1.1 二次函数
1.1 二次函数

1.1二次函数1.通过对实际问题情境的分析,让学生经历二次函数概念的形成过程,学会用类比思想学习二次函数知识.2.掌握二次函数的概念.3.认识到二次函数来源于实际生活,感受到二次函数在实际生活中有着广泛的应用.重点:二次函数的概念.难点:理解变量之间的对应关系.一、新课导入1.对于“函数”这个词,我们并不陌生,大家还记得我们学过哪些函数吗?(学过正比例函数、一次函数、反比例函数)2.那么函数的定义是什么,大家还记得吗?能把学过的函数回忆一下吗?(在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y 值,那么我们称y是x的函数,其中x是自变量,y是因变量)从上面的几种函数来看,每一种函数都有一般的形式,那么二次函数的一般形式究竟是什么呢?本节课我们将揭开它神秘的面纱.二、新知学习活动1观察思考:请用适当的函数解析式表示下列问题情境中的两个变量y与x之间的关系.(1)圆的面积y(cm2)与圆的半径x(cm).(2)王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x,两年后王先生共得本息y元.答案:(1)y=πx2;(2)y=20000(1+x)2=20000x2+40000x+20000.老师引导学生合作学习:1.先独立探究,尝试写出y与x之间的函数关系式;2.上述三个问题先易后难,在独立探究的基础上,小组进行合作交流,共同探讨.3.上述关系式具有哪些共同特征?教师引导学生观察、分析、比较三个函数关系式.引导学生观察时应注意:(1)学生能否找出自变量及因变量的函数.(2)学生能否归纳出三个函数的共同特点:经化简后都具有y=ax2+bx+c的形式(a,b,c是常数,a≠0).学生观察、思考问题,尝试回答问题.活动2归纳总结:(1)上述三个函数解析式化简后都具有y=ax2+bx+c(a,b,c是常数,且a≠0)的形式.(2)一般地,形如y=ax2+bx+c(a,b,c是常数,且a≠0)的函数叫做x的二次函数.其中a为二次项系数,b为一次项系数,c为常数项.三、新知应用活动3典例探究:【例】如图,矩形ABCD中,AB=6,BC=12,E是AB上一点,E不与A,B重合,F是BC上一点,F不与B,C重合,且BF=2BE,若设BE=x,△DEF的面积为S,求S关于x 的函数关系,并求自变量x 的取值范围.【分析】先用x 的代数式表示AE ,BF ,CF 的长,再利用△DEF 的面积等于矩形面积依次减去△ADE ,△BEF ,△CDF 的面积这一等量关系列出函数关系式.【解】∵BE =x ,∴AE =6-x ,BF =2x ,CF =12-2x.∵S △DEF =S 矩形ABCD -S △ADE -S △BEF-S △CDF ,∴S =12×6-12×12(6-x)-12·x·2x -12×6(12-2x)=-x 2+12x.由题意,得⎩⎪⎨⎪⎧x >0,6-x >0,12-2x >0,解得0<x <6,即自变量x 的取值范围是0<x <6.综上,S 关于x 的函数关系式为S =-x 2+12x(0<x <6).四、巩固新知尝试完成下面各题.1.若y =(a -3)x 2-2x +5是二次函数,则a 的取值范围是__a≠3__.2.菱形的两条对角线的和为26 cm ,则菱形的面积S(cm 2)与一条对角线的长x(cm )之间的函数关系式为__S =12x(26-x)(0<x <26)__. 3.一台机器原价40万元,每次降价的百分率为x ,那么连续两次降价后的价格y(万元)为( C )A .y =40(1-x )B .y =40(1-x 2)C .y =40(1-x )2D .y =40(1+x )24.若()m m x m y ++=22是关于x 的二次函数,则常数m 的值为( A )A .1B .2C .-2D .1或-2五、课堂小结1.到目前为止,我们学习了哪些函数?这些函数之间有什么联系?2.二次函数的一般表达式是怎样的?对a ,b ,c 有什么条件限制?3.谈一谈你的收获和困惑.六、课后作业形如y=ax 2+bx+c(a ,b ,c 为常数,a ≠0)的函数称为二次函数,y=ax 2+bx+c (a ≠0)为二次函数的一般式.1.下列四个函数:①y=-x ;②y=x ;③y=x1;④y=x 2.其中二次函数的个数为(A). A.1 B.2 C.3 D.42.下列函数中,当x=0时,y=0的是(C).A.y=x2 B. y=x 2-1 C.y=5x 2-3x D.y=-3x+73.二次函数y=2x(x-3)的二次项系数与一次项系数之和为(D).A.2B.-2C.-1D.-44.某工厂第一年的利润为20万元,第三年的利润为y 万元.设该公司利润的平均年增长率为x,则y 关于x 的二次函数的表达式为(B).A.y=20(1-x)2B.y=20(1+x)2C.y=(1-x)2+2D.y=(1-x)2-205.已知函数k k x y +=2是关于x 的二次函数,那么k= 1或-2 .6.对于二次函数 y =2x 2-bx +3,当x =1时,y=1,则b 的值为 4 .7.已知函数y=x 2-6x+9,当x= 3 时,函数值为0.8.小汽车刹车距离s(m)关于速度v(km/h)的二次函数表达式为s=1001v 2.一辆小汽车正以100km/h 的速度行驶,突然发现前方80m 处停着一辆故障车,此时小汽车刹车 会 (填“会”或“不会”)有危险.9.已知()324232-+-=--x x m y m m 是二次函数,求m 的值.【答案】由题意得⎩⎨⎧≠-=--042232m m m ,解得m=-1.10.已知二次函数y=ax 2+bx+c ,当x=0时,y=7;当x=1时,y=0;当x=-2时,y=9.求它的函数表达式.【答案】根据题意得,⎪⎩⎪⎨⎧=+-=++=92407c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=752c b a .∴它的函数表达式为y=-2x 2-5x+7.11.下列各式中,y 是x 的二次函数的是(B).A.xy+x 2=2B.x 2-2y+2=0C.y=21x D.y 2-x=012.从地面竖直向上抛出一个小球,小球的高度h(m)关于小球运动时间t(s)的二次函数表达式为h=30t-5t 2.则小球从抛出到回落到地面所需要的时间是(A).A.6sB.4sC.3sD.2s13.若y=ax 2+bx+c ,则由表格中信息可知y 关于x 的二次函数的表达式为(A).14.已知函数()2222++=-m x m y 是二次函数,则m 的值为 2 .15.某批发市场批发甲种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y(万元)与进货量x(t)近似满足二次函数表达式y=ax 2+bx(其中a≠0,a ,b 为常数,x≥0),且进货量x 为1t 时,销售利润y 为1.4万元;进货量x 为2t 时,销售利润y 为2.6万元.求y 关于x 的二次函数的表达式.【答案】由题意得⎩⎨⎧=+=+6.2244.1b a b a ,解得⎩⎨⎧=-=5.11.0b a . ∴y 关于x 的二次函数表达式为y=-0.1x 2+1.5x .16.下列函数中,属于二次函数的是(B).A.y=-4x+5B.y=x(2x-3)C.y=(x+4)2-x 2D.y=21x 17.【常德】如图所示,正方形EFGH 的顶点在边长为2的正方形ABCD 的边上.若设AE=x ,正方形EFGH 的面积为y ,则y 关于x 的函数表达式为 y=2x 2-4x+4 .18.如图所示,△ABC 与△DEF 是两个全等的等腰直角三角形,BC=EF=8,∠C=∠F=90°,且点C ,E ,B ,F 在同一条直线上,将△ABC 沿CB 方向平移,AB 与DE 相交于点P.设CE=x ,△PBE 的面积为S ,求:(1)S 关于x 的函数表达式,并指出自变量的取值范围.(2)当x=3时,求△PBE 的面积.【答案】(1)∵CE=x ,BC=8,∴EB=8-x.∵△ABC 与△DEF 是两个全等的等腰直角三角形,∴∠ABC=∠DEF=45°∴△PBE 是等腰直角三角形.∴PB=PE=22EB=22 (8-x). ∴S=21PB·PE=21×22 (8-x)×22 (8-x)= 41 (8-x)2=41x 2-4x+16. ∵8-x >0,∴x <8.又∵x≥0,∴0≤x <8.S 关于x 的函数表达式为S=41x 2-4x+16,自变量的取值范围是0≤x <8. (2)当x=3时,S △PBE =41 (8-3)2=425.。
