高等数学(二)答案A
高等数学2(下册)试题答案以及复习要点汇总(完整版)

高等数学(2)试题答案以及复习要点汇总一. 选择题 (每题3分,共15分)1. 设(,)f x y 具有一阶连续偏导数,若23(,)f x x x =,224(,)2x f x x x x =-,则2(,)y f x x = [ A ](A) 3x x + ; (B) 2422x x + ; (C) 25x x + ; (D) 222x x + 。
解:选A 。
23(,)f x x x = 两边对 x 求导:222(,)(,)23x y f x x f x x x x +⋅=,将 224(,)2x f x x x x =- 代入得242222(,)3y x x xf x x x -+= ,故 23(,)y f x x x x =+ 。
2.已知()()dy y x x by dx x y axy 22233sin 1cos +++-为某二元函数的全微分,则a 和b 的值分别为 [ C ](A) –2和2; (B) –3和3;(C)2和–2; (D) 3和–3;解:选C 。
x y axy yP xy x by x Q cos 236cos 22-=∂∂=+=∂∂ 2,2=-=a b3. 设∑为曲面z =2-(x 2+y 2)在xoy 平面上方的部分,则⎰⎰∑=zdS I =[ D ]()⎰⎰-+-2202220412)(r rdr r r d A πθ; ()()⎰⎰+-202220412rdr r r d B πθ; ()()⎰⎰-202202rdr r d C πθ; ()()⎰⎰+-202220412rdr r r d D πθ 。
解:选D 。
()⎰⎰+-=202220412rdr r r d I πθ 。
4. 设有直线410:30x y z L x y --+=⎧⎨+-=⎩,曲面222z x y z =-+在点(1,1,1)处的切平面∏,则直线L 与平面∏的位置关系是: [ C ](A) L ⊂∏; (B) //L ∏; (C) L ⊥∏; (D) L 与∏斜交 。
高等数学二(含答案)

高等数学(二)一、选择题1函数1ln xy x-=的定义域是 ( D ) ](0,1) B (0,1)(1,4)C (0,4) D (0,1)(1,4A ⋃⋃2 设2,0,(x)sin ,0a bx x f bx x x ⎧+≤⎪=⎨>⎪⎩ 在x=0处连续,则常数a ,b 应满足的关系是 ( C )A a<bB a>bC a=bD a ≠b3 设(sin )cos 21f x x =+ 则(sin )(cos )f x f x += ( D ) A 1 B -1 C -2 D 24 若(x)xln(2x)f = 在0x 处可导,且'00()2,()f x f x ==则 ( B )221 B C D e 2e A e5 设(x)f 的一个原函数为xlnx ,则(x)dx xf =⎰ ( B )22221111x (lnx)C B x (lnx)C24421111C x (lnx)CD x (lnx)C4224A ++++-+-+6 设'(x)(x 1)(2x 1),x (,)f =-+∈-∞+∞ ,则在(12,1)内,f (x )单调( B ) A 增加,曲线y=f (x )为凹的 B 减少,曲线y=f (x )为凹的 C 减少,曲线y=f (x )为凸的 D 增加,曲线y=f (x )为凸的 7 设(0,0)z(x y)e ,xy z y ∂=+=∂则( C ) A -1 B 1 C 0 D 2 8 设2239k x dx =⎰ ,则k= ( 0 )9 011lim sin sin x x x x x →⎛⎫+= ⎪⎝⎭( B ) A 0 B 1 C 2 D +∞ 10 {A ,B ,C 三个事件中至少有一个发生}这一事件可以用事件的关系表示为( A )A A ⋃B ⋃C B A ⋂B ⋃C C A ⋃B ⋂CD A ⋂B ⋂C 二 填空题11 设21(x)x f x=+ 则"(1)f =____4_____12 与曲线3235y x x =+- 相切且与直线6x+2y-1=0平行的直线方程__y=-3x-6__ 13()sin x x dx +=⎰21cos 2x x C -+ 14 设ln ,z y x dz ==则 _y/x*dx+lnxdy_________ 