直线的倾斜角和斜率
直线的倾斜角和斜率

2 (2) 40
4 4
1
∵ k BC 0 ∵ k CA 0
∴直线AB的倾斜角为零度角。 ∴直线BC的倾斜角为钝角。 ∴直线CA的倾斜角为锐角
三、小结:
1、直线的倾斜角定义及其范围: 180 0 2、直线的斜率定义: k tan a ( a 90 ) 3、斜率k与倾斜角 之间的关系:
4、斜率公式:k
y 2 y1 x 2 x1
(或 k
y1 y 2 x1 x 2
)
作业:
P98 A组1, 2, 3, 4, 5
B组5, 6
1、直线倾斜角的定义:
当直线l与X轴相交时,我们取X轴作为基 准,X轴正向与直线L向上方向之间所成的角 叫做直线的倾斜角(angle of inclination)
y
l
a
x o
注意: (1)直线向上方向; (2)x轴的正方向。
练习:
下列四图中,表示直线的倾斜角的是( A )
y y
A
y
a
x x o
C
x
o
o
a
B
y
a
o
D
x
a
2、直线倾斜角的范围:
当直线 l 与 x 轴平行或重合时,我 们规定它的倾斜角为 0 ,因此,直线 的倾斜角的取值范围为: a 180 0
按倾斜角去分类,直线可分几类?
y y y y
a
零度角
a
x x o o x
x
o
o
锐角
直角
钝角
3、直线倾斜角的意义
体现了直线对x轴正方向的倾斜程度 在平面直角坐标系中,每一条直线都 有一个确定的倾斜角。
直线的倾斜角和斜率 课件

【解析】 (3)∵l 与 x 轴交于点 P,且倾斜角为 α,∴0°< α<180°.
又∵逆时针旋转后得到倾斜角为 α+45°, ∴0°≤α+45°<180°. 综上:00°°<≤αα<+18405°°,<180°,解得 0°<α<135°. 【答案】 (1)B (2)90° (3)0°<α<135°
【思路分析】 直接用斜率公式去求. 【解析】 (1)kPQ=--21--11=32. (2)∵x1=x2,∴斜率不存在. (3)当 m=2 时,斜率不存在; 当 m≠2 时,kPQ=m2--12=m-1 2.
题型三 直线的倾斜角与斜率的关系
例 3 (1)已知过点 A(2m,3),B(2,-1)的直线的倾斜角为 45°,求实数 m 的值;
题型二 直线的斜率的求法
例 2 如图,已知 A(3,2),B(-4,1),C(0,-1),求直线 AB,BC,CA 的斜率,并判断这些直线的倾斜角是锐角还是钝角.
【思路分析】 由题目可获取以下主要信息:①已知三点 A、 B、C 的坐标;②通过斜率判断直线 AB,BC,CA 的倾斜角.
解答本题可通过斜率的定义,求出直线的斜率,根据斜率的 正、负确定直线倾斜角是锐角还是钝角.
(2)数形结合是一种常用的方法. (3)直线逆时针旋转,k 变大,顺时针旋转,k 变小.
思考题 4 经过点 P(0,-1)作直线 l,若直线 l 与连接 A(2,
1),B(2,-3)的线段总有公共点,求直线的倾斜角与斜率的取值 范围.
【解析】 连接 PA,PB,kPA=1-2(--01)=1,α1=45°, kPB=-3-2- (0-1)=-1,α2=135°,
探究 2 根据斜率与倾斜角的关系(即当倾斜角 0°≤α< 90°时,斜率是非负的;当倾斜角 90°<α<180°时,斜率是负 的)来解答直线的倾斜角是锐角还是钝角问题.
