北师大版 七年级数学下学期期末模拟试卷

合集下载

北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试题及答案

北师大版七年级下册数学期末考试试卷一、单选题1.下列运算中,结果正确的是()A .33a a a ÷=B .()224ab ab =C .2a a a ⋅=D .()235a a =2.以下是各种交通标志指示牌,其中不是轴对称图形的是()A .B .C .D .3.用科学记数法表示0.000000202是()A .60.20210-⨯B .72.0210⨯C .62.0210-⨯D .72.0210-⨯4.下列算式能用平方差公式计算的是()A .()()a b a b +--B .22()(2)a b a b +-C .(2)(2)x y x y +-D .()()a b c a b c -++-5.已知三角形的两边分别为4和10,则此三角形的第三边可能是()A .4B .5C .9D .146.下列事件中是确定事件的为()A .三角形的内角和是360°B .打开电视机正在播放动画片C .车辆随机经过一个路口,遇到绿灯D .掷一枚均匀的骰子,掷出的点数是奇数7.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB ⊥BC ,BO =OC ,CD ⊥BC ,点A 、O 、D 在同一直线上,就能保证△ABO ≌△DCO ,从而可通过测量CD 的长度得知小河的宽度AB .在这个问题中,判断△ABO ≌△DCO 的最佳依据是()A .SASB .AASC .ASAD .SSS 8.下列说法正确的个数有()①内错角相等;②从直线外一点到这条直线的垂线段,叫做这点到直线的距离;③同一平面内,过一点有且只有一条直线与已知直线垂直;④等腰三角形的对称轴是角平分线所在直线;⑤一个角的补角一定是钝角;⑥三角形的中线、角平分线都在三角形的内部;⑦三角形三条高相交于一点;⑧若2ADE ∠=∠,则//AD CEA .2个B .3个C .4个D .5个9.已知某海水淡化厂淡水储备量为20吨时,刚开始以每小时10吨的淡化的速度加工生产淡水,2小时后,在继续原速度的生产的前提下,为供给市场以每小时15吨的速度运出淡水,则储备淡水量y (吨)与时间t (时)之间的大致图象为()A .B .C .D .10.如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G ,下列结论:①BD =CD ;②AD+CF =BD ;③AE =BG ;④CE =12BF .其中正确的是()A .①②B .①②④C .①②③④D .①③二、填空题11.计算()332x x ÷的结果为__________.12.若某长方体底面积是60(2cm ),高为h(cm),则体积V(3cm )与h 的关系式为_____.13.如图,小明在以A ∠为顶角的等腰三角形ABC 中用圆规和直尺作图,作出过点A 的射线交BC 于点D ,然后又作出一条直线与AB 交于点E ,连接DE ,若ABC 的面积为4,则BED 的面积为________.14.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为_____.15.化简:(x+1)2+2(1-x)=_______________.16.如图,等边△ABC 的边长为1,AB 边上有一点P ,Q 为BC 延长线上的一点,且CQ =PA ,过点P 作PE ⊥AC 于点E ,过P 作PF ∥BQ 交AC 边于点F ,连接PQ 交AC 边于点D ,则DE 的长为_____.三、解答题17.计算:(1)(﹣3)2+(π﹣3.14)0×(﹣1)2019﹣(13)-2(2)2332935(2)a a a a a a ⋅⋅+--÷18.先化简,再求值:2()3(3)2(2)(2)x y x x y x y x y ---++-,其中17x =-,2y =.19.如图,在△ABC 中,∠C =90°,DB ⊥BC 于点B ,分别以点D 和点B 为圆心,以大于二分之一DB 的长为半径作弧,两弧相交于点E 和点F ,作直线EF ,延长AB 交EF 于点G ,连接DG ,下面是说明∠A =∠D 的说理过程,请把下面的说理过程补充完整:因为DB ⊥BC (已知)所以∠DBC =90°()因为∠C=90°(已知)所以∠DBC=∠C(等量代换)所以DB∥AC()所以∠A=(______________________________);由作图法可知:直线EF是线段DB的所以GD=GB所以∠1=()因为∠A=∠1(已知)所以∠A=∠D(___________).20.一个不透明的袋子里装有黑白两种颜色的球共50只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近____________(精确到0.1),估计摸一次球能摸到黑球的概率是_____________;袋中黑球的个数约为_________只;(2)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了____________个黑球.21.某商店实行有奖销售,印有1万张奖券,其中有10张一等奖,50张二等奖,500张三等奖,其余均无奖,任意抽取一张,(1)获得一等奖的概率有多大?(2)获奖的概率有多大?(3)如果使得获三等奖的概率为110,那么需要将多少无奖券改为三等奖券22.(1)如图,已知△ABC,∠C为直角,AC<BC,D为BC上一点,且到A,B两点的距离相等.①用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);②连结AD,若∠B=37°,求∠CAD的度数.(2)已知,在△ABC中,AB=AC,点D、E分别在AB、AC边上,且BD=CE,证明OB=OC.23.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)AP=________cm,BP=__________cm(用含t的代数式表示)(2)若点Q的运动速度与点P的运动速度相等..,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(3)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变......,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.24.如图1,已知:AB∥CD,点E,F分别在AB,CD上,且OE⊥OF.(1)求证:∠1+∠2=90°;(2)如图2,分别在OE,CD上取点G,H,使FO平分∠CFG,EO平分∠AEH,求证:FG∥EH.25.为了了解某种车的耗油量,我们对这种车在高速公路上做了耗油实验,并把实验的数据记录下来,制成下表:汽车行驶时间x(h)0123…邮箱剩余油量y(L)100948882…(1)根据上表的数据,请写出y与x的之间的关系式:__________________________________;(2)如果汽车油箱中剩余油量为46L,则汽车行驶了多少小时?(3)如果该种汽车油箱只装了36L汽油,汽车以100km/h的速度在一条全长700公里的高速公路上均匀行驶,请问它在中途不加油的情况下能从高速公路起点开到高速公路终点吗?为什么?参考答案1.C【解析】根据同底数幂的除法、积的乘方、幂的乘方、同底数幂的乘法计算即可.【详解】A.331a a÷=,故本选项错误;B .()2222224ab a b a b ⨯==,故本选项错误;C .2a a a ⋅=,故本选项正确;D .()23326a a a ⨯==,故本选项错误.故选C .【点睛】此题考查的是幂的运算性质,掌握同底数幂的除法、积的乘方、幂的乘方、同底数幂的乘法是解决此题的关键.2.B【解析】根据轴对称图形的概念对各选项逐一进行分析判断即可得出答案.【详解】A 、是轴对称图形,故本选项不符合题意;B 、不是轴对称图形,故本选项符合题意;C 、是轴对称图形,故本选项不符合题意;D 、是轴对称图形,故本选项不符合题意.故选B .【点睛】本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形是图形两部分沿对称轴折叠后可重合的图形是解题的关键.3.D【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:70.000000202 2.0210-=⨯.故选:D .【点睛】本题考查了用科学记数法表示较小的数,解题的关键是是掌握一般形式为10n a -⨯,其中1||10a < ,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D【解析】【分析】根据平方差公式进行的特点对每一选项进行分析即可.