15 0sin 2lim3x xx→= __2/3_______16函数z = 的定义域为__{(x,y)|x 2+y 2≤1}______ 17 设函数y=xcosx ,则y ’=_cosx-xsinx____18 设函数332,0(x),0x x f x x +≤⎧=⎨>⎩ 则f (0)=____2__________19 曲线32113y x x =-+ 的拐点是__(1,1/3)_________20 若2n x y x e =+ 则(n)y = ___22n n x n A e + _____ 三、计算题 21 求极限02sin 2lim sin 3x x xx x→+-解:原式=00224lim lim 232x x x x xx x x→→+==---22计算lim x x →+∞22 lim limlimx x x x →+∞====解:原式 1=23 计算sin x xdx ⎰cos cos cos cosx sinx xd x x x xdx x =-=-+=-+⎰⎰解:原式24 计算4211xdx xπ++⎰442200424021=dx dx 1+x 1+x 1 =arctan ln(1x )21 =arctan ln(1)4216x x ππππππ+++++⎰⎰解:原式25 设z (x ,y )是由方程2224x y z z ++= 所确定的隐函数,求dz222(x,y,z)x 42,2,242242224222F y z z F F Fx y z x y z F z x x x F x z z z F z x y y F y z z z z z x y dz dx dy dx dyx y z z=++-∂∂∂===-∂∂∂∂∂∂=-=-=∂∂--∂∂∂∂=-=-=∂∂--∂∂∂∴=+=+∂∂--解:设则有:26 设sin x y e x =,证明"'220y y y -+='""'sin cos sin cos cos sin 2cos 222cos 2(sin cos )2sin =0x x x x x x x xxxxy e x e xy e x e x e x e x e x y y y e x e x e x e x =+=++-=∴-+=-++解:27 (1)求曲线x y e = 及直线x=1,x=0,y=0所围成的图形D 的面积S (2)求平面图形D 绕x 轴旋转一周所成旋转体的体积V110011222001e e 1e =ee 222xx x xx x dx ee y e dx ππππ===-==-⎰⎰解:由题知曲线直线的交点:(1,) 则(1) (2))和(28 讨论函数21x y x=+ 的单调区间和凹凸区间,并求出极值和拐点的坐标。
2024级经管类高数(二)期末试题与解答A

2024级本科高等数学(二)期末试题与解答A(本科、经管类)一、选择题(本大题共5小题,每小题3分,共15分)1.到两点4L-1,0)和8(2,0,-2)距离相等的点的轨迹为(C ).C. x+y-2z-3=0;D.x+y+2z-3=0.2 .微分方程y 〃-2y+y=e'+x 的非齐次特解形式可令为(八).A. Ax:2^+Bx+C ;B. Ae x Λ-Bx+C ;C.Ae x +x 2(Bx+C)↑D.Axe x +Bx+C.3 .函数/®y)=(4y -y2)(6x_“2)的驻点个数为(b ).Λ.9;B.5;C.3; D.1.4.设。
是My 面上以(1,1),(-1,1),为顶点的三角形区域,R 是。
中在第一象限的部分,则积分JJ(XU+COS^xsiny)db=(D).A.2∫∫cos 3xsin ydσ; C.4∫∫(x 3j+cos 3xsin y)dσ;q5 .下列级数中,绝对收敛的级数为(A∑<-ιr ,√b∙T严舄;C∙S(7)i∕;D.∑(-1)H -,-J=.n=l3n=l√11二、填空题(本大题共5小题,每小题3分,共15分)6 .函数/(羽丁)=@心也*2+产)_]11/2\^2^的连续域为,(工,')(<12+'2«].7 .设级数为(。