湘教版数学九年级下册1.1《二次函数》教学设计

湘教版数学九年级下册1.1《二次函数》教学设计一. 教材分析湘教版数学九年级下册1.1《二次函数》是本册教材中的重要内容,主要介绍了二次函数的定义、图像和性质。
通过本节课的学习,学生能够理解二次函数的概念,掌握二次函数的图像特点,了解二次函数的性质,并为后续学习二次方程和二次不等式打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念和一次函数的知识,具备了一定的函数思维。
但二次函数相对于一次函数来说,概念较为抽象,图像和性质的理解也需要一定的空间想象能力。
因此,在教学过程中,需要关注学生的学习困难,引导学生通过观察、操作、思考、交流等方式,逐步理解二次函数的概念和性质。
三. 教学目标1.理解二次函数的定义,掌握二次函数的图像特点;2.了解二次函数的性质,能够运用二次函数解决实际问题;3.培养学生的空间想象能力,提高学生的数学思维能力。
四. 教学重难点1.二次函数的定义和图像特点;2.二次函数的性质及其运用。
五. 教学方法1.情境教学法:通过生活实例引入二次函数,激发学生的学习兴趣;2.启发式教学法:引导学生主动思考、探究二次函数的性质;3.小组合作学习:培养学生团队合作精神,提高学生的交流能力;4.动手操作:让学生通过实际操作,加深对二次函数图像和性质的理解。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示二次函数的图像和性质;2.教学素材:准备一些实际问题,供学生练习和讨论;3.板书设计:设计清晰、简洁的板书,便于学生记录和复习。
七. 教学过程1.导入(5分钟)利用生活实例,如抛物线射击、自行车刹车等问题,引导学生思考二次函数的应用,激发学生的学习兴趣。
2.呈现(10分钟)讲解二次函数的定义,通过课件展示二次函数的图像,让学生观察和理解二次函数的图像特点。
3.操练(10分钟)让学生通过实际操作,尝试绘制一些简单的二次函数图像,加深对二次函数图像特点的理解。
4.巩固(10分钟)讲解二次函数的性质,引导学生通过思考、交流,总结二次函数的性质。
高中数学必修二目录

高中数学必修二目录第一章:二次函数• 1.1 二次函数的定义和图像– 1.1.1 二次函数的定义和性质– 1.1.2 二次函数的标准形式和一般形式– 1.1.3 二次函数的图像和性质• 1.2 二次函数的解析式– 1.2.1 二次函数的解析式– 1.2.2 二次函数解析式中的参数含义• 1.3 二次函数的图像与性质– 1.3.1 二次函数的对称轴和顶点坐标– 1.3.2 二次函数的最值和零点• 1.4 二次函数的平移和反射– 1.4.1 二次函数的平移– 1.4.2 二次函数的反射第二章:三角函数• 2.1 弧度制与度制– 2.1.1 弧度的定义和性质– 2.1.2 弧度和角度的相互转化公式• 2.2 任意角的三角函数– 2.2.1 任意角的正弦函数– 2.2.2 任意角的余弦函数– 2.2.3 任意角的正切函数• 2.3 三角函数图像与性质– 2.3.1 正弦函数图像与性质– 2.3.2 余弦函数图像与性质– 2.3.3 正切函数图像与性质• 2.4 三角函数的基本公式– 2.4.1 正弦函数的基本公式– 2.4.2 余弦函数的基本公式– 2.4.3 正切函数的基本公式• 2.5 三角函数的诱导公式和倍角公式– 2.5.1 三角函数的诱导公式– 2.5.2 三角函数的倍角公式第三章:平面向量• 3.1 平面向量的定义– 3.1.1 平面向量的定义和性质• 3.2 平面向量的运算– 3.2.1 平面向量的加法– 3.2.2 平面向量的减法– 3.2.3 