基本初等函数测考试试题

合集下载

高一基本初等函数习题(有答案).

高一基本初等函数习题(有答案).

一.选择:1.若函数)10(log)(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a 的值为( ) A .42B .22C .41D .212.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(1,0)-和(0,1),则( )A .2,2a b ==B .2a b ==C .2,1a b ==D .a b == 3.已知x x f 26log)(=,那么)8(f 等于( ) A .34B .8C .18D .214.函数lg y x =( )A . 是偶函数,在区间(,0)-∞ 上单调递增B . 是偶函数,在区间(,0)-∞上单调递减C . 是奇函数,在区间(0,)+∞ 上单调递增D .是奇函数,在区间(0,)+∞上单调递减5.已知函数=-=+-=)(.)(.11lg )(a f b a f x xx f 则若( )A .bB .b -C .b 1D .1b -6.函数()log 1a f x x =-在(0,1)上递减,那么()f x 在(1,)+∞上( )A .递增且无最大值B .递减且无最小值C .递增且有最大值D .递减且有最小值二.填空:1.若a x f x x lg 22)(-+=是奇函数,则实数a =_________。

2.函数()212()log 25f x x x =-+的值域是__________.3.已知1414log 7,log 5,a b ==则用,a b 表示35log 28= 。

4.设(){}1,,lg A y xy =, {}0,,B x y =,且A B =,则x = ;y = 。

5.计算:()()5log 22323-+。

6.函数x x e 1e 1y -=+的值域是__________。

三、解答题1.解方程:(1)192327x x ---⋅= (2)649x x x +=2.已知,3234+⋅-=x x y 当其值域为[1,7]时,求x 的取值范围。

基本初等函数(基础训练)

基本初等函数(基础训练)

基本初等函数(基础训练)基本初等函数(基础训练)一.选择题(共30小题)1.化简的结果为()3.函数的图象是().C D.x2|x|.C D.x.C D.﹣|x|.C D.x﹣111.(2011•福建)已知函数f(x)=.若f(a)+f(1)=0,则实数a的值等于()12.设,则f(3)的值是()13.(2012•北京模拟)实数﹣•+lg4+2lg5的值为()14.(2011•衢州模拟)已知函数,则f(9)+f(0)=()16.(2014•四川模拟)已知集合M={x|y=ln(1﹣x)},集合N={(x,y)|y=e x,x∈R(e为自然对数的底数)},则17.(2012•安徽模拟)已知函数f(x)=的值域为[0,+∞),则正实数a等于().C D.19.函数f(x)=|log2x|的图象是().C D.222.(2007•山东)给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),.下25.(2014•齐齐哈尔二模)幂函数y=f(x)的图象经过点(﹣2,﹣),则满足f(x)=27的x的值是().26.(2014•泸州二模)函数f(x)=﹣1的图象大致是().C D..28.(2012•湖北模拟)函数f(x)=(m2﹣m﹣1)x m是幂函数,且在x∈(0,+∞)上为增函数,则实数m的值是29.(2010•通州区一模)已知幂函数y=f(x)的图象经过点,则的值为().C30.(2010•崇文区一模)已知幂函数y=f(x)的图象过(4,2)点,则=().C D.基本初等函数(基础训练)参考答案与试题解析一.选择题(共30小题)1.化简的结果为()3.函数的图象是().C D.=1,则=x2A B|x|.C D.,x.C D.﹣|x|.C D.)且图象关于x﹣1|x|11.(2011•福建)已知函数f(x)=.若f(a)+f(1)=0,则实数a的值等于()==12.设,则f(3)的值是(),即.13.(2012•北京模拟)实数﹣•+lg4+2lg5的值为(),对数式的真数.14.(2011•衢州模拟)已知函数,则f(9)+f(0)=()解:∵16.(2014•四川模拟)已知集合M={x|y=ln(1﹣x)},集合N={(x,y)|y=e x,x∈R(e为自然对数的底数)},则17.(2012•安徽模拟)已知函数f(x)=的值域为[0,+∞),则正实数a等于()的值域为.C D..C D.=221.(2000•北京)函数y=lg|x|()22.(2007•山东)给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),.下满足满足24.(2012•桂林模拟)已知函数f(x)的反函数为g(x)=log2x+1,则f(2)+g(2)=()25.(2014•齐齐哈尔二模)幂函数y=f(x)的图象经过点(﹣2,﹣),则满足f(x)=27的x的值是().,﹣=x=26.(2014•泸州二模)函数f(x)=﹣1的图象大致是().C D.解:因为.28.(2012•湖北模拟)函数f(x)=(m2﹣m﹣1)x m是幂函数,且在x∈(0,+∞)上为增函数,则实数m的值是29.(2010•通州区一模)已知幂函数y=f(x)的图象经过点,则的值为().C)的图象经过点,我们使用待定系数法,易求出函数的解析式,然后将)的图象经过点30.(2010•崇文区一模)已知幂函数y=f(x)的图象过(4,2)点,则=().C D.,∴,∴。