〃一万)收敛,则Iim(〃“+∫∫2dσ)=3π.”=1 ° χ2+y 2≤∣8 .设Z=In (X+lny ),则,包-包=0.y∂x∂y9 .交换,由,心/(无,丁)①;积分次序得,为:J ;f (x,y )dy.A. x-y-2z-3 = 0;B. x+y-2z + 3 = 0; B. 2∫∫x 3 yJσ ;D ∖D. 0.C ).10 .投资某产品的固定成本为36(万元),且成本对产量X 的改变率(即边际成本)为C ,(x )=2x+40(万元/百台),则产量由4(百台)增至6(百台)时总成本的增值为幽万元.三、试解下列各题(本大题共6小题,每小题8分,共48分)11 .求解微分方程孙'-y=/满意初始条件MT=1的特解.解:分别变量得一^二四(2分)y (y+i )X两端积分得In 上=lnx+InC,即上=CX (5分)y+1y+1由HT=1,得C=;故所求通解为X =工匕或),=—匚(8分)>,+l -2-x13 .z=∕(ei,2),即可微,求自乎.X oxoy解:寺=*/一与月(4分) ∂x X ^=-e x -y f^-f; (8分)∂yX14 .设/(x,y)=xsin(x+y),求九弓弓),&(三)•解:∕r =sin(x+j)+Xcos(x+y),f y =xcos(x+1y)(2分) f xx =2CoS(X +y)-X Sin(X+y) f yy =-xsin(x+y)几弓弓)二一2,启(多9=0(8分)12.设Z = z (x, y )由方程/ +孙- z = 3所确定,求包∂x x=2÷√ry=2->∕e Z=Ix≈2-^y∕e y≈2-∙Je(4分)(8分)(4分) (6分) 解:令尸(x,y,z) = "+Λy -z-3,则15.求嘉级数£心"的收敛区间与和函数.w=l解:收敛半径为R=I,收敛区间为(-覃)(2分)2.=XZnX"T,令S(X)=SnyI,则(4分)/1=1 /1=1 n=l£S(X)必:=£(J。
高等数学A(二)试卷及答案

高等数学A (二)考试试卷一、 填空题(每小题5分,共25分)1. 设2u 1sin ,2xu e x y x y π-=∂∂∂则在(,)处的值为_________。
2. 改变二次积分10(,)x I dx f x y dy =⎰⎰的积分次序,则I=_______________。
3. 设平面曲线Γ为下半圆周y =22()x y ds Γ+⎰=___________。
4. 若级数1n n u∞=∑的前n 项部分和是:1122(21)n S n =-+,则n u =______________。
5. 设)2,5,3(-=a ,(2,1,4)b =,(1,1,1)c =,若c b a ⊥+μλ,则λ和μ满足 。
二、 计算题(每小题10分,共70分)1. 求由方程xyz =(,)z z x y =在点(1,0,1)-处的全微分。
(10分)2. 设21()x t f x e dx -=⎰,求10()f x dx ⎰。
(10分) 3. 计算xzdxdydz Ω⎰⎰⎰,其中Ω是由平面0,,1z z y y ===以及抛物柱面2y x =所围成的闭区域。
(10分)4. 计算dy xy ydx x L22+⎰,其中积分路径L 是xoy 平面上由点(2,0)A -顺次通过点(0,2)B 、(2,2)C 到点(2,4)D 的折线段。
(10分) 5. 把函数xx f 431)(+=展为1-x 的幂级数,并确定其收敛域。
6. 求点)3,2,1(-关于平面014=-++z y x 的对称点。
(10分)7. 要建造一个表面积为108平方米的长方形敞口水池,尺寸如何才能容积最大.。
(10分)三、证明题(5分)若0lim =∞→n n na ,且∑∞=+-+11])1[(n n n na a n 收敛于常数A ,试证明级数∑∞=1n n a 收敛。
答案课程名称:高等数学A(二) 试卷编号:5一、填空题。
(每小题5分,共25分)1.22e π,2.101(,)y dy f x y dx ⎰⎰,3.π,4.1(21)(21)n n -+, 5. 076=+μλ二、 计算题。
2008高数工-2期末-A(工-4ye)答案

一、单项选择题:本大题共5小题,每小题4分,共20 分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 请将正确结果的字母写在括号内。
1. 对函数xy x y x f +=2),(,原点 )0,0( 【 B 】 (A )不是驻点. (B )是驻点却不是极值点. (C )是极大值点. (D )是极小值点. 2. 微分方程01=-'xy 【 D 】 (A ) 不是可分离变量的微分方程 (B )是齐次微分方程(C )是一阶线性齐次微分方程 (D )是一阶线性非齐次微分方程3.级数()∑∞=⎪⎪⎭⎫⎝⎛+-111n n n n 的敛散情况是 【 C 】(A ) 条件收敛 (B )绝对收敛 (C )发散 (D )敛散性不能确定 4.设∑为球面2222x y z a ++=的表面,则⎰⎰∑zdS = 【 A 】(A )0 (B )22a π (C ) 24a π (D ) 1 5.将二次积分dx x dy I y ⎰⎰+=1311交换积分次序后得 【 B 】(A )⎰⎰+13121x dy x dx (B) ⎰⎰+20311x dy x dx (C ) ⎰⎰+ydy x dx 03101 (D )⎰⎰+1311xdy x dx二、填空题:本大题共5小题,每小题4分,共20分,把答案填在题中的横线上.6.曲线t z t y t t x 2,sin ,cos ===在点),,1,0(πP 处的切线方程为2012π-=-=-z y x , 法平面方程为0440222=+-=-+-ππππz x z x 或.7.试写出求解下列条件极值问题的拉格朗日函数:分解已知正数a 为三个正数z y x ,,之和,使z y x ,,的倒数之和最小()()a z y x zy x z y x L -+++++=λ111,,.8.函数()x x x f -=1ln )(的麦克劳林级数的收敛域为[)1,1-∈x , ()=)0(5f -30 . 9.设函数(),001⎩⎨⎧≤≤--<<=x x x x f ππ)(x S 是()x f 的以2π为周期的傅立叶级数的和函数,则=-)21(S21 ,=)(πS 21+π . 10.2222=+++z y x xyz 确定了隐函数),(y x z z =,则),(y x z z =在点()1,0,1-处的全微分为 dy dx dz 2-=.三、计算下列各题:本大题共6小题,每小题9分,共54分. 解答应写出主要过程或演算步骤.11.设函数()ye x yf z ,22-=,其中f 具有二阶连续偏导数,求y z ∂∂,yx z ∂∂∂2.解 ye f yf y z 2'12'+=∂∂ ()y e f y f x yx z 1211222''+''-=∂∂∂12.计算三重积分dv y xI ⎰⎰⎰Ω+=)(22,其中Ω为旋转抛物面22y x z +=与平面 1=z 所围成的区域.解: 利用柱面坐标: dv y x I ⎰⎰⎰Ω+=)(22dz d d ⎰⎰⎰=1012202ρπρρρθ ()ρρρπd 21312-=⎰ ρρρπd )(2513-=⎰6π=13.利用高斯公式计算曲面积分 ⎰⎰∑++++=,222333zy x dxdyz dzdx y dydz x I 其中∑是球面2222a z y x =++的内侧.解:将球面方程2222a z y x =++代入I ,得: ⎰⎰⎰⎰∑∑++=++++=dxdy z dzdx y dydz x a z y x dxdyz dzdx y dydz x I 3332223331 利用高斯公式,333,,z R y Q x P ===,设球面∑所围闭区域为Ω,()dxdydz z y x a I ⎰⎰⎰Ω++-=2223331 dr r r d d a a ϕϕθππsin 3202020⎰⎰⎰-=⎰-=πϕϕπ05sin 56d a a 5124a π-=.14.计算()(),322⎰++-=Ly dy ye x dx y xI 其中L 是由直线22=+y x 上从点()0,2A 到点()1,0B 上的一段及圆弧21y x --=上从()1,0B 到()0,1-C 的一段连接而成的有向曲线.解:补线21:,0:→-=x y CA ,++BC 弧则围成封闭曲线,其所围闭区域为D ,在其上使用格林公式,y ye x Q y x +=-=3,2P 2,2,3-=∂∂=∂∂yPx Q()()⎰++-=Ly dyye x dx y x I 322()()()()⎰⎰++--++-=++CAy BC y dy ye x dx y xdy ye x dx y x32322CAAB 2弧=dx x dxdy y P x Q D ⎰⎰⎰--⎪⎪⎭⎫ ⎝⎛∂∂-∂∂21221335--=⎰⎰x dxdy D 4523415ππ+=-⎪⎭⎫⎝⎛+= 15. 