高等数学二答案
高等数学2(下册)试题答案以及复习要点汇总(完整版)

高等数学(2)试题答案以及复习要点汇总一. 选择题 (每题3分,共15分)1. 设(,)f x y 具有一阶连续偏导数,若23(,)f x x x =,224(,)2x f x x x x =-,则2(,)y f x x = [ A ](A) 3x x + ; (B) 2422x x + ; (C) 25x x + ; (D) 222x x + 。
解:选A 。
23(,)f x x x = 两边对 x 求导:222(,)(,)23x y f x x f x x x x +⋅=,将 224(,)2x f x x x x =- 代入得242222(,)3y x x xf x x x -+= ,故 23(,)y f x x x x =+ 。
2.已知()()dy y x x by dx x y axy 22233sin 1cos +++-为某二元函数的全微分,则a 和b 的值分别为 [ C ](A) –2和2; (B) –3和3;(C)2和–2; (D) 3和–3;解:选C 。
x y axy yP xy x by x Q cos 236cos 22-=∂∂=+=∂∂ 2,2=-=a b3. 设∑为曲面z =2-(x 2+y 2)在xoy 平面上方的部分,则⎰⎰∑=zdS I =[ D ]()⎰⎰-+-2202220412)(r rdr r r d A πθ; ()()⎰⎰+-202220412rdr r r d B πθ; ()()⎰⎰-202202rdr r d C πθ; ()()⎰⎰+-202220412rdr r r d D πθ 。
解:选D 。
()⎰⎰+-=202220412rdr r r d I πθ 。
4. 设有直线410:30x y z L x y --+=⎧⎨+-=⎩,曲面222z x y z =-+在点(1,1,1)处的切平面∏,则直线L 与平面∏的位置关系是: [ C ](A) L ⊂∏; (B) //L ∏; (C) L ⊥∏; (D) L 与∏斜交 。
高等数学二(含答案)

高等数学(二)一、选择题1函数1ln xy x-=的定义域是 ( D ) ](0,1) B (0,1)(1,4)C (0,4) D (0,1)(1,4A ⋃⋃2 设2,0,(x)sin ,0a bx x f bx x x ⎧+≤⎪=⎨>⎪⎩ 在x=0处连续,则常数a ,b 应满足的关系是 ( C )A a<bB a>bC a=bD a ≠b3 设(sin )cos 21f x x =+ 则(sin )(cos )f x f x += ( D ) A 1 B -1 C -2 D 24 若(x)xln(2x)f = 在0x 处可导,且'00()2,()f x f x ==则 ( B )221 B C D e 2e A e5 设(x)f 的一个原函数为xlnx ,则(x)dx xf =⎰ ( B )22221111x (lnx)C B x (lnx)C24421111C x (lnx)CD x (lnx)C4224A ++++-+-+6 设'(x)(x 1)(2x 1),x (,)f =-+∈-∞+∞ ,则在(12,1)内,f (x )单调( B ) A 增加,曲线y=f (x )为凹的 B 减少,曲线y=f (x )为凹的 C 减少,曲线y=f (x )为凸的 D 增加,曲线y=f (x )为凸的 7 设(0,0)z(x y)e ,xy z y ∂=+=∂则( C ) A -1 B 1 C 0 D 2 8 设2239k x dx =⎰ ,则k= ( 0 )9 011lim sin sin x x x x x →⎛⎫+= ⎪⎝⎭( B ) A 0 B 1 C 2 D +∞ 10 {A ,B ,C 三个事件中至少有一个发生}这一事件可以用事件的关系表示为( A )A A ⋃B ⋃C B A ⋂B ⋃C C A ⋃B ⋂CD A ⋂B ⋂C 二 填空题11 设21(x)x f x=+ 则"(1)f =____4_____12 与曲线3235y x x =+- 相切且与直线6x+2y-1=0平行的直线方程__y=-3x-6__ 13()sin x x dx +=⎰21cos 2x x C -+ 14 设ln ,z y x dz ==则 _y/x*dx+lnxdy_________ 15 0sin 2lim3x xx→= __2/3_______16函数z = 的定义域为__{(x,y)|x 2+y 2≤1}______ 17 设函数y=xcosx ,则y ’=_cosx-xsinx____18 设函数332,0(x),0x x f x x +≤⎧=⎨>⎩ 则f (0)=____2__________19 曲线32113y x x =-+ 的拐点是__(1,1/3)_________20 若2n x y x e =+ 则(n)y = ___22n n x n A e + _____ 三、计算题 21 求极限02sin 2lim sin 3x x xx x→+-解:原式=00224lim lim 232x x x x xx x x→→+==---22计算lim x x →+∞22 lim limlimx x x x →+∞====解:原式 1=23 计算sin x xdx ⎰cos cos cos cosx sinx xd x x x xdx x =-=-+=-+⎰⎰解:原式24 计算4211xdx xπ++⎰442200424021=dx dx 1+x 1+x 1 =arctan ln(1x )21 =arctan ln(1)4216x x ππππππ+++++⎰⎰解:原式25 设z (x ,y )是由方程2224x y z z ++= 所确定的隐函数,求dz222(x,y,z)x 42,2,242242224222F y z z F F Fx y z x y z F z x x x F x z z z F z x y y F y z z z z z x y dz dx dy dx dyx y z z=++-∂∂∂===-∂∂∂∂∂∂=-=-=∂∂--∂∂∂∂=-=-=∂∂--∂∂∂∴=+=+∂∂--解:设则有:26 设sin x y e x =,证明"'220y y y -+='""'sin cos sin cos cos sin 2cos 222cos 2(sin cos )2sin =0x x x x x x x xxxxy e x e xy e x e x e x e x e x y y y e x e x e x e x =+=++-=∴-+=-++解:27 (1)求曲线x y e = 及直线x=1,x=0,y=0所围成的图形D 的面积S (2)求平面图形D 绕x 轴旋转一周所成旋转体的体积V110011222001e e 1e =ee 222xx x xx x dx ee y e dx ππππ===-==-⎰⎰解:由题知曲线直线的交点:(1,) 则(1) (2))和(28 讨论函数21x y x=+ 的单调区间和凹凸区间,并求出极值和拐点的坐标。
高等数学2-习题集(含答案)

《高等数学2》课程习题集【说明】:本课程《高等数学2》(编号为01011)共有计算题1,计算题2等多种试题类型,其中,本习题集中有[]等试题类型未进入。
一、计算题11. 计算 行列式6142302151032121----=D 的值。
2. 计算行列式5241421318320521------=D 的值。
3.用范德蒙行列式计算4阶行列式12534327641549916573411114--=D 的值。
4. 已知2333231232221131211=a a a a a a a a a , 计算:333231232221131211101010a a a a a a a a a 的值。
5.计算行列式 0111101111011110=D 的值。
6. 计算行列式199819981997199619951994199319921991 的值.7. 计算行列式50007061102948023---=D 的值. 8. 计算行列式3214214314324321=D 的值。
9. 已知10333222111=c b a c b a c b a ,求222111333c b a c b a c b a 的值. 10. 计算行列式x a a a xa a ax D n=的值。
11.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=2100430000350023A ,求1-A 。
12.求⎪⎪⎪⎭⎫ ⎝⎛=311121111A 的逆.13.设n 阶方阵A 可逆,试证明A 的伴随矩阵A *可逆,并求1*)(-A 。
14. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=1100210000120025A 的逆。
15. 求⎪⎪⎪⎭⎫⎝⎛-----=461351341A 的逆矩阵。
16. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=2300120000230014A 的逆。
17. 求⎪⎪⎪⎭⎫⎝⎛--=232311111A 的逆矩阵。
18.求矩阵⎪⎪⎪⎭⎫⎝⎛-=101012211A 的逆.19. 求矩阵112235324-⎛⎫⎪=- ⎪ ⎪-⎝⎭A 的逆。
高等数学基础教材答案第二版

高等数学基础教材答案第二版《高等数学基础教材答案第二版》第一章导数与微分1.1 导数的定义与计算方法导数的定义:对于函数f(x),在点x处的导数表示为f'(x),可以用以下公式计算:f'(x) = lim(h→0) [(f(x+h) - f(x))/h]1.2 导数的几何意义与物理应用通过导数的计算,我们可以得到函数在某一点处的切线斜率,进而了解函数的增减性和凸凹性。
在物理学中,导数也可以表示速度、加速度等物理量。
第二章不定积分与定积分2.1 不定积分不定积分,又称原函数或反导数,可以通过求导数的逆运算得到。
不定积分的符号表示为∫f(x)dx。
2.2 定积分定积分是用来计算曲线下的面积或求解物理问题的有效工具。
定积分的符号表示为∫[a, b] f(x)dx,表示函数f(x)在区间[a, b]上的面积。
第三章一元函数的应用3.1 曲线的切线与法线曲线的切线可以通过求导数得到切线的斜率,进而确定切线方程。
法线垂直于切线,并且切线和法线的斜率乘积为-1。
3.2 最值与最值问题通过求导数可以找到函数的极值点,进而确定函数的最大值和最小值。
在实际问题中,最值问题经常出现,如求解最优化问题等。
第四章多元函数与偏导数4.1 多元函数的概念多元函数是指依赖于多个变量的函数,如f(x, y)。
多元函数的图像可以用三维坐标系表示。
4.2 偏导数的定义与计算偏导数表示多元函数对某个变量的导数,其他变量视为常数。
偏导数的符号表示为∂f/∂x。
第五章重积分与曲线积分5.1 二重积分二重积分是对平面区域上的函数进行求和。
可以通过迭代积分或转换为极坐标系下的积分进行计算。
5.2 曲线积分曲线积分是沿曲线对函数进行积分的操作。
根据曲线的参数方程或者标量函数方程进行计算。
第六章数项级数6.1 数列与数列的极限数列是指一系列按照一定顺序排列的数,可以通过递推公式给出。
数列的极限是指当n趋向于无穷大时,数列的变化趋势。
2021年成人高考(专科起点升本科) 高等数学(二)试题及参考答案

2021年成人高等学校专升本招生全国统一考试高等数学(二)一㊁选择题:1~10小题,每小题4分,共40分㊂在每小题给出的四个选项中,只有一项是符合题目要求的㊂㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀1.设lim xң0tan mx x=2,则m=A.0B.12C.1D.22.设y=e x+cos x,则yᶄ=A.e x+cos xB.e x-cos xC.e x-sin xD.e x+sin x3.设y=x tan x,则yᶄ=A.tan x+x cos2xB.x cos2xC.tan x+x1+xD.tan x+x1+x224.设y=11+x,则yᵡ=A.-2(1+x)3B.-1(1+x)3C.1(1+x)3D.2(1+x)35.曲线y=x3+1的拐点为A.(0,0)B.(0,1)C.(-1,0)D.(1,1)6.设f(x)的一个原函数为cos2x,则f(x)=A.-sin2xB.sin2xC.-2sin2xD.2sin2x7.设ʏa-a(x2+x3)d x=23,则a=A.-2B.-1C.1D.28.设z=sin(x-3y2),则∂z∂y=A.-6y cos(x-3y2)B.-6y sin(x-3y2)C.6y cos(x-3y2)D.6y sin(x-3y2)9.设z=f(x2+y),其中f具有二阶导数,则∂2z∂x∂y=A.xfᵡ(x2+y)B.2xfᵡ(x2+y)C.yfᵡ(x2+y)D.2xyfᵡ(x2+y)10.已知事件A与B互斥,且P(A)=0.5,P(B)=0.4,则P(A+B)=A.0.4B.0.5C.0.7D.0.9二㊁填空题:11~20小题,每小题4分,共40分㊂11.limx ң0sin 3x2x=.12.已知函数f (x )=(1+x )1x,x ʂ0,a ,x =0{在x =0处连续,则a =.13.limx ң+ɕ2x 2-1x 2+x +2=.14.设y =cos x +1x(),则y ᶄ(1)=.15.设f1x()=x 2+1x+1,则f ᶄ(x )=.16.