基本初等函数练习题

基本初等函数练习题

基本初等函数练习题一、选择题1. 下列函数中,哪一个是奇函数?A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)2. 函数f(x) = 2x^3 - 5x + 1在x=1处的导数值是:A. 6B. 3C. 4D. 53. 函数y = ln(x)的值域是:A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)4. 函数f(x) = x^2 + 3x + 2在区间[-4, 0]上是:A. 单调递增B. 单调递减C. 先减后增D. 先增后减5. 函数g(x) = √x的最小值出现在x等于:A. 0B. 1C. 2D. 没有最小值二、填空题6. 若f(x) = 3x - 2,则f(1) = _______。

7. 函数y = 2^x的反函数是 _______。

8. 函数y = x^3在x=-1处的切线斜率是 _______。

9. 若f(x) = sin(x) + cos(x),则f'(x) = _______。

10. 函数y = e^x的微分dy等于 _______。

三、简答题11. 给定函数f(x) = 4x^3 - 2x^2 - 5x + 7,请计算其在x=0和x=2时的值。

12. 描述函数y = ln(x)在x=1处的切线方程。

13. 证明函数f(x) = x^2在(-∞, +∞)上是凸函数。

14. 求函数g(x) = √x在[1, 4]上的单调性,并说明理由。

15. 给定函数h(x) = x^3 - 6x^2 + 11x - 6,请找出其极值点。

四、计算题16. 计算定积分∫[0,1] (3x^2 - 2x + 1) dx。

17. 利用换元积分法计算定积分∫[1, e] (2/x) dx。

18. 求不定积分∫(2x + 1)^5 dx。

19. 利用分部积分法计算不定积分∫x * e^x dx。

20. 求函数f(x) = x^2 * sin(x)在区间[0, π]上的定积分。

基本初等函数练习题与答案

基本初等函数练习题与答案

5.
1
3x 3x 3x 3x 3, x 1 1 3x
6.

x
|
x

1

,y
|
y

0,
且y

1
2x
1
0,
x

1

y

1
8 2 x 1

0, 且y
1

2
2
7. 奇函数 f (x) x2 lg(x x2 1) x2 lg(x x2 1) f (x)
84 411
212 222
212 (1 210 )
3. 2 原式 log2 5 2 log2 51 log2 5 2 log2 5 2
4. 0 (x 2)2 ( y 1)2 0, x 2且y 1, logx ( yx ) log2 (12 ) 0
4.若函数
f
(x)
1
m ax 1
是奇函数,则 m
为__________。
5.求值:
2
27 3

2log2 3
log2
1 8

2 lg(
3
5
3
5 ) __________。
三、解答题
1.解方程:(1) log4 (3 x) log0.25 (3 x) log4 (1 x) log0.25 (2x 1)

log a
(1
1 a
)

log a
(1

a)

log a
(1

1 a
)
③ a1a

(word版)基本初等函数练习题与答案

(word版)基本初等函数练习题与答案

数学1〔必修〕第二章根本初等函数〔1〕[根底训练A组]一、选择题1.以下函数与y x有相同图象的一个函数是〔〕A.y x2B.y x2x.loga x且D.y log a x a(a0a1)aCy2.以下函数中是奇函数的有几个〔〕x2x①y a1②y lg(1x)③y④y log a1xxa x1x331x A.1B.2C.3D.43.函数y3x与y 3x的图象关于以下那种图形对称()A.x轴B.y轴C.直线y xD.原点中心对称x1334.x3,那么x2x2值为〔〕A.33B.25C.45D.455.函数y log1(3x 2)的定义域是〔〕2A.[1,)B.(2,)C.[2,1]D.(2,1]3336.三个数6,6,log6的大小关系为〔〕A.6log66B.66log6 C.log666 D.log6667.假设f(lnx)3x4,那么f(x)的表达式为〔〕A.3lnx B.3lnx4C.3e x D.3e x4二、填空题1.2,32,54,88,916从小到大的排列顺序是。