直线的倾斜角和斜率,直线方程

直线的倾斜角和斜率,直线方程一、直线的倾斜角和斜率1.直线的倾斜角概念的注意点:1)注意旋转方向:逆时针2)规定平行x轴(或与x轴重合)的直线倾斜角为0°3)直线倾斜角的范围是0°≤<180°2.直线的倾率:直线的倾斜角的正切值tan(倾斜角不为90°时)。
概念注意点:1)倾斜角为90°的直线无斜率2)斜率k可以是任何实数,每条直线都存在唯一的倾斜角,但不是每条直线都有斜率3)=0°时,k=0;0°<<90°时,k>0;=90°时,k不存在;90°<<180°时,k<0。
3.斜率公式:设直线l的倾斜角为(≠90°),P1(x1,y2),P2(x2,y2)(x1≠x2)是直线l上不同两点,直线l的斜率为k,则:k=tan=,当=90°时,或x1=x2时,直线l垂直于x轴,它的斜率不存在。
例1.求过A(-2,0),B(-5,3)两点的直线的斜率和倾斜角。
解:k==-1,即tan=-1,∵0°≤<180°,∴=135°。
点评:已知直线的斜率,可以直接得出直线的倾斜角,但要注意角的范围。
例2.设直线l的斜率为k,且-1<k<1,求直线倾斜角的范围。
解法1:当-1<k<0时,∈(),则,当k=0时,=0,当0<k<1时,∈(0,),则0<<解法2:作k=tan,∈[0,π)时的图形:由上图可知:-1<k<1时,∈[0,)()。
点评:1、当直线的斜率在某一区间内时,要注意对倾斜角范围的讨论。
2、利用正切函数图像中正切来表示倾斜角和斜率关系也是一种很好的方法。
二、直线方程的四种形式1.两个独立的条件确定一条直线,常见的确定直线的方法有以下两种(1)由一个定点和确定的方向可确定一条直线,这在解析几何中表现为直线的点斜式方程及其特例斜截式方程。
直线的倾斜角与斜率

直线的倾斜角与斜率直线的倾斜角与斜率1. 斜率的定义斜率是平面直角坐标系中一条直线倾斜程度的度量。
斜率可以帮助我们理解直线的倾斜程度以及方向。
在数学中,斜率通常用m表示,它表示一条直线在水平方向的单位偏移所对应的垂直方向的单位偏移的比值。
也可以理解为直线上两点之间的垂直高度差与水平距离的比率。
假设一条直线上有两个点P(x1, y1)和Q(x2, y2),那么这条直线的斜率就可以表示为:m = (y2 - y1) / (x2 - x1)2. 直线的倾斜角度直线的倾斜角度也叫直线的斜率角,可以帮助我们更直观地理解一条直线的倾斜程度和方向。
与斜率相比,倾斜角度更易于理解和使用,尤其是在实际测量和应用中。
直线的倾斜角通常用θ表示,计算公式如下:tan(θ) = m其中tan(θ)表示正切函数,它可以是斜率m的反函数。
因此,直线的倾斜角通常可以表示为:θ = atan(m)而atan表示反正切函数,它可以将斜率转化为对应的弧度角,从而帮助我们更好地理解直线的方向和倾斜程度。
3. 应用举例下面通过一个具体的应用举例来理解斜率和倾斜角度的概念。
假设我们需要计算一条直线的倾斜角度和斜率,该直线穿过两个点P(3, 4)和Q(5, 8)。
首先,我们需要计算该直线的斜率:m = (8 - 4) / (5 - 3) = 2然后,我们可以将该斜率转化为对应的倾斜角度:θ = atan(2) = 1.107 rad也就是说,该直线的倾斜角度是1.107弧度,约等于63.43度。
这意味着,在平面坐标系上,该直线与水平方向的夹角为63.43度。
可以看出,倾斜角度可以帮助我们更直观地理解直线的倾斜程度和方向,从而更方便地进行测量和计算。
4. 总结斜率和倾斜角度是描述一条直线倾斜程度和方向的重要概念。
它们可以帮助我们更直观地理解一条直线的特性,并且在测量和计算中有广泛的应用。
需要注意的是,在实际应用中,我们需要根据具体情况选择使用斜率或倾斜角度,以获得更准确的结果。
知识讲解_直线的倾斜角与斜率_提高

直线的倾斜角与斜率【学习目标】1. 了解直线倾斜角的概念,掌握直线倾斜角的范围;2. 理解直线斜率的概念,理解各倾斜角是90时的直线没有斜率;3. 已知直线的倾斜角(或斜率),会求直线的斜率(或倾斜角);4. 掌握经过两点P(x1, y1)和P,(x2, y2)的直线的斜率公式:k = y2一% ( %式x2);X2 — x〔5. 熟练掌握两条直线平行与垂直的充要条件【要点梳理】要点一、直线的倾斜角平面直角坐标系中,对于一条与X轴相交的直线,如果把X轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为:•,则〉叫做直线的倾斜角•规定:当直线和x轴平行或重合时,直线倾斜角为0,所以,倾斜角的范围是0: _〉180 . 要点诠释:1. 