曲线y =2x 3+x -1在点(0,-1)处法线的斜率为.17.ʏ14+x 2d x =.18.ʏx (x 2-1)d x =.19.ʏ10(x +e x)d x =.20.设函数f (x ,y )=x +y ,则f (x +y ,x -y )=.三㊁解答题:21~28小题,共70分㊂解答应写出文字说明㊁证明过程或演算步骤㊂21.(8分)计算limx ң0cos x -1x 2.22.(8分)求函数f (x )=e-x 2的单调区间和极值.23.(8分)求ʏ(2arcsin x+1)d x.24.(8分)计算ʏ411x+x d x.25.(8分)设离散型随机变量X的概率分布为X0123P a3a4a2a其中a为常数.(1)求a;(2)求EX.26.(10分)设y=y(x)是由方程e y=x2+y所确定的隐函数,求d y d x.27.(10分)设D为由直线x+y-4=0与曲线y=3x所围成的闭区域.(1)求D的面积;(2)求D绕x轴旋转一周所得旋转体的体积.28.(10分)求函数f(x,y)=x2+y2在条件x2+y2-xy-1=0下的最大值和最小值.2021年成人高等学校专升本招生全国统一考试高等数学(二)试题参考答案一㊁选择题1.D㊀㊀㊀㊀㊀2.C㊀㊀㊀㊀㊀3.A㊀㊀㊀㊀㊀4.D㊀㊀㊀㊀㊀5.B6.C7.C8.A9.B10.D二㊁填空题11.3212.e13.214.015.-2x3+1 16.-117.12arctan x2+C18.x44-x22+C19.e-1220.2x三㊁解答题21.解:lim xң0cos x-1x2=lim xң0-sin x2x=-1222.解:函数f(x)的定义域为(-ɕ,+ɕ),fᶄ(x)=-2x e-x2.令fᶄ(x)=0,得x=0.当x<0时,fᶄ(x)>0;当x>0时,fᶄ(x)<0.所以f(x)的单调递增区间为(-ɕ,0),单调递减区间为(0,+ɕ).f(x)的极大值为f(0)=1.23.解:ʏ(2arcsin x+1)d x=2x arcsin x-2ʏx d(arcsin x)+x=2x arcsin x-ʏ2x1-x2d x+x=2x arcsin x+21-x2+x+C.24.解:令t=x,则x=t2,d x=2t d t.当x=1时,t=1;当x=4时,t=2.因此ʏ411x+x d x=ʏ212t t2+t d t=2ʏ211t+1d t=2ln(t+1)21=2ln32.25.解:(1)由概率分布的性质知a +3a +4a +2a =1.所以a =0.1.(2)EX =0ˑ0.1+1ˑ0.3+2ˑ0.4+3ˑ0.2=1.7.26.解:方程两边对x 求导,得e y d y d x =2x +d y d x.所以d y d x =2xe y -1.27.解:由x +y -4=0,y =3x ìîíïïïï解得交点坐标为(1,3),(3,1).(1)D 的面积S =ʏ314-x -3x ()d x =4x -x 22-3ln x()31=4-3ln 3.(2)D 绕x 轴旋转一周所得旋转体的体积V x =πʏ31(4-x )2-3x ()2éëêêùûúúd x =π-13(4-x )3+9x éëêêùûúú31=8π3.28.解:设F (x ,y ,λ)=x 2+y 2+λ(x 2+y 2-xy -1),则∂F ∂x=2x +λ(2x -y ),㊀∂F ∂y =2y +λ(2y -x ),㊀∂F ∂λ=x 2+y 2-xy -1.由∂F ∂x =0与∂F ∂y =0解得x =y 或x =-y ,代入∂F ∂λ=0得f (x ,y )在条件x 2+y 2-xy -1=0下可能的极值点为(1,1),㊀(-1,-1),㊀33,-33(),㊀-33,33().因为由题设可知最大值和最小值一定存在,所以最大值和最小值就在这些可能的极值点处取得.又f (1,1)=f (-1,-1)=2,f33,-33()=f -33,33()=23,所以所求的最大值为2,最小值为23.。
专升本考试:2022高等数学二真题及答案(6)

专升本考试:2022高等数学二真题及答案(6)1、()(单选题)A. yx y-1B. yx y+1C. x y lnxD. x y试题答案:A2、 ( ) (单选题)A. 1B. 3C. 5D. 7试题答案:B3、二元函数z=x 2+y 2-3x-2y的驻点坐标是()(单选题)A.B.C.D.试题答案:D4、()(单选题)A. (3,-1,2)B. (1,-2,3)C. (1,1,-1)D. (1,-1,-1)试题答案:A5、()(单选题)A. 0B. 1C. 2D. +∞试题答案:B6、 ( ) (单选题)A. cosxB. -cosXC. 2+cosXD. 2-cosx试题答案:A7、函数ƒ(x)=ln(x 2+2x+2)的单调递减区间是()(单选题)A. (-∞,-1)B. (-1,0)C. (0,1)D. (1,+∞)试题答案:A8、(单选题)A. 2B. 1C. 1/2试题答案:C9、PowerPoint 2010在幻灯片浏览视图下,不能进行的操作是()。