求(1)幂级数()121121-∞=∑--n n n x n 的收敛域;(2)幂级数()121121-∞=∑--n n n x n 的和函数.解:(1)求收敛域:121211212lim()(lim -+∞→+∞→-+=n n n nn n x n n x x u x u 2x =,则该级数在()1,1-内收敛. 1=x 时,级数为()∑∞=--1121n nn ,收敛1-=x 时,级数为()∑∞=---1121n nn ,收敛,该级数的收敛域为[]1,1-. (2)求和函数 设()121121)(-∞=∑--=n n n x n x s , 两边同时对x 求导,得()221121)1(121)(-∞=-∞=∑∑-='⎪⎪⎭⎫ ⎝⎛--='n n n n n n x x n x s 211x +-=两边同时对x 积分,得 x dx x s x s xarctan 11)0()(02-=+-=-⎰由于,0)0(=s 所以[]1,1,arctan )(-∈-=x x x s 16.设函数)(x y 满足()()[]d t t y tex y x t⎰-+='01,且(),10=y , 求)(x y .解:两边求导得()()x y xe x y x -='',即:()()x xe x y x y =+'' 这是二阶常系数非齐次线性方程,且(),10=y ()10='y(1)先解对应的齐次方程: 特征方程为,012=+r 特征根为i r ±= 对应齐次方程的通解为x C x C Y sin cos 21+=(2)再求非齐次方程的一个特解:设特解为()x e B Ax y +=*,求"'**,yy ,代入方程()()x xe x y x y =+''化简得 21,21-==B A 则所求特解为x e x y ⎪⎭⎫⎝⎛-=2121*(3)求原方程的特解:原方程的通解为()x e x x C x C y Y y 121sin cos 21*-++=+= 将初始条件(),10=y ()10='y 代入得1,2321==C C 则()x e x x x y 121sin cos 23-++=四、 证明题: 本题共1题,6分. 17. 证明:()()21,21:,11ln 1ln ≤≤≤≤≥++⎰⎰y x D dxdy x y D. 证明:()()dxdy x y D⎰⎰++1ln 1ln ()()()()dxdy y x x y D ⎰⎰⎥⎦⎤⎢⎣⎡+++++=1ln 1ln 1ln 1ln 211⎰⎰=≥Ddxdy 其中用到了()()()()()()()()y x x y y x x y +++++=⎥⎦⎤⎢⎣⎡+++++1ln 1ln 21ln 1ln 1ln 1ln 1ln 1ln 21221≥。
1314高等数学A(二)试题答案 济南大学

五、综合题(每小题10分,共20分)
2. 设平面区域D是由曲线 和直线 y 0, x 1
所围成的闭区域, 其中 ( 1) n1 x n , n n 1
的和函数.计算二重积分
是幂级数
1 x 1
目录
上页
下页
返回
结束
(1) n1 x n 解: y(0) 0, y ( x) , n n 1 n 1 n n 1 n 1 ( 1) x ( 1) nx y( x) ( ) n n 1 n n 1 1 n 1 ( x) 1+x n 1 x 1 x d x ln(1 x). x (1,1]. y( x) y(0) y( x) d x 0 1 x 0
(B) 必要条件. (D) 既非充分也非必要条件.
目录
上页
下页
返回
结束
全微分的定义
定义: 如果函数 z = f ( x, y )在定义域 D 的内点( x , y ) 处全增量 可表示成
z A x B y o( ) ,
其中 A , B 不依赖于 x , y , 仅与 x , y 有关,则称函数
目录上页Leabharlann 下页返回结束
去年高数A( 二)考点总结 • 全微分,复合函数求导,隐函数求导, • 连续,可导和全微分的关系,函数的极值 • 二重积分的几何意义,直角坐标系下的二重积分, 球坐标系下的三重积分,第二类曲面积分,格林 公式,曲线积分与路径无关的充要条件 • 交错级数的莱布尼兹判别法,条件收敛和绝对收 敛,求幂级数的收敛半径以及和函数.收敛定理 去年高数B( 二)考点 • 函数展成幂级数,极坐标系下的二重积分.