2.化简81041084的值等于__________。

4113.计(log25)24log254log21=。

算:54.x2y24x2y50,那么log x(y x)的值是_____________。

13x3的解是_____________。

5.方程3x116.函数y82x1的定义域是______;值域是______.7.判断函数y x2lg(x x21)的奇偶性。

三、解答题1.a x65(a0),求a3xaa x a3x的值。

2.计算1lg214lg34lg6lg的值。

33.函数f(x)1log21x,求函数的定义域,并讨论它的奇偶性单调性。

x1x 4.〔1〕求函数f(x)log2x13x2的定义域。

〔2〕求函数y(1)x24x,x[0,5)的值域。

3数学1〔必修〕第二章根本初等函数〔1〕[综合训练B组]一、选择题1.假设函数f(x)log a x(0a1)在区间[a,2a]上的最大值是最小值的3倍,那么a的值为()2 B .2 1D .1A .C . 42422.假设函数y log a (xb)(a0,a 1)的图象过两点(1,0)和(0,1),那么( )A .a2,b2B .a 2,b2C .a2,b1D .a2,b23.f(x 6)log 2x ,那么f(8)等于〔〕4 B .8C .18D .1A .234.函数y lgx ()A .是偶函数,在区间B .是偶函数,在区间C .是奇函数,在区间( ,0) 上单调递增 (,0)上单调递减(0, )上单调递增D .是奇函数,在区间 (0, )上单调递减5.函数f(x)lg 1 x .假设f(a) b.那么f(a)〔〕1 xA .bB .b1 D .1C .bb6.函数f(x)log a x 1 在(0,1) 上递减,那么 f(x)在(1,)上〔〕A .递增且无最大值B .递减且无最小值C .递增且有最大值D .递减且有最小值二、填空题1f(x) 2x2 xlga是奇函数,那么实数a =_________。

高中数学--《函数概念与基本初等函数》测试题(含答案)

高中数学--《函数概念与基本初等函数》测试题(含答案)