(单选题)A. 排列幻灯片B. 删除幻灯片C. 编辑单张幻灯片的具体内容D. 改变幻灯片的版式试题答案:C10、曲线y=e 2x-4x在点(0,1)处的切线方程是()(单选题)A. 2x-y-1=0B. 2x+y-1=0C. 2x-y+1=0D. 2x+y+1=0试题答案:B11、()(单选题)A. yx y-1B. yx y+1C. x y lnxD. x y试题答案:A12、 ( ) (单选题)A. -lB. 0C. 1试题答案:C13、()(单选题)A. 0B. 1C. 2D. 4试题答案:A14、 ( ) (单选题)A. 1B. 3C. 5D. 7试题答案:B15、方程x 2+y 2-2z=0表示的二次曲面是()(单选题)A. 柱面B. 球面C. 旋转抛物面D. 椭球面试题答案:C16、()(单选题)A. 一lB. 0C. 1试题答案:C17、 ( ) (单选题)A. 0B. 1C. 2D. 3试题答案:C18、曲线y=e 2x-4x在点(0,1)处的切线方程是()(单选题)A. 2x-y-1=0B. 2x+y-1=0C. 2x-y+1=0D. 2x+y+1=0试题答案:B19、()(单选题)A. y 2sin(xy)B. y 2cos(xy)C. -y 2sin(xy)D. -y 2cos(xy)试题答案:D20、设区域D={(x,y)(0≤y≤x 2,0≤x≤1),则D绕X轴旋转一周所得旋转体的体积为()(单选题)A.B.D. π试题答案:A21、()(单选题)A. 0B.C.D.试题答案:B22、若y=1+cosx,则dy=()(单选题)A. (1+sinx)dxB. (1-sinx)dxC. sinxdxD. -sinxdx试题答案:D23、 ( )(单选题)A.B.C.D.试题答案:B24、 ( ) (单选题)A. -lB. 0D. 2试题答案:C25、()(单选题)A.B.C.D.试题答案:B26、()(单选题)A. 0B. 1C. 2D. 4试题答案:A27、(单选题)A. -lB. 0C. 1D. 2试题答案:C28、下列函数中,在x=0处不可导的是()(单选题)A.B.C. y=sinxD. y=x 2试题答案:B29、设区域D={(x,y)(0≤y≤x 2,0≤x≤1),则D绕X轴旋转一周所得旋转体的体积为()(单选题)A.B.C.D. π试题答案:A30、当x→0时,下列各无穷小量中与x 2等价的是()(单选题)A. xsin 2xB. xcos 2xC. xsinxD. xcosx试题答案:C31、()(单选题)A. 2xy+3+2yB. xy+3+2yC. 2xy+3D. xy+3试题答案:C32、()(单选题)A. y 2sin(xy)B. y 2cos(xy)C. -y 2sin(xy)D. -y 2cos(xy)试题答案:D33、()(单选题)A.B.C.D.试题答案:C34、()(单选题)A.B. ƒ(2x)+CC. 2ƒ(2x)+CD.试题答案:A35、()(单选题)A. 0B. 2C. 2ƒ(-1)D. 2ƒ(1)试题答案:A36、()(单选题)A.B.C.D.试题答案:D37、在Word 2010中,插入分节符,应该选择()下的“分隔符”命令。
《高等数学(二)》 作业及参考答案

《高等数学(二)》作业一、填空题1.点A (2,3,-4)在第 卦限。
2.设22(,)sin,(,)yf x y x xy y f tx ty x=--=则 .3。
4.设25(,),ff x y x y y x y∂=-=∂则。
5.设共域D 由直线1,0x y y x ===和所围成,则将二重积分(,)Df x y d σ⎰⎰化为累次积分得 。
6.设L 为连接(1,0)和(0,1)两点的直线段,则对弧长的曲线积分()Lx y ds +⎰= 。
7.平面2250x y z -++=的法向量是 。
8.球面2229x y z ++=与平面1x y +=的交线在0x y 面上的投影方程为 。
9.设22,z u v ∂=-=∂z而u=x-y,v=x+y,则x。