平面向量的数乘• 3.3 平面向量的线性运算– 3.3.1 平面向量的线性组合– 3.3.2 平面向量的线性相关与线性无关• 3.4 平面向量的数量积– 3.4.1 平面向量的数量积定义和性质– 3.4.2 平面向量的数量积计算方法• 3.5 平面向量的应用– 3.5.1 平面向量在几何问题中的应用– 3.5.2 平面向量在物理问题中的应用第四章:指数与对数函数• 4.1 指数函数– 4.1.1 指数函数的定义和性质– 4.1.2 指数函数的图像与性质• 4.2 对数函数– 4.2.1 对数函数的定义和性质– 4.2.2 对数函数的图像与性质• 4.3 指对公式、指数方程与对数方程– 4.3.1 指对公式– 4.3.2 指数方程与对数方程的基本概念– 4.3.3 指数方程与对数方程的解法• 4.4 常用对数与自然对数– 4.4.1 常用对数和自然对数的定义和性质– 4.4.2 常用对数与自然对数的计算第五章:概率与统计• 5.1 随机事件与概率的引入– 5.1.1 随机事件的定义和性质– 5.1.2 概率的定义和性质• 5.2 古典概型与几何概型– 5.2.1 古典概型– 5.2.2 几何概型• 5.3 条件概率与贝叶斯公式– 5.3.1 条件概率的定义和性质– 5.3.2 贝叶斯公式的推导和应用• 5.4 随机变量与概率分布– 5.4.1 随机变量的定义和性质– 5.4.2 离散随机变量和连续随机变量的概率分布• 5.5 统计与抽样调查– 5.5.1 统计的基本概念– 5.5.2 抽样调查和统计分布以上是《高中数学必修二》的目录,该教材涵盖了二次函数、三角函数、平面向量、指数与对数函数、概率与统计等内容。
浙教版九年级数学上册知识点汇总

九年级(上册)1. 二次函数1.1. 二次函数把形如()0a ,,y 2≠++=是常数,其中c b a c bx ax 的函数叫做二次函数,称a 为二次项系数,b 为一次项系数,c 为常数项。
1.2. 二次函数的图象二次函数y=ax 2(a ≠0)的图象是一条抛物线,它关于y 轴对称,顶点是坐标原点。
当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点。
函数y=a(x-m)2+k(a ≠0)的图象,可以由函数y=ax 2的图象先向右(当m>0时)或向左(当m<0时)平移|m|个单位,再向上(当k>0时)或向下(当k<0时)平移|k|个单位得到,顶点是(m,k),对称轴是直线x=m 。
函数y=a(x-m)2+k(a ≠0)的图象是一条抛物线,它的对称轴是直线a b 2x -=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a 44,2b 2 当a>0时,抛物线开口向上,顶点是抛物线上的最低点;当a<0时,抛物线开口向下,顶点是抛物线上的最高点。
1.3. 二次函数的性质二次函数y=ax 2(a ≠0)的图象具有如下性质:1.4. 二次函数的应用运用二次函数求实际问题中的最大值或最小值,首先应当求出函数表达式和自变量的取值范围,然后通过配方变形,或利用公式求它的最大值或最小值。
注意:由此求得的最大值或最小值对应的自变量的必须在自变量的取值范围内。
2. 简单事件的概率2.1. 事件的可能性把在一定条件下一定会发生的事件叫做必然事件;把在一定条件下一定不会发生的事件叫做不可能事件;把在一定条件下可能发生,也可能不发生的事件叫做不确定事件或随机事件。
2.2.简单事件的概率把事件发生可能性的大小称为事件发生的概率,一般用P表示。
事件A发生的概率记为P(A)。
必然事件发生的概率为100%,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;随机事件的概率介于0与1之间,即0<P(随机事件)<1.如果事件发生的各种结果的可能性相同且互相排斥,结果总数为n,事件A包含其中的结果数为m(m≤n),则事件A发生的概率为:P(A)=m/n。
浙教版九年级数学上册知识点汇总汇编