高中数学--《函数概念与基本初等函数》测试题(含答案)1.三个数a=0.67,b=70.6,c=log0.76的大小关系为()A.b<c<a B.b<a<c C.c<a<b D.c<b<a【答案解析】C【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵0<a=0.67<1,b=70.6>1,c=log0.76<0,∴c<a<b,故选:C.2.已知函数的图象与直线y=x恰有三个公共点,则实数m的取值范围是()A.(﹣∞,﹣1] B.[﹣1,2) C.[﹣1,2] D.[2,+∞)【答案解析】B【考点】函数的零点;函数的图象;函数与方程的综合运用.【专题】函数的性质及应用.【分析】由题意可得只要满足直线y=x和射线y=2(x>m)有一个交点,而且直线y=x与函数f(x)=x2+4x+2的两个交点即可,画图便知,直线y=x与函数f(x)=x2+4x+2的图象的两个交点为(﹣2,﹣2)(﹣1,﹣1),由此可得实数m的取值范围.【解答】解:由题意可得射线y=x与函数f(x)=2(x>m)有且只有一个交点.而直线y=x与函数f(x)=x2+4x+2,至多两个交点,题目需要三个交点,则只要满足直线y=x与函数f(x)=x2+4x+2的图象有两个交点即可,画图便知,y=x与函数f(x)=x2+4x+2的图象交点为A(﹣2,﹣2)、B(﹣1,﹣1),故有m≥﹣1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[﹣1,2),故选B.【点评】本题主要考查函数与方程的综合应用,体现了转化、数形结合的数学思想,属于基础题.3.若函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为()A.2 B.4 C. D.【答案解析】C【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】根据同底的指数函数和对数函数有相同的单调性,建立方程关系即可得到结论.【解答】解:∵函数y=ax与y=loga(x+1)在[0,1]上有相同的单调性,∴函数函数f(x)=ax+loga(x+1)在[0,1]上是单调函数,则最大值与最小值之和为f(0)+f(1)=a,即1+loga1+loga2+a=a,即loga2=﹣1,解得a=,故选:C【点评】本题主要考查函数最值是应用,利用同底的指数函数和对数函数有相同的单调性是解决本题的关键.本题没有对a进行讨论.4.函数f(x)=ln(x-)的图象是()A. B.C. D.【答案解析】B【考点】对数函数图象与性质的综合应用.【专题】计算题;数形结合.【分析】求出函数的定义域,通过函数的定义域,判断函数的单调性,推出选项即可.【解答】解:因为x->0,解得x>1或﹣1<x<0,所以函数f(x)=ln(x-)的定义域为:(﹣1,0)∪(1,+∞).所以选项A、C不正确.当x∈(﹣1,0)时, g(x)=x-是增函数,因为y=lnx是增函数,所以函数f(x)=ln(x-)是增函数.故选B.【点评】本题考查函数的图象的综合应用,对数函数的单调性的应用,考查基本知识的综合应用,考查数形结合,计算能力.判断图象问题,一般借助:函数的定义域、值域、单调性、奇偶性、周期性、以及函数的图象的变化趋势等等.5.函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(﹣a)的值为()A.3 B.0 C.﹣1 D.﹣2【答案解析】B【考点】函数奇偶性的性质.【分析】把α和﹣α分别代入函数式,可得出答案.【解答】解:∵由f(a)=2∴f(a)=a3+sina+1=2,a3+sina=1,则f(﹣a)=(﹣a)3+sin(﹣a)+1=﹣(a3+sina)+1=﹣1+1=0.故选B【点评】本题主要考查函数奇偶性的运用.属基础题.6.函数f(x)=x3+3x﹣1在以下哪个区间一定有零点()A.(﹣1,0) B.(0,1) C.(1,2) D.(2,3)【答案解析】B【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】根据函数零点的判定定理将选项中区间的端点值代入验证即可得到答案.【解答】解:∵f(x)=x3+3x﹣1∴f(﹣1)f(0)=(﹣1﹣3﹣1)(﹣1)>0,排除A.f(1)f(2)=(1+3﹣1)(8+6﹣1)>0,排除C.f(0)f(1)=(﹣1)(1+3﹣1)<0,∴函数f(x)在区间(0,1)一定有零点.故选:B.【点评】本题主要考查函数零点的判定定理.属基础题.7.函数y=ax+1(a>0且a≠1)的图象必经过点()A.(0,1) B.(1,0) C.(2,1) D.(0,2)【答案解析】D【考点】指数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】已知函数f(x)=ax+1,根据指数函数的性质,求出其过的定点.【解答】解:∵函数f(x)=ax+1,其中a>0,a≠1,令x=0,可得y=1+1=2,点的坐标为(0,2),故选:D【点评】本题主要考查指数函数的性质及其特殊点,是一道基础题.8.已知函数f(x)=,若函数g(x)=f(x)﹣kx有零点,则实数k的取值范围是()A.(﹣∞,+∞) B. [,+∞) C.(﹣∞,] D.(﹣∞,1)【答案解析】考点:函数零点的判定定理.专题:计算题;数形结合;函数的性质及应用.分析:画出f(x)的图象,函数g(x)=f(x)﹣kx有零点,即为y=f(x)的图象和直线y=kx有交点,作出直线y=kx,由图象观察k≤0,直线和曲线有交点,设直线y=kx与曲线y=log2x相切的切点为p(m,n),运用导数,求出切线的斜率,再由图象观察即可得到k的取值范围.解答:解:函数f(x)=,画出f(x)的图象,函数g(x)=f(x)﹣kx有零点,即为y=f(x)的图象和直线y=kx有交点,作出直线y=kx,由图象观察k≤0,直线和曲线有交点,设直线y=kx与曲线y=log2x相切的切点为p(m,n),由于(log2x)′=,即切线的斜率为=k,又n=km,n=log2m,解得m=e,k=,则k>0时,直线与曲线有交点,则0<k,综上,可得实数k的取值范围是:(﹣∞,].故选C.点评:本题考查分段函数及运用,考查分段函数的图象和运用,考查数形结合的思想方法,考查运用导数求切线的斜率,属于中档题.9.函数f(x)=ln(x2+1)的图象大致是()【答案解析】考点:函数的图象.专题:函数的性质及应用.分析:∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,函数的图象应在x轴的上方,在令x取特殊值,选出答案.解答:解:∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,∴函数的图象应在x轴的上方,又f(0)=ln(0+1)=ln1=0,∴图象过原点,综上只有A符合.故选:A点评:对于函数的选择题,从特殊值、函数的性质入手,往往事半功倍,本题属于低档题.10.设函数f(x),g(x)满足下列条件:(1)对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2);(2)f(﹣1)=﹣1,f(0)=0,f(1)=1.下列四个命题:①g(0)=1;②g(2)=1;③f2(x)+g2(x)=1;④当n>2,n∈N*时,[f(x)]n+[g(x)]n的最大值为1.其中所有正确命题的序号是()A.①③ B.②④ C.②③④ D.①③④【答案解析】考点:命题的真假判断与应用.专题:函数的性质及应用.分析:既然对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2),那么分别令x1,x2取1,0,﹣1求出g(0),g(1),g(﹣1),g(2),然后令x1=x2=x可得③,再根据不等式即可得④解答:解;对于①结论是正确的.∵对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2)且f(﹣1)=﹣1,f(0)=0,f(1)=1,令x1=x2=1,得[f(1)]2+[g(1)]2=g(0),∴1+[g(1)]2=g(0),∴g(0)﹣1=[g(1)]2 令x1=1,x2=0,得f(1)f(0)+g(1)g(0)=g(1),∴g(1)g(0)=g(1),g(1)[g(0)﹣1]=0解方程组得对于②结论是不正确的,令x1=0,x2=﹣1,得f(0)f(﹣1)+g(0)g(﹣1)=g(1),∴g(﹣1)=0令x1=1,x2=﹣1,得f(1)f(﹣1)+g(1)g(﹣1)=g(2),∴﹣1=g(2),∴g(2)≠1对于③结论是正确的,令x1=x2=1,得f2(x)+g2(x)=g(0)=1,对于④结论是正确的,由③可知f2(x)≤1,∴﹣1≤f(x)≤1,﹣1≤g(x)≤1∴|fn(x)|≤f2(x),|gn(x)|≤g2(x)对n>2,n∈N*时恒成立,[f(x)]n+[g(x)]n≤f2(x)+g2(x)=1综上,①③④是正确的.故选:D。