10.函数z =的定义域为 。
11.设n 是曲面22z x y =+及平面z=1所围成的闭区域,化三重积为(,,)nf x y z dx dy dz ⎰⎰⎰为三次积分,得到 。
12.设L 是抛物线2y x =上从点(0,0)到(2,4)的一段弧,则22()Lx y dx -=⎰。
13.已知两点12(1,3,1)(2,1,3)M M 和。
向量1212M M M M =的模 ;向量12M M 的方向余弦cos α= ,cos β= ,cos γ= 。
14.点M (4,-3,5)到x 轴的距离为 。
15.设sin ,cos ,ln ,dzz uv t u t v t dt=+===而则全导数。
16.设积分区域D 是:222(0)x y a a +≤>,把二重积分(,)Df x y dx dy ⎰⎰表示为极坐标形式的二次积分,得 。
17.设D 是由直线0,01x y x y ==+=和所围成的闭区域,则二重积分Dx d σ⎰⎰= 。
18.设L 为XoY 面内直线x=a 上的一段直线,则(,)Lp x y dx ⎰= 。
19.过点0000(,,)p x y z 作平行于z 轴的直线,则直线方程为 。
2021年成人高等《高等数学(二)》(专升本)真题及答案

2021年成人高等《高等数学(二)》(专升本)真题及答案1.选择题(江南博哥)A. 0B.C. 1D. 2正确答案:D参考解析:2.选择题设y=ex+cosx,则y'=A. ex+cosxB. ex-cosxC. ex-sinxD. ex+sinx正确答案:C参考解析:3.选择题设y=xtanx,则y'=A.B.C.D.正确答案:A参考解析:4.选择题A.B.C.D.正确答案:D参考解析:5.选择题曲线y=x3+1的拐点为A. (0,0)B. (0。
1)C. (-1,0)D. (1,1)正确答案:B参考解析:的拐点为(0,1).6.选择题设f(x)的一个原函数为cos2x,则f(x)=A. -sin2xB. sin2xC. -2sin2xD. 2sin2x正确答案:C参考解析:由题可知f(x)=(cos2x)'=-2sin2x.7.选择题A. -2B. -lC. 1D. 2正确答案:C参考解析:8.选择题A. -6ycos(x-3y2)B. -6ysin(x-3y2)C. 6ycos(x-3y2)D. 6ysin(x-3y2)正确答案:A参考解析:9.选择题A. xf”(x2+y)B. 2xf”(x2+y)C. yf”(x2+y)D. 2xyf”(x2+y)正确答案:B参考解析:10.选择题已知事件A与B互斥,且P(A)=0.5,P(B)=0.4,则P(A+B)=A. 0.4B. 0.5C. 0.7D. 0.9正确答案:D参考解析:事件A与B互斥,故P(AB)=0,因此P(A+B)=P(A)+P(B)=0.5+0.4=0.9.11.填空题正确答案:参考解析:【答案】12.填空题正确答案:参考解析:【答案】e13.填空题正确答案:参考解析:【答案】214.填空题正确答案:参考解析:【答案】o15.填空题正确答案:参考解析:【答案】16.填空题曲线y=2x3+x-1在点(0,-1)处法线的斜率为_____.正确答案:参考解析:【答案】-1y'=6x2+1,故y'(0)=1,因此曲线在点(0,-1)处的法线的斜率为-1.17.填空题正确答案:参考解析:【答案】18.填空题正确答案:参考解析:【答案】19.填空题正确答案:参考解析:【答案】20.填空题设函数f(x,y)=x+y,则f(x+y,x—y)=_____.正确答案:参考解析:【答案】2xf(x+y,x—y)=x+y+x—y=2x.21.解答题参考解析:22.解答题求函数f(x)=e-x2的单调区间和极值.参考解析:23.解答题参考解析:24.解答题参考解析:25.解答题设离散型随机变量X的概率分布为其中“为常数.(1)求a;(2)求E(X).参考解析:(1)由概率分布的性质知a+3a+4a+2a=1,所以a=0.1.(2)E(X)=0×0.1+1×0.3+2×0.4+3×0.2 =1.7.26.解答题参考解析:27.解答题(1)求D的面积;(2)求D绕x轴旋转-周所得旋转体的体积.参考解析:(1)(2)28.解答题求函数f(x,y)=x2+y2在条件x2+y2-xy-1=0下的最大值和最小值.参考解析:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学(二)答案
二. 填空题:(每小题4分,共40分)
(1). 1, (2).