2004-2021年专升本高数(二)考试真题及答案

2004年成人高考专升本高等数学二考试真题及参考答案一、选择题:本大题共5个小题,每小题4分,共20分,在每小题给出的四个选项中,只有一项是符合题目的要求,把所选项前的字母填在题后的括号内。
第1题参考答案:A第2题参考答案:D第3题参考答案:D第4题第5题参考答案:C二、填空题:本大题共10个小题,每小题4分,共40分,把答案填写在题中横线上。
第6题参考答案:1第7题参考答案:0第8题参考答案:1第9题参考答案:2/x3第10题参考答案:-1第11题参考答案:0第12题参考答案:e-1第13题参考答案:1第14题参考答案:-sinx 第15题三、解答题:本大题共13个小题,共90分,解答应写出推理、演算步骤.第16题第17题第18题第19题第20题第21题第22题第23题第24第25题第26题第27题第28题2005年成人高考专升本高等数学二考试真题及参考答案一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
第1题参考答案:D第2题第3题参考答案:C 第4题参考答案:B 第5题参考答案:D 第6题参考答案:B 第7题第8题参考答案:A第9题参考答案:D第10题参考答案:B二、填空题:本大题共10个小题,每小题4分,共40分,把答案填写在题中横线上。
第11题参考答案:2第12题参考答案:e-3第13题参考答案:0第14题参考答案:4第15题参考答案:2第16题第17题参考答案:0第18题参考答案:1/2第19题参考答案:6第20题三、解答题:共70分。
解答应写出推理、演算步骤。
第21题第22题第23题第24题第25题第26题第27题第28题2006年成人高考专升本高等数学二考试真题及参考答案一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
第1题参考答案:D 第2题参考答案:B 第3题参考答案:D 第4题参考答案:A 第5题参考答案:C第6题参考答案:C 第7题参考答案:C 第8题参考答案:A 第9题参考答案:B 第10二、填空题:本大题共10个小题,每小题4分,共40分,把答案填写在题中横线上。
高等数学(二)

《高等数学》模拟题一.单选题1.设五次方程错误!未找到引用源。
有五个不同的实根,则方程错误!未找到引用源。
最多有()个实根.A.5B.4C.3D.2[答案]:B2.函数错误!未找到引用源。
在点错误!未找到引用源。
处连续是在该点处可导的()A.必要但不充分条件B.充分但不必要条件C.充要条件D.无关条件[答案]:A3.设函数错误!未找到引用源。
,则错误!未找到引用源。
在点错误!未找到引用源。
处().A.连续但不可导B.连续且错误!未找到引用源。
C.连续且错误!未找到引用源。
D.不连续[答案]:B4.设错误!未找到引用源。
,则错误!未找到引用源。
=().A.3B.-3C.6D.-6[答案]:D5.已知函数错误!未找到引用源。
,则错误!未找到引用源。
在错误!未找到引用源。
处A.导数错误!未找到引用源。
B.间断C.导数错误!未找到引用源。
D.连续但不可导[答案]:D6.设函数错误!未找到引用源。
可导且下列极限均存在,则不成立的是().A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
[答案]:C7.点错误!未找到引用源。
是函数错误!未找到引用源。
的().A.连续点B.第一类非可去间断点C.可去间断点D.第二类间断点[答案]:C8.设错误!未找到引用源。
,要使错误!未找到引用源。
在错误!未找到引用源。
处连续,则a=().A.0B.1C.1/3D.3[答案]:C9.错误!未找到引用源。
().A.错误!未找到引用源。
B.错误!未找到引用源。
C.0D.1/2[答案]:A10.错误!未找到引用源。
().A.1/3B.-1/3C.0D.2/3[答案]:C11.错误!未找到引用源。
().A.错误!未找到引用源。
B.不存在C.1D.0[答案]:C12.如果错误!未找到引用源。
与错误!未找到引用源。
存在,则().A.错误!未找到引用源。
存在且错误!未找到引用源。