要清楚定义中含有的三个条件①直线向上方向;②X轴正向;③小于180的角.2. 从运动变化观点来看,直线的倾斜角是由X轴按逆时针方向旋转到与直线重合时所成的角3•倾斜角:的范围是0:_〉<180'.当】-0时,直线与x轴平行或与x轴重合.4. 直线的倾斜角描述了直线的倾斜程度,每一条直线都有唯一的倾斜角和它对应5. 已知直线的倾斜角不能确定直线的位置,但是,直线上的一点和这条直线的倾斜角可以唯一确定直线的位置.要点二、直线的斜率1 .定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率,常用k表示,即k=tan> . 要点诠释:(1) 当直线丨与x轴平行或重合时,=0°, k=tan0 ° =0;(2) 直线l与x轴垂直时,二=90°, k不存在.由此可知,一条直线l的倾斜角[一定存在,但是斜率k不一定存在.2 .直线的倾斜角与斜率k之间的关系由斜率的定义可知,当:-在(0,90)范围内时,直线的斜率大于零;当 :在(90,180)范围内时,直线的斜率小于零;当〉=0时,直线的斜率为零;当〉=90时,直线的斜率不存在.直线的斜率与直线的倾斜角(90‘除外)为一一对应关系,且在0,90°)和(90 ,180)范围内分别与倾斜角的变化方向一致,倾斜角越大则斜率越大,反之亦然.因此若需在0,90或(90,80)范围内比较倾斜角的大小只需比较斜率的大小即可,反之亦然.要点三、斜率公式已知点RX,%)、F2(x2,y2),且RP?与x轴不垂直,过两点F1(x1,y1)、F2(x2,y2)的直线的斜率公式k _y2 _y i .X2 -X i要点诠释:1. 对于上面的斜率公式要注意下面五点:(1) 当X1=X2时,公式右边无意义,直线的斜率不存在,倾斜角? =90°,直线与x轴垂直;(2) k与P i、P2的顺序无关,即y i, y2和x i,X2在公式中的前后次序可以同时交换,但分子与分母不能交换;(3) 斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;(4) 当y i=y2时,斜率k=0,直线的倾斜角:-=0°,直线与x轴平行或重合;(5) 求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.2. 斜率公式的用途:由公式可解决下列类型的问题:(1) 由R、R>点的坐标求k的值;(2) 已知k及x i, y i, x2, y2中的三个量可求第四个量;(3) 已知k及R、P,的横坐标(或纵坐标)可求| RP2 | ;(4) 证明三点共线.要点四、两直线平行的条件设两条不重合的直线l i,l2的斜率分别为k i,k2.若I i〃l2,则l i与12的倾斜角:i与〉2相等•由〉i=>:可得tan:、二tan〉2,即k i二k2.因此,若l i〃12,则匕=k2.反之,若k^ k2,则l i//l2.要点诠释:1. 公式l i 〃丨2 k i = k2成立的前提条件是①两条直线的斜率存在分别为k i, k2 •,②l i与丨2不重合;2. 当两条直线的斜率都不存在且不重合时,^与l2的倾斜角都是90,则l i //l2.要点五、两直线垂直的条件设两条直线l i」2的斜率分别为k i,k2.若l i — l2,则k i k^-i.要点诠释:i.公式l i - l2= k i k^-i成立的前提条件是两条直线的斜率都存在;2.当一条垂直直线的斜率不存在,另一条直线的斜率为0时,两条直线也垂直.【典型例题】类型一:直线的倾斜角与斜率例1 •设直线丨过原点,其倾斜角为「,将直线丨绕坐标原点沿逆时针方向旋转45°,得到直线l1,则直线l i的倾斜角为( )A •:- +45°B. : -135°C. 135°- :■D. 当0°w : V 180° 时,为:-+45°,当135°w : V 180°时,为:-135°- 1【答案】D【解析】倾斜角的范围是[0 ° , 180°),因此,只有当:-+45 °€ [0 ° , 180°),即当0° V 135° 时,h的倾斜角才是:-+45 °,而当135 °W V 180 °时,I1的倾斜角为:--135 ° .故应选D .【总结升华】(1)倾斜角的概念中含有三个条件:①直线向上的方向;② x轴的正方向;③小于平角的正角.(2)倾斜角是一个几何概念,它直观地描述且表现了直线对于x轴正方向的倾斜程度.(3)平面直角坐标系中每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等.(4)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可.