九年级(上册)1. 二次函数1.1. 二次函数把形如()0a ,,y 2≠++=是常数,其中c b a c bx ax 的函数叫做二次函数,称a 为二次项系数,b 为一次项系数,c 为常数项。
1.2. 二次函数的图象二次函数y=ax 2(a ≠0)的图象是一条抛物线,它关于y 轴对称,顶点是坐标原点。
当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点。
函数y=a(x-m)2+k(a ≠0)的图象,可以由函数y=ax 2的图象先向右(当m>0时)或向左(当m<0时)平移|m|个单位,再向上(当k>0时)或向下(当k<0时)平移|k|个单位得到,顶点是(m,k),对称轴是直线x=m 。
函数y=a(x-m)2+k(a ≠0)的图象是一条抛物线,它的对称轴是直线a b 2x -=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a 44,2b 2 当a>0时,抛物线开口向上,顶点是抛物线上的最低点;当a<0时,抛物线开口向下,顶点是抛物线上的最高点。
1.3. 二次函数的性质二次函数y=ax 2(a ≠0)的图象具有如下性质:1.4. 二次函数的应用运用二次函数求实际问题中的最大值或最小值,首先应当求出函数表达式和自变量的取值范围,然后通过配方变形,或利用公式求它的最大值或最小值。
注意:由此求得的最大值或最小值对应的自变量的必须在自变量的取值范围内。
2. 简单事件的概率2.1. 事件的可能性把在一定条件下一定会发生的事件叫做必然事件;把在一定条件下一定不会发生的事件叫做不可能事件;把在一定条件下可能发生,也可能不发生的事件叫做不确定事件或随机事件。
2.2.简单事件的概率把事件发生可能性的大小称为事件发生的概率,一般用P表示。
事件A发生的概率记为P(A)。
必然事件发生的概率为100%,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;随机事件的概率介于0与1之间,即0<P(随机事件)<1.如果事件发生的各种结果的可能性相同且互相排斥,结果总数为n,事件A包含其中的结果数为m(m≤n),那么事件A发生的概率为:P(A)=m/n。
浙教版数学九年级上册《1.1 二次函数》教案

浙教版数学九年级上册《1.1 二次函数》教案一. 教材分析浙教版数学九年级上册《1.1 二次函数》是学生在学习了初中阶段函数知识的基础上,进一步研究二次函数的性质和图像。
本节内容主要包括二次函数的定义、一般式、顶点式和图像。
通过本节课的学习,使学生掌握二次函数的基本概念和性质,能够运用二次函数解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念和一次函数的知识,具备了一定的数学思维能力。
但二次函数相对较为复杂,需要学生能够灵活运用所学知识,进行推理和论证。
因此,在教学过程中,要注意引导学生通过观察、思考、动手操作等方式,自主探索二次函数的性质和图像。
三. 教学目标1.知识与技能:理解二次函数的定义,掌握二次函数的一般式和顶点式,能够绘制二次函数的图像,了解二次函数的性质。
2.过程与方法:通过观察、实验、推理等方法,探索二次函数的性质和图像,培养学生的数学思维能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探究的精神。
四. 教学重难点1.重点:二次函数的定义、一般式、顶点式和图像。
2.难点:二次函数的性质和图像的绘制。
五. 教学方法1.情境教学法:通过生活实例引入二次函数,激发学生的学习兴趣。
2.问题驱动法:引导学生提出问题,并通过实验、观察、推理等方式解决问题。
3.合作学习法:分组讨论,培养学生的团队合作意识和交流能力。
六. 教学准备1.准备相关的多媒体教学课件和教学素材。
2.准备黑板和粉笔,以便于板书和演示。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如抛物线形的物体运动、抛物线形的建筑物的顶点等,引导学生提出二次函数的概念。
通过这些问题,激发学生的学习兴趣,引出本节课的主题。