B.错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等数学(二)》期末考试试卷标准答案A
考试形式:闭卷考试 考试时间:120分钟
一、选择题(单选题,每题4分,共28分)
1、0lim =∞→n n u 是∑∞=1
n n u 收敛的( B )
A .充分而非必要条件 B. 必要而非充分条件
C.充要条件
D. 既非充分也非必要条件
2、若级数∑∞=1n n u 收敛,则下列命题( B )正确(其中∑==n
i i n u s 1
)
A .0lim =∞→s
n n B. s n n lim ∞→存在 C. s n n lim ∞
→ 可能不存在 D. {}为单调数列s n
3、设∑∞=1n n u 与∑∞
=1n n v 都是正项级数,且n n v u ≤ ,2,1(=n )则下列命题正确的是
( C )
A .若∑∞=1n n u 收敛,则∑∞=1n n v 收敛 B. 若∑∞=1n n u 收敛,则∑∞
=1
n n v 发散
C.若∑∞=1n n v 发散,则∑∞=1n n u 发散
D.若∑∞=1n n v 收敛,则∑∞
=1n n u 收敛
4、下列级数中条件收敛的是( B )
A .1)1(1+-∑∞=n n n n B. n n n 1)1(1∑∞=- C. 211)1(n n n ∑∞=- D. n n n ∑∞=-1)1(
5、幂级数∑∞
=-12)2(n n
n x 的收敛区间为( B ) A.(1,3) B.[]3,1 C.[)3,1 D.(]3,1
6、幂级数∑∞
=1!n n
n x 的收敛半径为( C )
A. 0
B. 1
C. +∞
D. 3
7、点A (-3,1,2)与B (1,-2,4)间的距离是( A ) A. 29 B. 23 C. 29 D. 23
二、填空题(每题4分,共16分)
1、球心在点(1,-2,3),半径为3的球面方程为 9)3()2()1(222=-+++-z y x
2、方程0222222=-+-++z x z y x 表示的图形是圆心在(1,0,-1),半径为2的球面。
。
3、二元函数229y x z --=的定义域是{}
9:),(22≤+y x y x 4、y
x y x y x F --=22),(,则)3,1(F = 5 。
5、幂级数1n
n x n ∞
=∑的收敛半径为是 1 。
三、计算题
1、求函数的一阶偏导数
(1))ln(222y x x z += (2)xy e u =
223
222)ln(2y x x y x x x z +++=∂∂ xy ye x u =∂∂
2222y x y
x y z +=∂∂ xy xe y u =∂∂
2、求函数32y x z =,当01.0,02.0,1,2-=∆=∆-==y x y x 的全微分
32xy x z
=∂∂ 223y x y z
=∂∂
2.0)1,2()1,2(-=∆-+∆-=y f x f dy y x
3,y x z 2)31(+=,求x z ∂∂,y z
∂∂
21
6(13)y z y x x -∂=+∂
)31ln()31(22x x y z y
++=∂∂
4、设方程0sin 2=-+xy e y x 确定的一个隐函数,求dx dy
0).2(.cos 2='+-+'y xy y e y y x
2
2cos x e y y xy y
-'=-
5、求函数22)(4),(y x y x y x f ---=的极值
(1)x f x 24-= y f y 24--=
(2)令0,0==y x f f 得:2,2-==y x
(3)2,0,2-==-=yy xy xx f f f 故2,0,2-==-=C B A 0,02<<-A AC B 有极大值。
8)2,2(f =-=极大y
6、计算积分⎰⎰D
xydxdy ,其中D 由3,x y x y ==在第一象限内所围成。
16
1103=
=⎰⎰⎰⎰D x x ydy xdx xydxdy
四、应用题
1、建造容积为V 的开顶长方形水池,长、宽、高各应为多少时,才能使表面积最小?(10分) 长为32v x = 宽32v y = 高322
1v z =
2、把正数a 分成三个正数之和,使它们的乘积为最大,求这三个数。
(7分)
3a
z y x ===。