基本初等函数测试题及答案精编版

基本初等函数测试题及答案精编版

基本初等函数测试题一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有下列各式:①na n=a ; ②若a ∈R ,则(a 2-a +1)0=1;③44333x y x y +=+; ④6(-2)2=3-2.其中正确的个数是( )A .0B .1C .2D .32.函数y =a |x |(a >1)的图象是( )3.下列函数在(0,+∞)上是增函数的是( ) A .y =3-x B .y =-2x C .y =log 0.1x D .y =x 124.三个数log 215,20.1,2-1的大小关系是( )A .log 215<20.1<2-1B .log 215<2-1<20.1C .20.1<2-1<log 215 D .20.1<log 215<2-15.已知集合A ={y |y =2x ,x <0},B ={y |y =log 2x },则A ∩B =( ) A .{y |y >0} B .{y |y >1} C .{y |0<y <1} D .∅6.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P 且x ∉Q },如果P ={x |log 2x <1},Q ={x |1<x <3},那么P -Q 等于( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}7.已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则( )A .x >y >zB .x >y >xC .y >x >zD .z >x >y 8.函数y =2x -x 2的图象大致是( )9.已知四个函数①y =f 1(x );②y =f 2(x );③y =f 3(x );④y =f 4(x )的图象如下图:则下列不等式中可能成立的是( )A .f 1(x 1+x 2)=f 1(x 1)+f 1(x 2)B .f 2(x 1+x 2)=f 2(x 1)+f 2(x 2)C .f 3(x 1+x 2)=f 3(x 1)+f 3(x 2)D .f 4(x 1+x 2)=f 4(x 1)+f 4(x 2)10.设函数121()f x x =,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2010)))等于( ) A .2010 B .20102 C.12010 D.1201211.函数f (x )=3x 21-x +lg(3x +1)的定义域是( )A.⎝⎛⎭⎫-∞,-13 B.⎝⎛⎭⎫-13,13 C.⎝⎛⎭⎫-13,1 D.⎝⎛⎭⎫-13,+∞ 12.(2010·石家庄期末测试)设f (x )=⎩⎪⎨⎪⎧2e x -1, x <2,log 3(x 2-1), x ≥2. 则f [f (2)]的值为( )A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.给出下列四个命题:(1)奇函数的图象一定经过原点;(2)偶函数的图象一定经过原点; (3)函数y =lne x是奇函数;(4)函数13y x =的图象关于原点成中心对称. 其中正确命题序号为________.(将你认为正确的都填上) 14. 函数12log (4)y x =-的定义域是 .15.已知函数y =log a (x +b )的图象如下图所示,则a =________,b =________.16.(2008·上海高考)设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=log 2(ax +b ),若f (2)=1,f (3)=2,求f (5).18.(本小题满分12分)已知函数12()2f x x =-.(1)求f (x )的定义域;(2)证明f (x )在定义域内是减函数. 19.(本小题满分12分)已知函数f (x )=2x -12x +1.(1)判断函数的奇偶性;(2)证明:f (x )在(-∞,+∞)上是增函数. 20.(本小题满分12分)已知函数()223(1)mm f x m m x +-=--是幂函数, 且x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.21.(本小题满分12分)已知函数f (x )=lg(a x -b x ),(a >1>b >0). (1)求f (x )的定义域;(2)若f (x )在(1,+∞)上递增且恒取正值,求a ,b 满足的关系式. 22.(本小题满分12分)已知f (x )=⎝⎛⎭⎫12x -1+12·x .(1)求函数的定义域; (2)判断函数f (x )的奇偶性; (3)求证:f (x )>0.参考答案答案速查:1-5 BCDBC 6-10 BCACC 11-12 CC 1.解析:仅有②正确.答案:B2.