41, (3). 2, (4). 2, (5). x
1, (6). x
e , (7). ()x
f -, (8).1, (9). 33
2π, (10). 1。
三.计算题:(每小题6分,共60分) 1.解.
()()()()(
)()()()()()()()()
x b x a x b x a x b x a x b x a x b x a x b x a x x --+++---++=---+++∞→+∞
→(lim
lim
….3分
()
b a x b x a x b x a b a x +=⎪
⎭
⎫
⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++=+∞
→11112lim
. ……….6分
2.解.()17517372lim 75732lim +⎪⎭
⎫ ⎝⎛-+⎪⎭⎫
⎝⎛+⎪⎭⎫ ⎝⎛=+-++∞
→∞→n n
n
n n n n
n n n . ……..3分 =1. ……6分
3.解法一.()
dx e dy b ax '
sin += ……..3分
dx e b ax a b ax )sin()cos(++= ………6分
解法二.()
()()b ax d e
dy b ax +=+sin sin ………3分
dx e b ax a b ax )sin()cos(++=. ………6分
4.解.,2,22
x x x x xe e dx
y d xe e dx dy +=+= …….4分 所以
20
2
2==x dx y
d . ……….6分
5.解.(1)
()11sin 0
0=--
==x x x
y xy ,故10-==x y , …..3分
(2)()()01
cos 2=--+⎪⎭
⎫ ⎝⎛+x y dx dy xy dx dy x y , ……..4分 于是()()
01cos 0
20=--+⎪⎭
⎫
⎝⎛
+==x x x y dx dy xy dx dy x
y ,即
20
==x dx
dy . ……..6分
6.解.()
⎰⎰
++=
+113
113
332
x d x dx x x
……3分 ()
C x ++=233
19
2 . ……6分 7.解.
()()()⎰⎰⎰⎰⎰+=+=2
1
10
2
21
10
20
2xdx dx x
dx x f dx x f dx x f ……….3分
3
10
3313
21
2
1
3=+=
+=x x . ……….6分 8.解.x
e e x
dt e e x x x x t t x sin 2lim
cos 1)2(lim
00
-+=--+-→-→⎰
………3分
0cos lim
0=-=-→x
e e x
x x . …….6分
9解.特征方程02
=+k k ,特征值为1,021-==k k , 2分 故通解为 x
e
c c y -+=21,其中21,c c 为任意数. ………6分
10.解. 因为()())11(114321ln 1432≤<-++-++-+-=++x n x x x x x x n n ΛΛ, ……3分 所以,()2
2
1ln x x x =+())1
1432(1
432ΛΛ++-++-+-+n x x x x x n n =())11(114323
6543
≤<-++-++-+-+x n x x x x x n n ΛΛ …….6分
四.综合题.(共30分,其中第1题12分,第2题12分,第3题6分) 1.解法一. (1).()⎰-=
1
dx e e S x
……….4分
()
1110
=+-=-=e e e ex x
. ………..6分
(2).()⎰-=1
22
dx e e
V x π
………..9分
()()
12
121212221
022+=⎥⎦⎤⎢⎣⎡--=⎪⎭⎫ ⎝⎛-=e e e e x e x π
ππ ………..12分
.解法二.(1)⎰
-=1
0dx e e S x
……….3分
110
=-=x e e . ………..6分
(2). ⎰
-=1
22
dx e e V x
ππ (9)
()
12
2
2
1
22
+=
-
=e
e
e x π
π
π. …………12分
2.解
()x e dx
dy
x -=-1,得到驻点11=x , ………1分 令()022
2=-=-x e dx y d x
,得到22=x , ……2分
…….7分
由此求得曲线上极大值点),1(1
-e A 及拐点)2,2(2
-e B , .9分
于是直线AB 的中点)2
,23(21
--+e e P , …….10分
故所求的直线方程为21
2
--+=e e y . ……..12分 3.证明.因()x f y =在点0x 处可导,所以 ()0'0lim
x f x
y
x =∆∆→∆,
从而()00lim lim lim lim 0'0
000=⋅=∆∆∆=∆∆∆=∆→∆→∆→∆→∆x f x x y
x x y y x x x x , ……3分
即()x f y =在点0x 处连续. …….4分 反例,如x y =在点0x 处连续,但不可导. ……..6分。