举一反三:【变式1】下列说法中,正确的是( )A .直线的倾斜角为二,则此直线的斜率为tan_:iB. 直线的斜率为tan',则此直线的倾斜角为 vC. 若直线的倾斜角为.::,则sin二>0D .任一直线都有倾斜角,但它不一定有斜率【答案】D【解析】本题主要考查直线的斜率与倾斜角的关系.对于A ,当〉=90°时,直线的斜率不存在,••• A错;对于B ,虽然直线的斜率为tanr,但只有当二€ [0° , 180°)时,二才是此直线的倾斜角,• B错;对于C,当直线平行于x轴时,〉=0°,而sin0° =0, • C错.•••应选D.【高清课堂:直线的倾斜角与斜率381490例2】例2 .如图所示,直线l1的倾斜角=30,直线l1与l2垂直,求l1, l2的斜率.【解析】由图形可知,〉2*90,则k1, k2可求.直线l1的斜率k, = tan〉1= tan 30 二T直线l2的倾斜角>2=90 ° +30° =120 ° ,•直线l2的斜率k2=ta n120 ° =ta n(180 ° —60° )= —tan60°所以直线的斜率为cos -:s又因为3 cos 二、■■■■/3,即--k AB =k BC,2 -1 _ 2a -1a-5 一4 一5A , B, C三点共线=A , B, C中任意两点-、、3.【总结升华】(1)本例中,利用图形的形象直观挖掘出直线11与|2的倾斜角之间的关系是解题的关键.(2)公式tan(180° —:• )= —tan〉是一个重要公式,它是求倾斜角为钝角时的直线斜率的关键,即把钝角的正切转化为锐角的正切.熟记30°, 45°, 60°角的正切值可快速求解.举一反三:【变式1】直线xcos—/3y • 2 =0的倾斜角的范围是A .-, 三B. 0, 匚二IL6 2 2 6. IL 6 _ 65 二二5 二C. 0,D. ,1 6」:6 6」【答案】B【解析】由直线xcoS'f ' 3y • 2 = 0 ,设直线的倾斜角为所以叫。
高中数学——直线的倾斜角和斜率

()
课堂小结
1. 直线的倾斜角和斜率的概念; 2. 根据倾斜角和斜率的概念解决
相关问题; 3. 利用斜率公式解决问题; 4. 数形结合思想,函数思想.
课后作业
作业:P76习题2-1 1,2, 3.
谢谢
知识回顾 Knowledge Review
祝您成功!
说法是正确的( D,F )
A.任一条直线都有倾斜角,也都有斜率; B.直线的倾斜角越大,它的斜率就越大; C.平行于x轴的直线的倾斜角是0或π; D.两直线的斜率相等,它们的倾斜角相等; E.两直线的倾斜角相等,它们的斜率相等; F.直线斜率的范围是(-∞,+∞).
例题解析
例3. 如图,直线l1 的倾斜角α1=300,
解:设该直线的斜率为k, 倾斜角为
则由斜率公式得k tan 3 0 1 5 (2)
0。 180。 135。 综上可知:直线的斜率为 1,倾斜角135。
例题解析
例5. 直线 l1、 l2、 l3的斜率分别是k1、 k2、 k3,
试比较斜率的大小.
l1
l2
l3
k1 k3 k2
y y y y
tan 2 1 2 1
x1 x2 x2 x1
直线的斜率计算公式:
y
P2(x2,y2)
P
P1(x1,y1)
O
x
y y
即 k 2 1
x2 x1
例题解析
例1.直线l的倾斜角为45°,则斜率k为 1
直线l的倾斜角为120°,则斜率k为 3 例2. 关于直线的倾斜角和斜率,下列哪些
O
x
(2)
y
0。
k值不存在
k 0
O
x
(3)
直线的倾斜角与斜率

求P 点坐标.
思考: 已知a,b,c ? R + , 且a
b,求证 a+c > a . b+ c b
小结:
1。正确理解直线方程与方程的直线概念
2。
直线的倾斜角
定义
三要素
取值范围 0,180
斜率 K
K tan
K ,
斜率公式
K y2 y1 x2 x1
K ,
P.89习题3.1 A组 1,2, 3,4,5
坡度(比)
升高量 前进量
升
高
量
前进量
1、直线斜率的定义: a 我们把一条直线的倾斜角 的正切值叫做这
条直线的斜率。
用小写字母 k 表示,即:
k tan a
(1)是否每条直线都有倾斜角? (2)是否每条直线都有斜率?
2、探究:由两点确定的直线的斜率
设直线l经过两点P1(x1, y1), P2(x2, y2), 求此直线的斜率.
综上所述,我们得到经过两点P1(x1, y1), P2 (x2, y2 ) (x1 x2 )的直线的斜率公式:
k = y2 - y1 x2 - x1
例1:
(1)直线l1的倾斜角a1=30o, 直线l1与l2垂直 求l1与l2的斜率.