解析:y =a |x |=⎩⎪⎨⎪⎧a x ,(x ≥0),a -x ,(x <0),且a >1,应选C.答案:C3.答案:D4.答案:B5.解析:A ={y |y =2x ,x <0}={y |0<y <1},B ={y |y =log 2x }={y |y ∈R },∴A ∩B ={y |0<y <1}. 答案:C6.解析:P ={x |log 2x <1}={x |0<x <2},Q ={x |1<x <3},∴P -Q ={x |0<x ≤1},故选B.答案:B7.解析:x =log a 2+log a 3=log a 6=12log a 6,z =log a 21-log a 3=log a 7=12log a 7.∵0<a <1,∴12log a 5>12log a 6>12log a 7.即y >x >z . 答案:C8.解析:作出函数y =2x 与y =x 2的图象知,它们有3个交点,所以y =2x -x 2的图象与x 轴有3个交点,排除B 、C ,又当x <-1时,y <0,图象在x 轴下方,排除D.故选A.答案:A9.解析:结合图象知,A 、B 、D 不成立,C 成立.答案:C 10.解析:依题意可得f 3(2010)=20102,f 2(f 3(2010)) =f 2(20102)=(20102)-1=2010-2,∴f 1(f 2(f 3(2010)))=f 1(2010-2)=(2010-2)12=2010-1=12010.答案:C11.解析:由⎩⎪⎨⎪⎧1-x >03x +1>0⇒⎩⎪⎨⎪⎧x <1x >-13⇒-13<x <1. 答案: C12.解析:f (2)=log 3(22-1)=log 33=1,∴f [f (2)]=f (1)=2e 0=2. 答案:C13.解析:(1)、(2)不正确,可举出反例,如y =1x ,y =x -2,它们的图象都不过原点.(3)中函数y =lne x =x ,显然是奇函数.对于(4),y =x 13是奇函数,而奇函数的图象关于原点对称,所以(4)正确.答案:(3)(4)14. 答案:(4,5]15.解析:由图象过点(-2,0),(0,2)知,log a (-2+b )=0,log a b =2,∴-2+b =1,∴b =3,a 2=3,由a >0知a = 3.∴a =3,b =3.答案:3 316.解析:根据题意画出f (x )的草图,由图象可知,f (x )>0的x 的取值范围是-1<x <0或x >1.答案:(-1,0)∪(1,+∞)17.解:由f (2)=1,f (3)=2,得⎩⎪⎨⎪⎧ log 2(2a +b )=1log 2(3a +b )=2⇒⎩⎪⎨⎪⎧ 2a +b =23a +b =4⇒⎩⎪⎨⎪⎧a =2,b =-2.∴f (x )=log 2(2x-2),∴f (5)=log 28=3. 18.∵x 2>x 1≥0,∴x 2-x 1>0,x 2+x 1>0, ∴f (x 1)-f (x 2)>0,∴f (x 2)<f (x 1). 于是f (x )在定义域内是减函数. 19.解:(1)函数定义域为R .f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-f (x ),所以函数为奇函数.(2)证明:不妨设-∞<x 1<x 2<+∞, ∴2x 2>2x 1.又因为f (x 2)-f (x 1)=2x 2-12x 2+1-2x 1-12x 1+1=2(2x 2-2x 1)(2x 1+1)(2x 2+1)>0,∴f (x 2)>f (x 1).所以f (x )在(-∞,+∞)上是增函数. 20.解:∵f (x )是幂函数, ∴m 2-m -1=1, ∴m =-1或m =2, ∴f (x )=x-3或f (x )=x 3,而易知f (x )=x -3在(0,+∞)上为减函数,f (x )=x 3在(0,+∞)上为增函数. ∴f (x )=x 3.21.解:(1)由a x -b x >0,得⎝⎛⎭⎫a b x>1. ∵a >1>b >0,∴ab >1,∴x >0.即f (x )的定义域为(0,+∞).(2)∵f (x )在(1,+∞)上递增且恒为正值, ∴f (x )>f (1),只要f (1)≥0, 即lg(a -b )≥0,∴a -b ≥1.∴a ≥b +1为所求22.解:(1)由2x -1≠0得x ≠0,∴函数的定义域为{x |x ≠0,x ∈R }.(2)在定义域内任取x ,则-x 一定在定义域内. f (-x )=⎝⎛⎭⎫12-x -1+12(-x )=⎝⎛⎭⎫2x 1-2x +12(-x )=-1+2x 2(1-2x )·x =2x+12(2x -1)·x . 而f (x )=⎝⎛⎭⎫12x -1+12x =2x+12(2x -1)·x ,∴f (-x )=f (x ). ∴f (x )为偶函数.(3)证明:当x >0时,2x >1, ∴⎝⎛⎭⎫12x -1+12·x >0.又f (x )为偶函数, ∴当x <0时,f (x )>0.故当x ∈R 且x ≠0时,f (x )>0.。