平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.【详解】解:A .该式子中两项均为相反项,不能用平方差公式计算,故本选项不符合题意.B .该式子中只有一个相同项,没有相反项,不能用平方差公式计算,故本选项不符合题意.C .该式子中既没有相同项,也没有相反项,不能用平方差公式计算,故本选项不符合题意.D .()()[()][()]a b c a b c a b c a b c -++-=--+-,既有相同项,也有相反项,能用平方差公式计算,故本选项符合题意.故选:D .【点睛】本题考查了平方差公式,运用平方差公式计算时,解题的关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.5.C【解析】【分析】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边,故104104-<<+第三边,便可找到答案.【详解】解:根据题意,有:104104-<<+第三边即:614<<第三边综合选项,故本题选择C .【点睛】本题考查三边关系,关键在于掌握两边之和大于第三边,两边之差小于第三边是关键.6.A【解析】【分析】根据确定事件和随机事件的定义对各选项逐一分析即可.【详解】解:A 、三角形的内角和是360°是不可能事件,即确定事件,符合题意;B 、打开电视机正在播放动画片为不确定事件,即随机事件,故不符合题意;C 、车辆随机经过一个路口,遇到绿灯为不确定事件,即随机事件,故不符合题意;D 、掷一枚均匀的骰子,掷出的点数是奇数为不确定事件,即随机事件,故不符合题意;故选:A .【点睛】本题考查了确定事件和随机事件的定义,解决本题的关键是要明确事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.7.C【解析】【分析】直接利用全等三角形的判定方法得出符合题意的答案.【详解】解:AB BC ⊥ ,CD BC ⊥,90ABO OCD ∴∠=∠=︒,在ABO ∆和DCO ∆中,ABO DCO BO CO BOA COD ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABO DCO ASA ∴∆≅∆,则证明ABO DCO ∆≅∆的依据的是ASA ,故选:C .【点睛】本题考查了全等三角形的判定,解题的关键是正确掌握全等三角形的判定方法.8.A【解析】【分析】根据平行线的性质对①进行判断;根据点到直线的距离的定义对②进行判断;根据垂直公理对③进行判断;根据等腰三角形的性质对④进行判断;利用特例对⑤进行判断;根据三角形中线、角平分线的定义对⑥进行判断;利用钝角三角形的高所在的直线相交于一点可对⑦进行判断;利用没有对应的图形可对⑧进行判断.【详解】解:两直线平行,内错角相等,所以①错误;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,所以②错误;同一平面内,过一点有且只有一条直线与已知直线垂直,所以③正确;等腰三角形的对称轴是顶角的平分线所在直线,所以④错误;一个角的补角不一定是钝角,如150︒的补角为30°,所以⑤错误;三角形的中线、角平分线都在三角形的内部,所以⑥正确;三角形三条高所在的直线相交于一点,所以⑦错误;若2ADE ∠=∠,则//AD CE ,没有图形,所以⑧错误.故选:A .【点睛】本题考查了对称的性质、轴对称图形、等腰三角形的性质、平行线的判定,解题的关键是掌握相关的概念,对称的性质:如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.9.D【解析】【分析】根据题意,可以写出各段对应的函数解析式,从而可以解答本题.【详解】解:由题意可得,当02x时,1020y x =+,当2x >时,201015(2)550y x x x =+--=-+,当0y =时,10x =,故选:D .【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.B【解析】【分析】由等腰直角三角形的性质可得BD CD =,利用ASA 判定DFB DAC ∆∆≌,可得DF AD =,BF AC =.则CD CF AD =+,即AD CF BD +=;再利用ASA 判定()Rt BEA Rt BEC ASA ≌,得出12CE AE AC ==,可得1122F AC CE B ==,连接CG .因为BCD ∆是等腰直角三角形,即BD CD =.又因为DH BC ⊥,那么DH 垂直平分BC .即BG CG =.在Rt CEG △中,CG 是斜边,CE 是直角边,所以CE CG <.即AE BG <.【详解】解:CD AB ⊥ ,45ABC ∠=︒,BCD ∴∆是等腰直角三角形.BD CD ∴=.故①正确;在Rt DFE △和Rt DAC V 中,90DBF BFD ∠=︒-∠,90DCA EFC ∠=︒-∠,且BFD EFC ∠=∠,DBF DCA ∴∠=∠,在DFB ∆和DAC ∆中,90DBF DAC BD CD BDF CDA ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()DFB DAC ASA ∴∆≅∆,BF AC ∴=,DF AD =,CD CF DF =+ ,AD CF BD ∴+=;故②正确;BE 平分ABC ∠,ABE CBE ∴∠=∠.在Rt BEA V 和Rt BEC △中,90ABE CBE BE BE BEA BEC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()Rt BEA Rt BEC ASA ∴ ≌,12CE AE AC ∴==.又BF AC = ,1122CE AC BF ∴==;故④正确;连接CG .BCD ∆ 是等腰直角三角形,BD CD∴=又DH BC ⊥,DH ∴垂直平分BC ,BG CG ∴=,在Rt CEG △中,CG 是斜边,CE 是直角边,CE CG ∴<,CE AE = ,B AE G ∴<.故③错误.故选:B .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是熟练运用全等三角形的判定方法.11.2272x 或213.5x 【解析】【分析】先计算积的乘方,再进行单项式除以单项式的运算即可得到答案.【详解】()3322732=2722x x x x x ÷÷=,故答案为:2272x 或213.5x .【点睛】此题主要考查了积的乘方和单项式除以单项式,熟练掌握运算法则是解答此题的关键.12.60V h=【解析】【分析】根据长方体的体积=底面积⨯高得出60V h =即可.【详解】解:根据题意得:60V h =,故答案为:60V h =.【点睛】本题考查了函数关系式、长方体的体积,解题的关键是熟记长方体的体积公式.13.1【解析】【分析】根据三角形的中线平分三角形的面积解决问题即可.【详解】解:由作图可知,AD 平分BAC ∠,AB AC = ,BD DC ∴=,122ABD ABC S S ∆∆∴==,由作图可知,AE EB =,112BED ABD S S ∆∆∴==.故答案为:1.【点睛】本题考查作图-复杂作图,等腰三角形的性质的性质等知识,解题的关键是理解三角形的中线平分三角形的面积.14.13【解析】【详解】分析:根据概率公式用女生人数除以总人数即可得结论.详解:所有等可能结果共有6种,其中女生有2种,∴恰好是女生的概率为2163=.故答案为13.点睛:本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.15.x 2+3【解析】【详解】分析:先用完全平方公式和乘法分配律展开,然后合并同类项即可.详解:原式=x 2+2x+1+2-2x=x 2+3.故答案为x 2+3.点睛:本题考查了整式的混合运算.熟练掌握相关运算法则是解题的关键.16.12【解析】【分析】通过求证PFD ∆和QCD ∆全等,推出FD CD =,再通过证明APF ∆是等边三角形和PE AC ⊥,推出AE EF =,即可推出AE DC EF FD +=+,可得12ED AC =,即可推出ED 的长度.【详解】解://PF BQ ,Q FPD ∴∠=∠,等边ABC ∆,60APF B ∴∠=∠=︒,60AFP ACB ∠=∠=︒,APF ∴∆是等边三角形,AP PF ∴=,AP CQ = ,PF CQ ∴=,在PFD ∆和QCD ∆中,FPD Q PDF QDC PF CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,()PFD QCD AAS ∴∆≅∆,FD CD ∴=,PE AC ⊥ 于E ,APF ∆是等边三角形,AE EF ∴=,AE DC EF FD ∴+=+,12ED AC ∴=,1AC = ,12DE ∴=.故答案为:12.【点睛】本题考查了等边三角形的判定与性质、平行线的性质、全等三角形的判定与性质,解题的关键在于正确地作出辅助线,熟练运用相关的性质、定理,认真地进行计算.17.(1)1-;(2)68a 【解析】【分析】(1)根据有理数的乘方法则、零指数幂和负整数指数幂的运算法则计算即可;(2)根据单项式乘单项式的运算法则、单项式除以单项式的运算法则、积的乘方法则计算.【详解】解:(1)原式91(1)9=+⨯--919=--1=-;(2)原式66654a a a =+-68a =.【点睛】本题考查了实数的运算、整式的运算,解题的关键是掌握有理数的乘方法则、零指数幂和负整数指数幂的运算法则、单项式乘单项式的运算法则、单项式除以单项式的运算法则.18.277y xy -+,30-【解析】【分析】根据整式的运算法则即可化简求解.【详解】解:原式=222222392(4)x xy y x xy x y -+-++-=2222223928x xy y x xy x y -+-++-=277xy y -其中17x =-,2y =原式=217(2727⨯-⨯-⨯=-2-28=-30【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的乘法公式.19.垂线的定义,内错角相等两直线平行,1∠,两直线平行同位角相等,垂直平分线,D ∠,等边对等角,等量代换.【解析】【分析】利用垂线的定义,平行线的判定和性质,线段的垂直平分线的性质等知识求解即可.【详解】解:因为DB BC ⊥(已知),所以90DBC ∠=︒(垂线的定义).因为90C ∠=︒(已知),所以∠=∠DBC C (等量代换).所以//DB AC (内错角相等两直线平行).所以1A ∠=∠(两直线平行同位角相等).由作图法可知:直线EF 是线段DB 的垂直平分线,所以GD GB =.所以1D ∠=∠(等边对等角).因为1A ∠=∠(已知),所以A D∠=∠(等量代换).故答案为:垂线的定义,内错角相等两直线平行,1∠,两直线平行同位角相等,垂直平分线,D∠,等边对等角,等量代换.【点睛】本题考查作图-复杂作图,平行线的判定和性质,线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(1)0.4,0.4;20;(2)25【解析】【分析】(1)根据统计图找到摸到黑球的频率稳定到的常数即为摸到黑球的概率;用总数乘以摸到黑球的频率即可得到黑球的个数;(2)设向袋子中放入了x个黑球,根据摸到黑球最终稳定的频率即为概率的估计值,列出方程求解可得.【详解】(1)观察发现:随着实验次数的增加频率逐渐稳定到常数0.4附近,故摸到黑球的频率会接近0.4.袋中黑球的个数约为50×0.4=20(只).(2)设放入黑球x个,根据题意得:20 50xx+=+0.6,解得:x=25,经检验:x=25是原方程的根.故答案为:25.【点睛】本题考查了概率公式和频率估计概率,熟练掌握概率公式:概率等于所求情况数与总情况数之比是解答本题的关键.21.(1)11000;(2)7125;(3)500【解析】【分析】任取一张有1万种情况,其中抽到一等奖有10种情况,二等奖有50种情况,三等奖有500种情况,利用概率公式进行计算即可.【详解】解:(1)获一等奖的概率是101100001000=,(2)获奖的概率是1050500710000125++=,(3)设需要将x 无奖券改为三等奖券,则:50011000010x +=,解得:500x =.【点睛】本题考查了利用概率公式求概率,解题的关键是掌握如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )m n=,难度适中.22.(1)①见解析;②16︒;(2)见解析【解析】【分析】(1)①作线段AB 的垂直平分线交BC 于点D ,连接AD 即可.②求出DAB ∠,CAB ∠,可得结论.(2)证明()ABE ACD SAS ∆≅∆,推出ABE ACD ∠=∠,再证明OBC OCB ∠=∠,即可解决问题.【详解】解:(1)①如图,点D 即为所求.②MN 垂直平分线段AB ,DA DB ∴=,37DAB B ∴∠=∠=︒,90C ∠=︒ ,903753CAB ∴∠=︒-︒=︒,16CAD CAB DAB ∴∠=∠-∠=︒.(2)AB AC = ,BD CE =,AD AE ∴=,在ABE ∆和ACD ∆中,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,()ABE ACD SAS ∴∆≅∆,ABE ACD ∴∠=∠,ABC ACB ∠=∠ ,OBC OCB ∴∠=∠,OB OC ∴=.【点睛】本题考查作图-复杂作图,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.(1)2t ,72t -;(2)CAP PBQ ∆≅∆,PC PQ ⊥,理由见解析;(3)2()AP BQ cm ==,2x cm /s =;20/7x cm s =,P 在线段AB 中点,5()BQ cm =.【解析】【分析】(1)根据路程=时间⨯速度求解.(2)利用三角形全等的判定条件,判断两个三角形是否全等.(3)此处判断两个三角形全等用SAS ,需要分情况讨论对应边.【详解】解:(1)P 点运动速度为2/cm s ,运动()t s 走的路程为2()t cm ,AB 长度为7,(72)()BP t cm =-,故答案为2t ,72t -.(2)CAP PBQ ∆≅∆,PC PQ ⊥.证明: 点Q 的运动速度与点P 的运动速度相等,∴当1t =时,2()AP BQ cm ==,725()BP cm =-=,5()AC cm = ,90A B ∠=∠=︒,()CAP PBQ SAS ∴∆≅∆,ACP BPQ ∴∠=∠,90ACP CPA ∠+∠=︒ ,90BPQ CPA ∴∠+∠=︒,PC PQ∴⊥(3)CAB DBA ∠=∠,ACP ∆与BPQ ∆全等,需要满足下面条件之一:①AC PB =,AP BQ =,即5AC PB ==,752()AP BQ cm ==-=,2()AP t cm = ,()BQ xt cm =,2()AP BQ cm ∴==,2x cm /s =,②AC BQ =,AP PB =,即5AC BQ ==,7()2AP PB cm ==,72()2AP t cm ==,74t s ∴=,5()BQ xt cm == ,20/7x cm s ∴=,P 在线段AB 中点,5()BQ cm =.【点睛】本题考查了三角形全等的判定和性质和动点相结合,解题的关键是全等知识点熟练应用和动点的情况分析.24.(1)证明见解析(2)证明见解析【解析】【分析】(1)过点O作OM∥AB,根据平行线的性质得出∠1=∠EOM,求出OM∥CD,根据平行线的性质可求解;(2)根据平行线的性质得出∠AEH+∠CHE=180°,根据角平分线的性质和平行线的判定可求解.【详解】(1)方法一:过点O作OM∥AB,则∠1=∠EOM,∵AB∥CD,∴OM∥CD,∴∠2=∠FOM,∵OE⊥OF,∴∠EOF=90°,即∠EOM+∠FOM=90°,∴∠1+∠2=90°;方法二:过点F作FN∥OE交AB于N,则∠1=∠ANF,∠EOF+∠OFN=180°,∵OE⊥OF,∴∠EOF=90°,∴∠OFN=180°-∠EOF=90°,∵AB∥CD,∴∠ANF=∠NFD,∴∠1=∠NFD,∵∠1+∠OFN+∠NFD=180°,∴∠1+∠2=180°-∠OFN=90°;(2)∵AB∥CD,∴∠AEH+∠CHE=180°,∵FO平分∠CFG,EO平分∠AEH,∴∠CFG=2∠2,∠AEH=2∠1,∵∠1+∠2=90°,∴∠CFG+∠AEH=2∠1+2∠2=180°,∴∠CFG=∠CHE,∴FG∥EH.25.y=100-6x【解析】【详解】分析:(1)由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少6L,据此可得t与Q的关系式;(2)求汽车油箱中剩余油量为46L,则汽车行驶了多少小时即是求当Q=46时,t的值;(3)先求出汽车以100km/h的速度在一条全长700公里的高速公路上匀速行驶需要的时间,乘以6求出用油量,再与36L比较大小即可判断.详解:(1)y=100-6x(2)令y=46,则46=100-6x,解得x=9.(3)700÷100=7h,7⨯6=42L,42>36,在中途不加油的情况下不能从高速公路起点开到高速公路终点.点睛:本题主要考查了一次函数的应用,由表格中数据求函数解析式可以根据等量关系列出或者利用待定系数法去求,理清汽车以100km/h的速度在一条全长700公里的高速公路上匀速行驶需要的时间7小时,是第三个问题的突破点.。

北师大版七年级下学期期末考试模拟卷经典(附详细答案)

北师大版七年级下学期期末考试模拟卷经典(附详细答案)

七年级数学第二学期期末考试模拟卷初一年级 数学考试考试时间:90分钟 试卷满分:100分姓名: 分数:一. 选择题(共12小题,满分36分,每小题3分)1.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是( )A B C D 2.下列运算正确的是( )A .235a a a ⋅= B .()22ab ab = C .()239aa = D .632a a a ÷=3.如图在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+ D .()()222a b a b a ab b +-=++4.若要使21464x mx ++成为一个两数差的完全平方式,则m 的值应为( ) A .12± B .12- C .14± D .14-5.如图,已知∠1=110°,则∠2的度数为( )A .55°B .70°C .50°D .不能确定6.如图所示,直线a ∥b ,△ABC 是直角三角形,∠A=90°,∠ABF=25°,则∠ACE 等于( )A .25°B .55°C .65°D .75°7.两个不相等的正数满足2a b +=,1ab t =-,设()2S a b =-,则S 关于t 的函数图象是( )A .射线(不含端点)B .线段(不含端点)C .直线D .抛物线的一部分 8.一辆汽车由A 地匀速驶往相距300千米的B 地,汽车的速度是100千米/小时,那么汽车距离A 地的路程S (千米)与行驶时间t (小时)的函数关系用图象表示为( )A B C D9.下列事件中,是不可能事件的是()10.已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()11.已知三角形的两边a=3,b=7,第三边是c,且a<b<c,则c的取值范围是()12.下列说法正确的是()二.填空题(共4小题,满分12分,每小题3分)13.一台计算机每秒可作3×1012次运算,它工作了2×102秒可作_________次运算.14.已知△ABC三边分别为a、b、c,若a=3,b=4,则c的取值范围是_________;已知四边形ABCD四边分别为a、b、c、d,若a=3,b=4,d=10,则c的取值范围是_________.15.下列能判断两个三个角形全等的条件是_________①已知两角及一边对应相等②已知两边及一角对应相等③已知三条边对应相等④已知直角三角形一锐角及一边对应相等⑤已知三个角对应相等.16.下列是三种化合物的结构式及分子式,(1)请按其规律,写出后一种化合物的分子式_________.(2)每一种化合物的分子式中H的个数m是否是C的个数n的函数?如果是,写出关系式_________.三.解答题(共7小题,满分52分) 17.(6分)计算:18.(6分)探究发现:阅读解答题:在数学中,有些大数值问题可以通过用字母代替数转化成整式问题来解决.例:试比较20142015×20142012与20142014×20142013的大小.解:设20142014=a ,x =20142015×20142012,y =20142014×20142013那么x =(a +1)(a ﹣2),那么y =a (a ﹣1) ∵x ﹣y = _________∴x _________ y (填>、<).填完后,你学到了这种方法吗?不妨尝试一下,相信你准行! 问题:计算(m +22.2014)(m +14.2014)﹣(m +18.2014)(m +17.2014).19.(7分)计算:(1)()()234a b a a b --+-+⎡⎤⎣⎦ (2)()()22a b a ab b +-+20.(7分)在△ABC 中,AB=CB ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF . (1)求证:Rt △ABE ≌Rt △CBF ; (2)若∠CAE=30°,求∠ACF 的度数.21.(8分)如图,这是反映爷爷每天晚饭后从家中出发去元宝山公园锻炼的时间与距离之间关系的一幅图.(1)如图反映的自变量、因变量分别是什么?(2)爷爷每天从公园返回用多长时间?(3)爷爷散步时最远离家多少米?(4)爷爷在公园锻炼多长时间?(5)计算爷爷离家后的20分钟内的平均速度.22.(8分)将编号依次为1,2,3,4的四个同样的小球放进一个不透明的袋子中,摇匀后甲、乙二人做如下游戏:每人从袋子中各摸出一个球,然后将这两个球上的数字相乘,若积为奇数,则甲获胜;若积为偶数,则乙获胜.请问:这样的游戏规则对甲、乙双方公平吗?请用概率的知识说明理由.(非课改区)某校九年级一班数学调研考试成绩绘制成频数分布直方图,如图(得分取整数).请根据所给信息解答下列问题:(1)这个班有多少人参加了本次数学调研考试?(2)60.5~70.5分数段的频数和频率各是多少?(3)请你根据统计图,提出一个与(1),(2)不同的问题,并给出解答.23.(10分)在△ABC中,∠ACB为锐角,动点D(异于点B)在射线BC上,连接AD,以AD为边在AD的右侧作正方形ADEF,连接CF.(1)若AB=AC,∠BAC=90°那么①如图一,当点D在线段BC上时,线段CF与BD之间的位置、大小关系是_________(直接写出结论)②如图二,当点D在线段BC的延长上时,①中的结论是否仍然成立?请说明理由.(2)若AB≠AC,∠BAC≠90°.点D在线段BC上,那么当∠ACB等于多少度时?线段CF与BD之间的位置关系仍然成立.请画出相应图形,并说明理由.模拟卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.D2.A3.A4.B这两个数的平方,那么中间一项为减去或加和±.)﹣,+mx+﹣5.D6.C7.B8.B9.D10.D11.B12.D的面积是×的面积是二.填空题(共4小题,满分12分,每小题3分)13.6×101414.1<c<7;3<c<17.15.①③④16.(1)C H.(2)m=2n+2.三.解答题(共7小题,满分52分)17.18.19.20.,21.22.所以甲获胜的概率为,乙获胜的概率为23.。

【北师大版】七年级数学下期末一模试卷及答案

【北师大版】七年级数学下期末一模试卷及答案

一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3 B .a ≥3C .a >3D .a ≤3 2.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有( )A .4种B .5种C .6种D .7种 3.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( )A .6种B .7种C .8种D .9种 4.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112lB .116lC .516lD .118l 5.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a+b .例如3⊗4=2×3+4,若x ⊗(﹣y )=2018,且2y ⊗x =﹣2019,则x+y 的值是( ) A .﹣1 B .1 C .13 D .﹣136.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限7.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的12 8.下列各数中无理数共有( )①–0.21211211121111,②3π,③227,839 A .1个 B .2个C .3个D .4个9.下列所示的四个图形中,∠1和∠2是同位角的是( )A .②③B .①②③C .①②④D .①④10.不等式()2x 13x -≥的解集是( )A .x 2≥B .x 2≤C .x 2≥-D .x 2≤- 11.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) A .a <-2 B .a ≤-2C .a >-2D .a ≥-2 12.若线段4、4、m 能构成三角形,且使关于x 的不等式组23834x m x m >-⎧⎨-+≥-⎩有解的所有整数m 的和为( )A .6B .1C .2D .3二、填空题13.由ac bc >得到a b <的条件是:c ______0(填“>”“<”或“=”).14.某果蔬饮料由果汁、蔬菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了12.5%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为______.15.某超市促销活动,将车厘子、波罗蜜、山竹三种水果采用三种不同方式搭配成礼盒,分别是蒸蒸日上礼盒、独占鳌头礼盒、吉祥如意礼盒,将礼盒进行销售,每盒的总成本为盒中车厘子、波罗蜜、山竹三种水果成本之和,盒子成本忽略不计,蒸蒸日上每盒分别装有车厘子、波罗蜜、山竹三种水果8千克,4千克,3千克;独占鳌头每盒装有车厘子、波罗蜜、山竹三种水果3千克,8千克,6千克;蒸蒸日上每盒的总成本是每千克车厘子水果成本的14倍,每盒蒸蒸日上的销售利润是60%,每盒独占鳌头的售价是成本的43倍,每盒吉祥如意在成本上提高60%标价后打八折出售,获利为每千克车厘子水果成本的2.8倍,当销售蒸蒸日上、独占鳌头、吉祥如意三种礼盒的数量之比为5:2:5,则销售的总利润率为______.16.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.17.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.18.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 19.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线//a b ,//b c ,则//a c ;(5)两条直线被第三条直线所截,同位角相等.其中正确的是________.20.不等式组210360x x ->⎧⎨-<⎩的解集为_______. 三、解答题21.我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数n ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数n 为“七巧数”.例如:3254是“七巧数”,因为347+=,257+=,所以3254是“七巧数”; 1456不是“七巧数”,因为167+=,但457+≠,所以1456不是“七巧数”.(1)若一个“七巧数”的千位数字为a ,则其个位数字可表示为______(用含a 的代数式表示);(2)最大的“七巧数”是______,最小的“七巧数”是______;(3)若m 是一个“七巧数”,且m 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数”m .22.解不等式或不等式组,并把解集在数轴上表示出来.(1)432136x x -+>-; (2)2(1)0210x x +<⎧⎨-⎩. 23.如图,在平面直角坐标系中,点A (0,12),点B (m ,12),且B 到原点O 的距离OB =20,动点P 从原点O 出发,沿路线O →A →B 运动到点B 停止,速度为每秒5个单位长度,同时,点Q 从点B 出发沿路线B →A →O 运动到原点O 停止,速度为每秒2个单位长度.设运动时间为t .(1)求出P 、Q 相遇时点P 的坐标.(2)当P 运动到AB 边上时,连接OP 、OQ ,若△OPQ 的面积为6,求t 的值. 24.列二元一次方程组解应用题:某大型超市投入15000元资金购进A 、B 两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A 、B 品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润? 类别/单价 成本价(元/箱 销售价(元/箱) A 品牌20 32 B 品牌 35 5025.计算:(1)36 1.754⎛⎫--+ ⎪⎝⎭; (2)()()232524-⨯--÷;(3)()2253---.26.已知:如图,AE ⊥BC ,FG ⊥BC ,∠1=∠2(1)求证:AB ∥CD(2)若∠D =∠3+50°,∠CBD =70°,求∠C 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先解不等式,然后根据不等式组无解确定a 的范围.【详解】解:5210x x a -≥-⎧⎨->⎩①② 解不等式①,得3x ≤;解不等式②,得x a >;∵不等式组无解,∴3a ≥;故选:B .【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.A解析:A【分析】根据题意列出二元一次方程,再结合实际情况求得正整数解.【详解】解:设买x 支2元一支的圆珠笔,y 支3元一支的圆珠笔,根据题意得:2330x y,且,x y 为正整数, 变形为:3023x y ,由x 为正整数可知,302x 必须是3的整数倍, ∴当3023x ,即1y =时,13.5x =不是整数,舍去;当3026x,即2y =时,12x =是整数,符合题意; 当3029x ,即3y =时,10.5x =不是整数,舍去;当30212x ,即4y =时,9x =是整数,符合题意;当30215x ,即5y =时,7.5x =不是整数,舍去;当30218x ,即6y =时,6x =是整数,符合题意;当30221x,即7y =时, 4.5x =不是整数,舍去; 当30224x,即8y =时,3x =是整数,符合题意; 当30227x,即9y =时, 1.5x =不是整数,舍去; 故共有4种购买方案,故选:A .【点睛】本题考查了二元一次方程的应用,解题定关键是根据题意列出不定方程,然后根据实际问题对解得要求,逐一列举出来舍去不符合题意的即可.3.A解析:A【解析】试题设兑换成10元x 张,20元的零钱y 元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:24x y =⎧⎨=⎩,43x y =⎧⎨=⎩,62x y =⎧⎨=⎩,81x y =⎧⎨=⎩,10{0x y ==,05x y =⎧⎨=⎩. 因此兑换方案有6种,故选A .考点:二元一次方程的应用.4.B解析:B【分析】设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可.【详解】 解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=. 3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-,91644y x l ∴+=, 116x l ∴=.∴标号为①的正方形的边长116l.故选:B.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.5.D解析:D【分析】已知等式利用题中的新定义化简得到方程组,两方程左右两边相加即可求出所求.【详解】解:根据题中的新定义得:22018 42019x yy x-=⎧⎨+=-⎩①②,①+②得:3x+3y=﹣1,则x+y=﹣13.故选:D.【点睛】本题主要考查的是定义新运算以及二元一次方程组的解法,掌握二元一次方程的解法是解题的关键.6.D解析:D【分析】直接利用坐标系中点的坐标特点以及平行于坐标轴的直线上点的关系分别分析得出答案.【详解】解:A、若ab=0,则a=0或b=0,所以点P(a,b)表示在坐标轴上的点,故此选项不符合题意;B、当a>0时,点(1,a)在第一象限,故此选项不符合题意;C、已知点A(3,-3)与点B(3,3),A,B两点的横坐标相同,则直线AB∥y轴,故此选项不符合题意;D、若ab>0,则a、b同号,故点P(a,b)在第一或三象限,故此选项符合题意.故选:D.【点睛】此题主要考查了坐标与图形的性质,正确把握点的坐标特点是解题的关键.7.B解析:B【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y轴变长,即可得出结论.【详解】如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选B .【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.8.C解析:C【分析】根据无理数的概念确定无理数的个数即可解答.【详解】解:无理数有3π3个. 故答案为C .【点睛】本题主要考查了无理数的定义,无理数主要有以下三种①带根号且开不尽方才是无理数,②无限不循环小数为无理数,③π的倍数. 9.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.10.D解析:D【分析】去括号、移项、合并同类项,然后系数化成1即可求解.【详解】解:()2x 13x -≥,去括号,得2x 23x -≥,移项,得23x 2x -≥-,解得x 2≤-.故选:D .【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.11.D解析:D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122x a x x ->⎧⎨->-⎩①② 解①得:x >a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故选:D .【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.12.D解析:D【分析】根据三角形三边关系可得0<m <8,再根据关于x 的不等式组23834x m x m -⎧⎨-+≥-⎩>有解可得m-2<4-m ,求得m <3,可得所有整数m 有1,2,再相加即可求解.【详解】解:∵线段4、4、m 能构成三角形,∴0<m <8,23834x m x m -⎧⎨-+≥-⎩>①②, 解不等式②得:x≤4-m ,∴m-2<4-m ,解得m <3,∴0<m <3,∴所有整数m 有1,2,1+2=3.故所有整数m 的和为3.故选:D .【点睛】考查了三角形三边关系,一元一次不等式组的整数解,关键是根据题意得到0<m <3.二、填空题13.【分析】根据不等式的性质两边同时除以c (c<0)即可得到【详解】根据不等式的性质:由得到的条件是:c<0故答案为:<【点睛】此题考查不等式的性质:不等式的性质1:不等式两边加减同一个数(或式子)不等解析:<【分析】根据不等式的性质,两边同时除以c (c<0)即可得到.【详解】根据不等式的性质:由ac bc >得到a b <的条件是:c<0,故答案为:<.【点睛】此题考查不等式的性质:不等式的性质1:不等式两边加减同一个数(或式子),不等号的方向不变;不等式的性质2:不等式两边乘(或除)同一个正数,不等号的方向不变;不等式的性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.【分析】设该种饮料中纯净水的质量为果汁的质量为蔬菜汁的质量为纯净水的原来的价格为从而可得果汁的原来的价格为蔬菜汁的原来的价格为再根据价格变化前后该饮料的成本不变建立方程求解即可得【详解】设该种饮料中 解析:4:5【分析】设该种饮料中纯净水的质量为a 、果汁的质量为b 、蔬菜汁的质量为c ,纯净水的原来的价格为x ,从而可得果汁的原来的价格为2x ,蔬菜汁的原来的价格为2x ,再根据价格变化前后该饮料的成本不变建立方程求解即可得.【详解】设该种饮料中纯净水的质量为a 、果汁的质量为b 、蔬菜汁的质量为c ,纯净水的原来的价格为x ,则果汁的原来的价格为2x ,蔬菜汁的原来的价格为2x ,由题意得:22(120%)2(112.5%)2(112.5%)ax bx cx ax bx cx ++=-+⨯++⨯+, 整理得:45()a b c =+,则():4:5b c a +=,即该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为4:5,故答案为:4:5.【点睛】本题考查了三元一次方程的应用,依据题意,正确建立方程是解题关键.15.44【分析】分别设每千克车厘子菠萝蜜山竹三种水果的成本价分别为xyz 再由题意分别求出每一种礼盒的成本利润则可求解【详解】设设每千克车厘子菠萝蜜山竹三种水果的成本价分别为xyz 由题意可得:∴蒸蒸日上的解析:44%【分析】分别设每千克车厘子、菠萝蜜、山竹三种水果的成本价分别为x 、y 、z ,再由题意分别求出每一种礼盒的成本、利润则可求解.【详解】设设每千克车厘子、菠萝蜜、山竹三种水果的成本价分别为x 、y 、z ,由题意可得:84314x y z x ++=∴436y z x +=蒸蒸日上的总成本为:84314x y z x ++=, 每盒的利润是:342(843)55x y z x ++=; 独占鳌头的总成本为:38632615x y z x x x ++=+⨯=, 每盒的售价是:4(386)3x y z ++, 每盒的利润是:()()41(386)386386533x y z x y z x y z x ++-++=++= 每盒吉祥如意的销售利润是2.8x ,则成本为:()2.810160%80%1x x =+⨯-, 当销售蒸蒸日上、独占鳌头、吉祥如意三种礼盒的数量之比为5:2:5,总成本是:51425510150x x x x ⨯+⨯+⨯=, 总利润是:425255 2.8665x x x x ⨯+⨯+⨯= ∴总利润是6644%150x x= 故答案为:44%【点睛】本题考查了三元一次方程的应用;理解题意,能够通过所给的量之间的关系列出正确的方程是解题的关键.16.(02)(﹣4﹣2)【分析】由点A (a-2a )及AB ⊥x 轴且AB=2可得点A 的纵坐标的绝对值从而可得a 的值再求得a-2的值即可得出答案【详解】解:∵点A (a ﹣2a )AB ⊥x 轴AB =2∴|a|=2∴a解析:(0,2)、(﹣4,﹣2).【分析】由点A (a-2,a ),及AB ⊥x 轴且AB=2,可得点A 的纵坐标的绝对值,从而可得a 的值,再求得a-2的值即可得出答案.【详解】解:∵点A (a ﹣2,a ),AB ⊥x 轴,AB =2,∴|a|=2,∴a =±2,∴当a =2时,a ﹣2=0;当a =﹣2时,a ﹣2=﹣4.∴点A 的坐标是(0,2)、(﹣4,﹣2).故答案为:(0,2)、(﹣4,﹣2).【点睛】本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键.17.【分析】观察发现每6个点形成一个循环再根据点A6的坐标及2020÷6所得的整数及余数可计算出点A2020的横坐标再根据余数对比第一组的相应位置的数可得其纵坐标【详解】解:观察发现每6个点形成一个循环解析:()2020,2-【分析】观察发现,每6个点形成一个循环,再根据点A 6的坐标及2020÷6所得的整数及余数,可计算出点A 2020的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵()66,0A ,∴OA 6=6,∵2020÷6=336…4,∴点A 2020的位于第337个循环组的第4个,∴点A 2020的横坐标为6×336+4=2020,其纵坐标为:﹣2,∴点A 2020的坐标为()2020,2-.故答案为:()2020,2-.【点睛】本题考查点的坐标规律,确定每6个点形成一个循环且点A 2020的位于第337个循环组的第4个是解题的关键.18.【分析】利用裂项法计算即可【详解】原式【点睛】本题考查了利用裂项法进行分数的加法计算熟练掌握裂项法是解题的关键解析:10102021【分析】利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭ 11122021⎛⎫=⨯- ⎪⎝⎭ 1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 19.(4)【分析】根据平行线的定义平行线的性质平行公理的推论解答【详解】(1)在同一平面内不相交的两条直线叫做平行线故该项错误;(2)过直线外一点有且只有一条直线与已知直线平行故该项错误;(3)在同一平 解析:(4)【分析】根据平行线的定义,平行线的性质,平行公理的推论解答.【详解】(1)在同一平面内不相交的两条直线叫做平行线,故该项错误;(2)过直线外一点,有且只有一条直线与已知直线平行,故该项错误;(3)在同一平面内,垂直于同一条直线的两直线平行,故该项错误;(4)直线//a b ,//b c ,则//a c ,故该项正确;(5)两条平行线被第三条直线所截,同位角相等,故该项错误.故选:(4).【点睛】此题考查判断语句,熟记平行线的定义,平行线的性质,平行公理的推论是解题的关键. 20.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键. 三、解答题21.(1)7-a ;(2)7700,1076;(3)6431,4523,2615【分析】(1)根据七巧数的定义,即可得到答案;(2)根据七巧数的定义,即可得到答案;(3)设m 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,根据题意得到a ,b ,c ,d 之间的数量关系,进而求出b 的范围,即可求解.【详解】(1)∵一个“七巧数”的千位数字为a ,∴其个位数字可表示为:7-a ,故答案是:7-a ;(2)由题意可得:最大的“七巧数”是:7700,最小的“七巧数”是:1076,故答案是:7700,1076;(3)设m 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则3()77a c b d a d c b +=-⎧⎪=-⎨⎪=-⎩①②③,把②③代入①,可得:7-d+7-b=3b-3d ,既:4b-2d=14,∴d=2b-7,∴百位数字为b ,个位数字为2b-7,十位数字为7-b ,∵2b-7≥0且7-b≥0,∴3.5≤b≤7,当b=4时,则d=1,a=6,c=3,m=6431,当b=5时,则d=3,a=4,c=2,m=4523,当b=6时,则d=5,a=2,c=1,m=2615,当b=7时,则d=7,a=0,c=0,不符合题意,∴ 满足条件的所有“七巧数”m 为:6431,4523,2615.【点睛】本题主要考查新定义问题,理解题意,列出方程和不等式,掌握分类讨论的思想方法,是解题的关键.22.(1) 2.4x <,数轴见解析;(2)1x <-,数轴见解析【分析】(1)根据去分母、去括号、移项、合并、系数化为1求出不等式的解集即可;(2)分别解两个不等式得到1x <-和12x,然后根据同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解确定不等式组的解集,再用数轴表示解集.【详解】解:(1)去分母得:2(4)326x x ->+-, 82326x x ->+-,23268x x -->--,512x ->-,2.4x <,在数轴上表示为:;(2)()210210x x ⎧+<⎨-⎩①②, 解不等式①得:1x <-, 解不等式②得:12x, 所以不等式组的解集是1x <-, 在数轴上表示为:.【点睛】本题考查了解一元一次不等式(组):求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集. 23.(1)P (8,12);(2)满足条件的值为277或297或1098. 【分析】(1)由勾股定理得AB=16,当P 、Q 相遇,P 和Q 走过的路程之和是AB+OA ,即可求得; (2)分类讨论, P 、Q 都在AB 边上和点Q 在OA 上,即可求得.【详解】(1)设t 秒后P ,Q 相遇.在Rt △AOB 中,∵∠BAO =90°,OA =12,OB =20,∴16AB ==,由题意:5t +2t =12+16,解得t =4,此时BQ =8.AQ =AB ﹣BQ =16﹣8=8,∴P (8,12).(2)当P ,Q 都在AB 边上时,()11216512262t t ⨯⨯---=, 解得t =277或297当点Q 在OA 上时,12×16(28﹣2t )=6, 解得t =1098, 综上所述,满足条件的值为277或297或1098. 【点睛】 本题考查平面直角坐标系、勾股定理和动点类型习题,掌握分类讨论思想是解决本题的关键.24.(1)A 品牌矿泉水400箱,B 品牌矿泉水200箱;(2)7800元【分析】(1)设该超市进A 品牌矿泉水x 箱,B 品牌矿泉水y 箱,根据总价=单价×数量,结合该超市投入15000元资金购进A 、B 两种品牌的矿泉水共600箱,即可列出关于x ,y 的二元一次方程组,解之即可;(2)根据总利润=每箱利润×数量,即可求出该超市销售完600箱矿泉水获得的利润.【详解】解:(1)设该超市进A 品牌矿泉水x 箱,B 品牌矿泉水y 箱,依题意,得:600203515000x y x y +=⎧⎨+=⎩,解得:400200x y =⎧⎨=⎩. 答:该超市进A 品牌矿泉水400箱,B 品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.(1)182;(2)22;(3【分析】(1)先去括号,同时将小数化为分数,再计算加减法;(2)先计算乘方,再计算乘除法,最后计算加减法;(3)先计算乘方和绝对值,再计算加减法.【详解】(1)36 1.754⎛⎫--+ ⎪⎝⎭=336144++ =182; (2)()()232524-⨯--÷=()4584⨯--÷=20+2=22;(3)()225--=4-()=【点睛】此题考查运算能力,掌握有理数的加减法计算法则,乘方的计算法则,实数的绝对值化简,有理数的混合运算法则是解题的关键.26.(1)证明见解析;(2)30°【分析】(1)根据平行线的判定求出AE ∥FG ,根据平行线的性质得出∠A =∠2,求出∠A =∠1,根据平行线的判定得出即可;(2)根据平行线的性质得出∠D+∠CBD+∠3=180°,根据∠D =∠3+50°和∠CBD =70°求出∠3=30°,根据平行线的性质得出∠C =∠3即可.【详解】(1)证明:∵AE ⊥BC ,FG ⊥BC ,∴∠AMB =∠GNB =90°,∴AE ∥FG ,∴∠A =∠2;又∵∠2=∠1,∴∠A =∠1,∴AB ∥CD ;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+50°,∠CBD=70°,∴∠3=30°,∵AB∥CD,∴∠C=∠3=30°.【点睛】本题考查了平行线的性质和判定,垂直定义等知识点,能灵活运用定理进行推理是解题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.。

北师大版七年级数学下册期末测试题及参考答案

北师大版七年级数学下册期末测试题及参考答案

北师大版七年级数学下册期末测试题) 1. 下列事件是必然事件的是( )A. 小梅的数学考试将得99分B. 抛出去的铅笔将着地C. 明天会是晴天D. 2018年有370天 2. 下列计算正确的是( )A. a4·a4=a16B. (a3)4=a7C. 12a6b4÷3a2b -2=4a4b2D. (-a3b)2=a6b23.如图, 在△ABC 中, AB =AC, DE ∥BC, ∠ADE =48°, 则下列结论中不正确的是( )A. ∠B =48°B. ∠AED =66°C. ∠A =84°D. ∠B +∠C =96° 4.已知xy =9, x -y =-3, 则x2+3xy +y2的值为( ) A. 27 B. 9 C. 54 D. 185.为应对越来越严峻的交通形势, 某市对其主干道进行拓宽改造.工程队在工作了一段时间后, 因雨被迫停工几天, 随后工程队加快了施工进度, 按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路y(米)与时间x(天)的关系的大致图象是( )6. 如图, 在△ABC 中, D 是AB 上一点, DF 交AC 于点E, AE =EC, DE =EF, 则下列说法中: ①∠ADE =∠EFC ;②∠ADE +∠ECF +∠FEC =180°;③∠B +∠BCF =180°;④S △ABC =S 四边形DBCF, 正确说法的个数有( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题, 每小题3分, 满分18分)7. 在不借助任何工具的情况下, 人的眼睛可以看到的最小物体的大小约为0.00003米, 将0.00003用科学记数法表示为____________.8. 汽车由吉安驶往相距220km的南昌,它的平均速度为100km/h,则汽车距南昌的路程s(km)与行驶的时间t(h)的关系式为__________________.9.四张质地、大小相同的卡片上, 分别画上如图所示的四个图形.在看不到图形的情况下从中任意抽取一张, 则抽取的卡片是轴对称图形的概率为________.10. 如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线分别交AC, AD, AB于点E, O, F, 则图中全等的三角形共有________对.第10题图第11题图11. 如图, 有一块边长为4的正方形塑料模板ABCD, 将一块足够大的直角三角板的直角顶点落在A点, 两条直角边分别与CD交于点F, 与CB的延长线交于点E, 则四边形AECF 的面积是________.12. 我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”. 如果等腰三角形的“内角正度值”为45°, 那么该等腰三角形的顶角度数为________.三、解答题(本大题共5小题, 每小题6分, 满分30分)13. (1)计算:43×0.259;(2)如图, 直线AB, CD相交于点O, OM⊥AB.若∠COB=135°, 求∠MOD的度数.14. 先化简, 再求值: 2a(a+2b)-(a+2b)2, 其中a=2, b=-1.15. 如图, ∠A=65°, ∠ABD=∠DCE=30°, 且CE平分∠ACB, 求∠DBC的度数.16. 如图, 在等边△ABC中, D是BC上一点, ∠BAD=40°, E是AC上一点, AD=AE,求∠AED的度数.17. 如图是由一个长方形和一个等腰三角形组成的轴对称图形, 请你用两种方法作出它的对称轴(要求: 只能用没有刻度的直尺, 可不写作法, 但要保留作图痕迹).四、(本大题共3小题, 每小题8分, 共24分)18.如图, 已知AB ∥CD, DA 平分∠BDC, ∠A =∠C. (1)试说明: CE ∥AD ;(2)若∠C =30°, 求∠B 的度数.19. 有四根小木棒长度分别是1, 3, 5, 7, 若从中任意抽出三根木棒组成三角形. (1)下列说法正确的序号是________; ①第一根抽出木棒长度是3的可能性是14;②抽出的三根木棒能组成三角形是必然事件; ③抽出的三根木棒能组成三角形是随机事件; ④抽出的三根木棒能组成三角形是不可能事件.(2)求抽出的三根木棒能组成三角形的概率.20. 对于任意有理数a, b, c, d, 我们规定符号(a, b)□(c, d)=ad-bc.例如: (1, 3)□(2, 4)=1×4-2×3=-2.(1)(-2, 3)□(4, 5)=________;(2)求(3a+1, a-2)□(a+2, a-3)的值, 其中a2-4a+1=0.五、(本大题共2小题, 每小题9分, 共18分)21. 如图, 在△ABC中, AB=AC, D, E, F分别在三边上, 且BE=CD, BD=CF, G为EF 的中点.(1)若∠A=40°, 求∠B的度数;(2)试说明: DG垂直平分EF.22. 一水果零售商在批发市场按每千克1.8元批发了若干千克西瓜进城出售, 为了方便, 他带了一些零钱备用. 他先按市场价售出一些后, 又降价出售. 售出西瓜的质量x(千克)与他手中持有的钱数y(元)(含备用零钱)的关系如图所示, 结合图象回答下列问题:(1)零售商自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完, 这时他手中的钱(含备用的钱)是450元, 问他一共批发了多少千克的西瓜?(4)这位水果零售商一共赚了多少钱?六、(本大题共12分)23. 如图①, 在△ABC中, ∠BAC=90°, AB=AC, 直线MN过点A, 且MN∥BC, 点D是直线MN上一点, 不与点A重合.(1)若点E是图①中线段AB上一点, 且DE=DA, 请判断线段DE与DA的位置关系, 并说明理由;(2)请在下面的A, B两题中任选一题解答.A: 如图②, 在(1)的条件下, 连接BD, 过点D作DP⊥DB交线段AC于点P, 请判断线段DB与DP的数量关系, 并说明理由;B:如图③, 在图①的基础上, 改变点D的位置后, 连接BD, 过点D作DP⊥DB交线段CA的延长线于点P, 请判断线段DB与DP的数量关系, 并说明理由.我选择: ________.参考答案与解析1. B2.D3.B4.C5.D6.A7. 3×10-58.s=220-100t9.10.411. 16解析: 根据题意可知∠BAE=∠DAF=90°-∠BAF, AB=AD, ∠ABE=∠ADF=90°, ∴△AEB≌△AFD(ASA), ∴S四边形AECF=S正方形ABCD=42=16.12.30°或90°解析: 设最小角的度数为x, 则最大角的度数为x+45°.当最小角是顶角时, 则x+x+45°+x+45°=180°, 解得x=30°, 此时三角形顶角的度数为30°.当最大角为顶角时, 则x+x+45°+x=180°, 解得x=45°, 此时三角形顶角的度数为90°.综上所述, 等腰三角形的顶角为30°或90°.13. 解: (1)43×0.259=43×0.253×0.256=(4×0.25)3×0.256=1×0.256=0.256.(3分)(2)∵∠COB=135°, ∴∠AOD=135°.∵OM⊥AB, ∴∠AOM=90°, ∴∠MOD=∠AOD-∠AOM=135°-90°=45°.(6分)14. 解: 原式=2a2+4ab-a2-4ab-4b2=a2-4b2.(3分)当a=2, b=-1时, 原式=4-4=0.(6分)15. 解: ∵∠DCE=30°, CE平分∠ACB, ∴∠ACB=2∠DCE=60°.(2分)∵∠A=65°, ∴∠ABC=180°-∠ACB-∠A=55°.(4分)∵∠ABD=30°, ∴∠DBC=∠ABC-∠ABD=25°.(6分)16. 解:∵△ABC是等边三角形, ∴∠BAC=60°.(2分)∵∠BAD=40°, ∴∠CAD=∠BAC-∠BAD=20°.(4分)∵AD=AE, ∴∠AED=(180°-∠CAD)=80°.(6分)17.解:如图所示, 直线AB即为所求.(6分)18. 解: (1)∵AB∥CD, ∴∠A=∠ADC.(1分)又∵∠A=∠C, ∴∠ADC=∠C, ∴CE∥AD.(3分)(2)由(1)可得∠ADC=∠C=30°.∵DA平分∠BDC, ∴∠CDB=2∠ADC=60°.(5分)∵AB∥DC, ∴∠B+∠CDB=180°, ∴∠B=180°-∠CDB=120°.(8分)19. 解: (1)①③(3分)(2)从1, 3, 5, 7中任意抽出三根木棒有1, 3, 5;1, 3, 7;3, 5, 7;1, 5, 7, 共四种情况, 而能组成三角形的只有3, 5, 7一种情况, (6分)∴抽出的三根木棒恰好能组成三角形的概率为.(8分)20. 解: (1)-22(2分)(2)原式=(3a+1)(a-3)-(a-2)(a+2)=3a2-9a+a-3-(a2-4)=3a2-9a+a-3-a2+4=2a2-8a+1.(5分)∵a2-4a+1=0, ∴a2=4a-1, ∴原式=2(4a-1)-8a+1=-1.(821. 解: (1)∵AB=AC, ∴∠C=∠B.∵∠A=40°, ∴∠B==70°.(3分)(2)连接DE, DF.在△BDE与△CFD中, ∴△BDE≌△CFD(SAS), ∴DE=DF.(7分)∵G 为EF的中点, ∴DG⊥EF, ∴DG垂直平分EF.(9分)22. 解: (1)零售商自带的零钱为50元. (2分)(2)(330-50)÷80=280÷80=3.5(元).答: 降价前他每千克西瓜出售的价格是3.5元. (4分)(3)(450-330)÷(3.5-0.5)=120÷3=40(千克), 80+40=120(千克).答: 他一共批发了120千克西瓜. (7分)(4)450-120×1.8-50=184(元).答: 这位水果零售商一共赚了184元. (9分)23. 解:(1)DE⊥DA.(1分)理由如下:∵∠BAC=90°, AB=AC, ∴∠B=∠C=45°.(2分)∵MN∥BC, ∴∠DAE=∠B=45°.(3分)∵DA=DE, ∴∠DEA=∠DAE=45°, ∴∠ADE=180°-∠DEA-∠DAE=90°, 即DE⊥DA.(5分)(2)选A DB=DP.(6分)理由如下:∵DP⊥DB, ∴∠BDE+∠EDP=90°.(7分)由(1)知DE⊥DA, ∴∠ADP+∠EDP=90°, ∴∠BDE=∠ADP.(9分)∵∠DEA=∠DAE=45°, ∴∠BED=∠DAE+∠BAC=135°, ∠DAP=∠DAE+∠BAC=135°, ∴∠BED=∠DAP.(10分)在△DEB和△DAP中, ∴△DEB≌△DAP(ASA), ∴DB=DP.(12分)或选B DB=DP.(6分)理由如下: 如图, 延长AB至F, 连接DF, 使DF=DA.(7分)同(1)得∠DFB=∠DAF=45°, ∴∠ADF=90°.∵DP⊥DB, ∴∠FDB=∠ADP.(9分)∵∠BAC=90°, ∠DAF=45°, ∴∠PAD=45°, ∴∠BFD=∠PAD.(10分)在△DFB和△DAP中, ∴△DFB≌△DAP(ASA),∴DB=DP.(12分)。

2023-2024学年北师大版七年级数学下册期末模拟试卷(无答案)

2023-2024学年北师大版七年级数学下册期末模拟试卷(无答案)

2023-2024学年七年级下学期期末数学模拟卷一、选择题1.3x 2可以表示为( ).A .x 2+x 2+x 2B .x 2⋅x 2⋅x 2C .3x ⋅3xD .3x +3x2.“翻开人教版数学八年级上册,恰好翻到第80页”,这个事件是( )A .必然事件B .随机事件C .不可能事件D .确定事件3.如果,那么代数式2a 2+4a +5的值是( )A .5B .6C .7D .84.如图所示,在3×3的正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得黑色图案是轴对称图形的情况有( )A .6种B .5种C .4种D .2种5.如图在2×2的小正方形方格中,连接AB 、AC 、AD .则结论错误的是( )A .∠1+∠2+∠3=135°B .2∠3=∠1+∠2C .∠1+∠2=90°D .∠3=2∠1+∠26.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是 A. B . C . D .7.如图,把一张长方形纸片沿折叠,若,则的度数为( )A .B .C .D .8.若点P 为△ABC 内部一点,且PA =PB =PC ,则点P 是△ABC的( )A .三边中线的交点B .三内角平分线的交点C .三条高的交点D .三边垂直平分线的交点9.将一直角三角板与两边平行的纸条如下图所示放置,下列结论:(1),(2),(3),(4)2210a a +-=()49592345AB 150∠=︒2∠80︒70︒60︒50︒12∠=∠34∠∠=2+4=90∠∠︒,其中正确的个数是( )A .1B .2C .3D .410.如图,甲、乙两车分别从M 、N 两地沿同一公路相向匀速行驶,两车分别抵达N ,M 两地后即停止行驶.已知乙车比甲车提前出发,设甲、乙两车之间的路程S (),乙行驶的时间为t (h ),S 与t 的对应关系如图所示.下列说法错误的是( )A .M 、N 两地之间路程是B .乙比甲提前1.5小时出发,两车在相遇C .乙车速度是,甲车速度是D .,二、填空题11.中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022(米).将数据0.000000022用科学记数法表示为 .12.若10m =20,10n =5,则m +n−1= .13.如图,△ABC 的三边AB 、BC 、AC 的长分别为10cm 、15cm 和20cm ,三条角平分线的交点为O ,则S △AOB :S △BOC :S △COA = .14.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个角形,第2个图案有7个三角形,第3个图案有10个三角形,按此规律摆下去,若第n 个图案中有y 个三角形,则y 与n 之间的关系式是 .15.等腰三角形ABC 的底边BC 长为6,面积是21,腰AB 的垂直平分线EF 分别交AB ,AC 于点E 、F ,若点D 为底边BC 的中点,点M 为线段EF 上一动点,则BM +DM 的最小值为 .16.如图,在四边形ABCD 中,E 是边BC 的中点,AE 平分∠BAD ,且∠AED =90°,若CD =2AB ,AD =18,则AB =.45180∠+∠=︒km 300km3h 60km/h 80km/h5.25a =290b=三、解答题17.计算:.18.若x ,y 满足|2x +1|+(y ﹣1)2=0,求[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷(