2--a C.2-a D.-2-a【课后作业】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 2 2
3
x y 0
解: xy( x y )
2
( x y) xy
如果被开方数是整式或整 数,先把它分解因式或分 解因数,然后把开得尽方 的因式或因数开出来,从 而将式子化简。
例3 把下列各式化为 最简二次根式:
(1)
1 4 1 2
3 4 3 2 4 6 2 6 4 2 2 2 2
y ) 2 2( x y ) ( x y )
3 2 2
2
2
( x y)
2
2( x y )
2( x y ) 2( x y )
把下列各式化为最简二次式:
(1) 9 x 18x ,
5 4
9 x ( x 2 x)
4
3x
2
x2
(2) x y 2 x y xy
解:
(2)
x
2
y x
yx x x
3 8n (3) 2 3m
3
3
x
2
3 8n 3m 2 3m 3m

x
2
xy x
3 2n 6m n 2 3m
n 6m n m
x xy
把下列各式化为最简二 次根式:
1 1 a 2 2 0 a b a b
2 2
b a 解: a 2 2 ab
2
2

例2 把下列各式化为最简二次根式:
(1)
12
2
2 3
(2)
45a b
3a 5b
3
(3)
8( x y )
2( x y) 2( x y)
解:
(1) 12 22 3 22 3 2 3
(2) 45a 2b 32 5a 2b 32 a 2 5b 3a 5b (3) 8( x
a 1 2 2 2 2 b a b a ab b
x y x y o x y
( x y)(x y) 解 2 ( x y)
1 2 2 x y x y
选择: 1.下列二次根式中,最简二 次根式是( D )
A
5X
2X 3
2
D
B
27
X Y
2 2
C
选择: 2.下列二次根式中,不是最 简二次根式是( D )
A C
70
2x 4
B D
a 9
2
x x
3
2
选择: 3.下列是最简二次根式的个 数是( C )
X 2
A 0
30
B1
2X
C 2
3
X y
2
2
D 3
选择:
1 1 4.化简,2 3
得最简二次根
B D
式是( A ) 1 30 A 6 1 C 5 6
6 30 6 5
选择: 4a 5.若a>0,把 化成最 b 简二次根式为( C ) 2 2 A ab B ab b b
×
1 2
(2)被开方数中不含能开得尽 方的因数或因式。 × x 3 y
满足以上条件的二次根式,叫做 最简二次根式。
例1 下列根式哪些是最简 二次根式?
x y
2
2

例1 下列根式哪些是最简 二次根式?
a b a b
2
不是
例1 下列根式哪些是最简 二次根式?
16x y
2 C ab D b
2b ab
书练习
书ቤተ መጻሕፍቲ ባይዱ27练习题
1.最简二次根式的概念.
2.化二次根式为最简二次根式 的方法.
最简二次根式:
(1)被开方数不含分母;
(2)被开方数中不含能开得尽 方的因数或因式。 满足以上条件的二次根式,叫做 最简二次根式。
作业:
《快捷通》 11.4最简二次根式(一)
书P28页 1
如果被开方数是分式 (或分数,包括小数), 利用商的算术平方根的 性质,写成分式的形式,
然后再分母有理化。
D
C
A
B
如图:绿地的长AB=40 m,宽BC=20 m,那么,中间小路AC长多少?
能否求出 与 的近似值呢?
1 3
27
11.4最简二次根式
下列式子哪些可以作 为化简或计算的结果?
4x 2.8, 3a , ,2 30ab, y
2
2 3 4 2 72, 3 , , x x . 3 10
具备哪些条件 的二次根式叫做最 简二次根式?
最简二次根式:
1 (1)被开方数不含分母; , 3
相关文档
最新文档