基本初等函数测试卷1

基本初等函数测试卷1

基本初等函数(Ⅰ)测试卷1姓名:__________ 分数:___________第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有 一个是正确的) 1、函数1)2lg(-+=x x y 的定义域是 ( )A .),1()1,2(+∞⋃-B .),1()1,1(+∞⋃-C .),1()1,1[+∞⋃-D .]1,2(--2、已知集合⎭⎬⎫⎩⎨⎧<<==10,log |31x x y y A ,{}10,3|<<==x y y B x,则A ∩B = ( )A .{}31|<<y yB .{}10|<<y yC .∅D .{}30|<<y y30+的值是 ( ) A 、0 B 、12 C 、1 D 、324、35log 73-等于 ( )A 、53 B 、537 C 、573D 、7-5、若定义在区间)0,1(-内的函数)1(log )(2+=x x f a 满足,0)(>x f 则a 的取值范围是( ) A .)21,0( B .]21,0( C .),21(+∞ D .),0(+∞6、设函数⎪⎩⎪⎨⎧>≤=-)0()0(2)(21x x x x f x,若1)(0>x f ,则0x 的取值范围是 ( )A .)1,1(-B .),1(+∞-C .)2,(--∞∪),0(+∞D .)0,(-∞∪),1(+∞7、已知函数)12(log 25.0++=x ax y 的值域为R ,则实数a 的取值范围是 ( )A .10≤≤aB .10≤<aC .1≥aD .1>a8、函数x y lg =是 ( ) A .偶函数,且在区间)0,(-∞上是增函数 B .偶函数,且在区间)0,(-∞上是减函数C .奇函数,且在区间),0(+∞上是增函数D .奇函数,且在区间),0(+∞上是减函数9、给出下列四个条件:①⎩⎨⎧>>01x a ,②⎩⎨⎧<>01x a ,③⎩⎨⎧><<010x a ,④⎩⎨⎧<<<010x a ,能使2log )(-=x x f a 为单调递减的是 ( )A .①②B .②③C .①④D .③④10、指数函数xy )2(=的图象与直线x y =的交点个数是 ( )A .0个B .1个C .2个D .不确定11、设x x f lg )(=,若b a <<0,且)()(b f a f >,则下列结论正确的是 ( ) A .1>a B .10<<b C .10<<a D .1>b12、已知)(x f 是偶函数,它在),0[+∞上是减函数,若)1()(lg f x f >,则x 的取值范围是( )A .)1,101(B .)101,0(∪),1(+∞C .)10,101( D .)1,0(∪),10(+∞ 第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13、若冥函数)(x f y =的图象经过点)31,9(,则)25(f 的值是___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本初等函数测试(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有下列各式:①na n=a;②若a∈R,则(a2-a+1)0=1;43x y=+;④6(-2)2=3-2.其中正确的个数是()A.0B.1C.2 D.32.函数y=a|x|(a>1)的图象是()3.下列函数在(0,+∞)上是增函数的是()A.y=3-x B.y=-2xC.y=log0.1x D.y=x124.三个数log215,20.1,2-1的大小关系是()A.log215<20.1<2-1B.log215<2-1<20.1C.20.1<2-1<log215D.20.1<log215<2-15.已知集合A={y|y=2x,x<0},B={y|y=log2x},则A∩B=()A.{y|y>0} B.{y|y>1}C.{y|0<y<1} D.∅.6.设P和Q是两个集合,定义集合P-Q={x|x∈P且x∉Q},如果P={x|log2x<1},Q ={x|1<x<3},那么P-Q等于()A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}7.(2008·辽宁高考)已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则( )A .x >y >zB .x >y >xC .y >x >zD .z >x >y8.(2010·山东高考)函数y =2x -x 2的图象大致是( )9.已知四个函数①y =f 1(x );②y =f 2(x );③y =f 3(x );④y =f 4(x )的图象如下图:则下列不等式中可能成立的是( ) A .f 1(x 1+x 2)=f 1(x 1)+f 1(x 2) B .f 2(x 1+x 2)=f 2(x 1)+f 2(x 2) C .f 3(x 1+x 2)=f 3(x 1)+f 3(x 2) D .f 4(x 1+x 2)=f 4(x 1)+f 4(x 2)10.设函数121()f x x =,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2010)))等于( )A .2010B .20102 C.12010D.1201211.函数f (x )=3x 21-x +lg(3x +1)的定义域是( )A.⎝⎛⎭⎫-∞,-13 B.⎝⎛⎭⎫-13,13 C.⎝⎛⎭⎫-13,1 D.⎝⎛⎭⎫-13,+∞ 12.(2010·石家庄期末测试)设f (x )=⎩⎪⎨⎪⎧2e x -1, x <2,log 3(x 2-1), x ≥2. 则f [f (2)]的值为( )A.0 B.1C.2 D.3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.给出下列四个命题:(1)奇函数的图象一定经过原点;(2)偶函数的图象一定经过原点;(3)函数y=lne x是奇函数;(4)函数13y x=的图象关于原点成中心对称.其中正确命题序号为________.(将你认为正确的都填上)14. 函数y=的定义域是.15.已知函数y=log a(x+b)的图象如下图所示,则a=________,b=________.16.