(2)已知直线l经过点A(0,1),B(
1 sinq
,2),
求l的倾斜角的取值范围.
例2 : 已知直线l过原点O,且与线段MN相交,又 M(-2,4),N(3,2)
(1)求直线OM ,ON,MN的斜率.
(2)设M, N , P(4,a)三点共线, 求a的值.
(3)求直线l的斜率的取值范ቤተ መጻሕፍቲ ባይዱ.
(4)若MN
与l交与点P(x,y),求
直线的倾斜角与斜率

直线的倾斜角与斜率直线的倾斜角和斜率都是用来表示直线倾斜程度的量.倾斜角是从“形”这个侧面来刻 画直线倾斜程度的,是一个几何量;而斜率则是从“数”这个侧面来表示直线倾斜程度的, 是一个数量.它们之间既有联系又有区别.【倾斜角】当直线l 与x 轴相交时,x 轴的正方向与直线l 向上方向之间所成的角α,叫做直线l 的倾斜角. 规定.当直线l 与x 轴平行或重合时,直线的倾斜角为0.倾斜角的取值范围:α∈[0,π).【斜率】当直线l 的倾斜角α≠π2时,α的正切值叫做直线l 的斜率.记作k=tanα.特别地,当α=π2时,直线的斜率不存在.注意:任何直线都有一个确定的倾斜角α,且α∈[0,π);但是并非任何直线都有斜率,如当α=π2时,其斜率就不存在.【斜率与倾斜角间的函数关系】k=tan α,α∈[0,π)且α≠π2.其对应的函数图像如图3.1—1所示.在处理已知斜率求倾斜角或已知倾斜角的关系寻求斜率的相应关系 时,要充分地利用图3.1—1来“看图说话”.k >0⇔α为锐角;k <0⇔α为钝角.【斜率的两种求法】1.当已知倾斜角α且α≠π2时,利用k=tanα求之.2.当已知两点的坐标A(x 1,y 1),B(x 2,y 2)时,利用 k =y 2−y1x 2−x 1(x 1≠x 2)求之.例1.(1)已知直线的倾斜角为α,且sinα= 45,则此直线的斜率为( ).A.43. B.− 43. C.± 43. D ± 34.(2)若过P (1-a ,1+a )和Q (3,2a )的直线的倾斜角为钝角,那么实数a 的取值范围是_ . 解:(1) ∵ 直线的倾斜角α∈[0,π)且sinα=45,∴ cos α=±35,∴ k=tanα=± 43. 应选C.(2)由已知有k PQ =a−12+a ,∵ 直线PQ 的倾斜角为钝角,∴ k PQ <0,解得a ∈(-2,1).例2.(1)若直线l 的斜率k=1-m 2(m ∈R),求直线l 的倾斜角α的取值范围. (2)若直线l 的倾斜角α∈[π6,2π3),求直线l 斜率的取值范围.解:(1)∵ 直线l 的斜率k=1-m 2(m ∈R), ∴ 直线l 斜率k≤1,结合图3.1—1知, 直线l 的倾斜角α的取值范围为α∈[0,π4]∪(π2,π).O xy。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15页/共23页
由两点确定的直线的斜率:
倾斜角是锐角时 k tan
y
y2
y1
能不能当构造α为锐角时,
一个直角三
P2(x2, y角2) 形去求? P2 P1Q
Q(x2, y1)
P1(x1, y1)
在RtP2P1Q中
o x1
x2 x
0 k
tan
tan P2P1Q
QP2 P1Q
y2 x2
y1 x1
8
第8页/共23页
练习:下列图中标出的直线的倾斜角对不对?
y
o x
(1)
y
o x
(2)
y
o x
(3)
y
ox
(4)
9
第9页/共23页
日常生活中,还有没有表示倾斜程度的量?
坡度(比)
升高量 前进量
10
第10页/共23页
结论:坡度越大,楼梯越陡. 11 第11页/共23页
二、直线的斜率:
设直线的倾斜程度为k
我们知道,两点确定一条直线.一点能确定一 条直线的位置吗?已知直线 l 经过点P,直线 l 的 位置能够确定吗?
y
l
OP
x
5
第5页/共23页
l1
问题引入
过一点P可以作无数条直线l 1, l 2 , l 3 ,…它 们都经过点P ,这些直线区别在哪里呢?
y l3
l2
l1
OP
x
6
第6页/共23页
一、直线的倾斜角:
.A
.
.
. . o.
.
.
.
x
C
kCA
2
(2) 40
ห้องสมุดไป่ตู้4 4
1
kAB 0∴直线AB的倾斜角为零
kBC 0 ∴直线BC的倾斜角为钝角
kCA 0 ∴直线CA的倾斜角为锐角
19
第19页/共23页
练习:已知P1(1,2), P2 (x,3), P3(3,1)在一条 直线上, 求x的值.
解: P1, P2 , P3在一条直线上
大家对于水上滑梯陌生吗
1
第1页/共23页
坐哪个滑梯更刺激,速度更快?为什么?
2
第2页/共23页
问题引入
容易看出,它们的倾斜程度不同.怎样描述直 线的倾斜程度呢?
y
l
OP
x
3
第3页/共23页
问题引入
对于平面直角坐标系内的一条直线 l ,它的位 置由哪些条件确定?
y
l
O
x
4
第4页/共23页
问题引入
21
第21页/共23页
作业
• P89 习题3.1 2. 3.
22
第22页/共23页
感谢您的欣赏
23
第23页/共23页
1、定义:
y
当直线l与x轴相交时,
我们取x轴作为基准,x轴 正向与直线l向上方向之间 o
所成的角 叫做直线的
倾斜角。
l
x
规定:1.当直线与x轴平行或重合时, 00
2.当直线与x轴垂直时, 900
7
第7页/共23页
按倾斜角分类,直线可分几类?
y
p
l
o
x
y
l
p
o x
y
ly
p
o
x
p
o
x
l
2、范围: 0 a 180
(2) 直线的斜率可以通过直线上任意两点的坐标来表示
(3) 与两点的顺序无关; 18 第18页/共23页
例2:如图,已知A(4,2)、B(-8,2)、C(0,-2), 求直线AB、BC、CA的斜率,并判断这些 直线的倾斜角是什么角?
解:k AB
22 84
0
kBC
22 0 (8)
4 8
1 2
y.
B
x1 x2 x2 x1
17
第17页/共23页
三、直线的斜率公式:
经过两点 P1( x1, y1), P2 ( x2 , y2 ) ( x1 x2 )
的直线的斜率公式:
k y2 y1 (或k y1 y2 )
x2 x1
x1 x2
公式的特点: P2 P1
P1 P2
(1) 当x1=x2时,公式不适用,此时α=900
4a 120 k tan120 3
5a 150 k tan150 3
3
13
第13页/共23页
是否每条直线都有斜率? 0 a 180
1.如果倾斜角是0? k=0
2.如果倾斜角是直角? k不存在
3.如果倾斜角是锐角? k tan 0
且角越大k越大
4.如果倾斜角是钝角? k tan 0
16
第16页/共23页
倾斜角是钝角时
当α为钝角时,
180 ,
y
tan tan(180 )
y2
P2 (x2, y2 )
tan
y1
P1(x1, y1)
Q(x2, y1)
o x2 x1 x
在RtP2QP1中
tan
P2Q P1Q
y2 y1 x1 x2
0 k tan y2 y1 y2 y1
k AC
CB AB
tan
A
C升
高 量
B
前进量
1、定义:
我们把一条直线的倾斜角 的正切值
叫做这条直线的斜率.
用小写字母 k 表示,即: k tan
12
第12页/共23页
例题:已知直线的倾斜角,求直线的斜率:
1a 30 k tan30 3 3
2a 45 k tan 45 1
3a 60 k tan 60 3
k k P1P2
P2 P3
即3 2 13 x 1 3 x
x 7. 3
20
第20页/共23页
小结 ① 经历倾斜角这个反映倾斜程度的几何量的形成 过程,能自然过渡到倾斜角的概念。 ② 通过对坡角、坡度概念回顾,经过知识迁移到 直线 的斜率中,并得到了斜率的定义。 ③ 经历用代数方法刻画直线斜率的过程,推导出 过已知两点的 直线的斜率坐标公式。
且角越大k越大 14
第14页/共23页
y
1
- - 3
2
2
-1 0 2
y tan x
3
2
x
练习:关于直线的倾斜角和斜率,其中_D_E_F _
说法是正确的. A.任一条直线都有倾斜角,也都有斜率; B.直线的倾斜角越大,它的斜率就越大;
C.平行于x轴的直线的倾斜角是0或π;
D.两直线的斜率相等,它们的倾斜角相等 E.直线斜率的范围是(-∞,+∞).. F. 一定点和一倾斜角可以唯一确定一条直线