2.呈现(15分钟)(1)介绍二次函数的定义:一般式为y=ax^2+bx+c(a≠0),其中a、b、c为常数。
(2)介绍二次函数的顶点式:y=a(x-h)^2+k,其中(h,k)为顶点坐标。
(导学案)1.1二次函数

第一章二次函数1.1二次函数【教学目标】知识与技能1.探索并归纳二次函数的概念,熟练掌握二次函数的一般形式及自变量的取值范围。
2.能够表示简单变量之间的二次函数关系。
过程与方法:通过用二次函数表示变量之间关系的体验过程,增强对函数的感性认识,培养学生分析问题,解决问题的能力。
情感态度价值观:通过学生之间的交流合作的过程,培养学生的合作意识,体验与他人交流合作的重要性。
【教学重难点】重点:建立二次函数数学模型和理解二次函数概念。
难点:建立二次函数数学模型。
【导学过程】【情景导入】我们已知道,可以建立数学模型一次函数y=kx+b(k≠0)来刻画直线,反比例函数y=k/x(k≠0)来刻画双曲线,那么像前面所看到的曲线,我们又该建立一个什么样的数学模型来刻画它们呢?要刻画它,我们今天还需要学习一种新的函数关系———二次函数.【新知探究】探究一、植物园的面积随着砌法的不同怎样变化?学校准备在校园里利用围墙的一段和篱笆墙围成一个矩形植物园。
如下图所示,已知篱笆墙的总长度为100m。
大家来讨论对应于不同的砌法,植物园的面积会发生什么样的变化. 解:设与围墙相邻的每一面墙的长度都为xm,则与围墙相对的一面墙的长度为(100-2x)m,于是矩形植物园的面积S为1)学生阅读审题,独立思考,自主探索.设与围墙相邻的每一面墙的长都为xm,则与围墙相对的一面墙的长为(100-2x)m,于是矩形植物园的面积S=x(100-2x),即S=-2x2+100x.(2)学生合作讨论x的取值范围.由x>0,100-2x>0,得0<x<50.(3)概括.由上述(1)、(2)可得关系式S=-2x2+100x,0<x<50,有了这个关系式,我们对植物园的面积S随着砌法的不同而变化的情况就了如指掌了.S=-2x2+100x,0<x<50 ①①式表示植物园的面积S与围墙相邻的一面篱笆墙长度x之间的关系,而且对于X的每一个取值,S都有唯一确定的值与它对应,即S是X的函数。
人教版初三数学上册二次函数的定义.1.1二次函数的定义

(3)y(x2)x (3)
( 是)
(4)y x22x3
(否)
(5 )y (x 2 )x ( 2 ) (x 1 )2 ( 否 )
展示才智
3、若函数 y(m21)m x2m为二次
函数,求m的值。
解:因为该函数为二次函数,
则
m2 m 2(1) m2 1 0(2)
一般地,形如y=kx+b(k,b为常数, k≠0)的函数,叫做一次函数.
合作学习,探索新知 :
请用适当的函数解析式表示下列问题情 境中的两个变量 y 与 x 之间的关系:
(1)圆的面积 y ( cm 2 )与圆的半径 x ( cm )
y =πx2 (2)某商店1月份的利润是2万元,2、3月 份利润逐月增长,这两个月利润的月平 均增长率为x,3月份的利润为y
抓住机遇 展示自我
1.下列函数中,哪些是二次函数?
(1) y x 2
是
(2) y
1 x2
(3 ) y x (1 x )
不是 是
(4) y (x 1)2 x 2
不是
先化简后判断
2、下列函数中,哪些是二次函数?
(1)y3x22
(是 )
(2)y x2 1 x
( 否)
解(1)得:m=2或-1
解(2)得:m1且m1
所以m=2
yax2bxc(其中 a,b,c是常), 数
当a,b,c满足什么条件时
(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?
解: 1) ( a0
(2)a0,b0
(3)a0,b0,c0
例2.写出下列各函数关系,并判断它们是什么类型的 函数 (1)写出正方体的表面积S(cm2)与正方体棱长a( cm)之间的函数关系; (2)写出圆的面积y(cm2)与它的周长x(cm)之 间的函数关系; (3)菱形的两条对角线的和为26cm,求菱形的面积S (cm2)与一对角线长x(cm)之间的函数关系.