(2008·上海高考)设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f(x)=log2(ax+b),若f(2)=1,f(3)=2,求f(5).18.(本小题满分12分)已知函数12 ()2f x x=-.(1)求f(x)的定义域;(2)证明f(x)在定义域内是减函数.19.(本小题满分12分)已知函数f (x )=2x -12x +1.(1)判断函数的奇偶性;(2)证明:f (x )在(-∞,+∞)上是增函数.20.(本小题满分12分)已知函数()223(1)mm f x m m x +-=--是幂函数, 且x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.21.(本小题满分12分)已知函数f (x )=lg(a x -b x ),(a >1>b >0). (1)求f (x )的定义域;(2)若f (x )在(1,+∞)上递增且恒取正值,求a ,b 满足的关系式.22.(本小题满分12分)已知f (x )=⎝⎛⎭⎫12x -1+12·x .(1)求函数的定义域; (2)判断函数f (x )的奇偶性; (3)求证:f (x )>0.基本初等函数测试题答案一、选择题1.解析:仅有②正确. 答案:B2 ,解析:y =a |x |=⎩⎪⎨⎪⎧a x ,(x ≥0),a -x ,(x <0),且a >1,应选C. 答案:C3.答案:D 4.答案:B5. 解析:A ={y |y =2x ,x <0}={y |0<y <1},B ={y |y =log 2x }={y |y ∈R },∴A ∩B ={y |0<y <1}. 答案:C6.解析:P ={x |log 2x <1}={x |0<x <2},Q ={x |1<x <3},∴P -Q ={x |0<x ≤1},故选B. 7. 解析:x =log a 2+log a 3=log a 6=12log a 6,z =log a 21-log a 3=log a 7=12log a 7.∵0<a <1,∴12log a 5>12log a 6>12log a 7.即y >x >z . 答案:C 8.解析:作出函数y =2x 与y =x 2的图象知,它们有3个交点,所以y =2x -x 2的图象与x 轴有3个交点,排除B 、C ,又当x <-1时,y <0,图象在x 轴下方,排除D.故选A.答案:A9.解析:结合图象知,A 、B 、D 不成立,C 成立. 答案:C 10.解析:依题意可得f 3(2010)=20102,f 2(f 3(2010)) =f 2(20102)=(20102)-1=2010-2,∴f 1(f 2(f 3(2010)))=f 1(2010-2)=(2010-2)12=2010-1=12010. 答案:C11.解析:由⎩⎪⎨⎪⎧ 1-x >03x +1>0⇒⎩⎪⎨⎪⎧x <1x >-13⇒-13<x <1. 答案:C12.解析:f (2)=log 3(22-1)=log 33=1, ∴ f [f (2)]=f (1)=2e 0=2. 答案:C 二、填空题13,解析:(1)、(2)不正确,可举出反例,如y =1x ,y =x -2,它们的图象都不过原点.(3)中函数y =lne x =x ,显然是奇函数.对于(4),y =x 13是奇函数,而奇函数的图象关于原点对称,所以(4)正确. 答案:(3)(4)14.答案:(4,5]15. 解析:由图象过点(-2,0),(0,2)知,log a (-2+b )=0,log a b =2,∴-2+b =1,∴b =3,a 2=3,由a >0知a = 3.∴a =3,b =3. 答案:3 316.解析:根据题意画出f (x )的草图,由图象可知,f (x )>0的x 的取值范围是-1<x <0或x >1.答案:(-1,0)∪(1,+∞) 三、解答题17.解:由f (2)=1,f (3)=2,得⎩⎪⎨⎪⎧ log 2(2a +b )=1log 2(3a +b )=2⇒⎩⎪⎨⎪⎧ 2a +b =23a +b =4⇒⎩⎪⎨⎪⎧a =2,b =-2.∴ f (x )=log 2(2x -2), ∴ f (5)=log 28=3. 18.∵x 2>x 1≥0,∴x 2-x 1>0,x 2+x 1>0, ∴f (x 1)-f (x 2)>0,∴f (x 2)<f (x 1). 于是f (x )在定义域内是减函数. 19. 解:(1)函数定义域为R .f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-f (x ), 所以函数为奇函数.(2)证明:不妨设-∞<x 1<x 2<+∞, ∴2x 2>2x 1.又因为f (x 2)-f (x 1)=2x 2-12x 2+1-2x 1-12x 1+1=2(2x 2-2x 1)(2x 1+1)(2x 2+1)>0,∴f (x 2)>f (x 1).所以f (x )在(-∞,+∞)上是增函数. 20.解:∵f (x )是幂函数, ∴m 2-m -1=1, ∴m =-1或m =2, ∴f (x )=x -3或f (x )=x 3,而易知f (x )=x -3在(0,+∞)上为减函数, f (x )=x 3在(0,+∞)上为增函数. ∴f (x )=x 3.21. 解:(1)由a x -b x >0,得⎝⎛⎭⎫a b x>1. ∵a >1>b >0,∴ab >1,∴x >0.即f (x )的定义域为(0,+∞).(2)∵f (x )在(1,+∞)上递增且恒为正值, ∴f (x )>f (1),只要f (1)≥0, 即lg(a -b )≥0,∴a -b ≥1. ∴a ≥b +1为所求.22.解:(1)由2x -1≠0得x ≠0, ∴函数的定义域为{x |x ≠0,x ∈R }.(2)在定义域内任取x ,则-x 一定在定义域内.f (-x )=⎝ ⎛⎭⎪⎫12-x -1+12(-x )=⎝ ⎛⎭⎪⎫2x1-2x +12(-x ) =-1+2x2(1-2x )·x =2x +12(2x -1)·x .而f (x )=⎝ ⎛⎭⎪⎫12x -1+12x =2x+12(2x -1)·x , ∴f (-x )=f (x ). ∴f (x )为偶函数.(3)证明:当x >0时,2x >1,∴⎝ ⎛⎭⎪⎫12x -1+12·x >0. 又f (x )为偶函数, ∴当x <0时,f (x )>0.故当x ∈R 且x ≠0时,f (x )>0.。

相关文档
最新文档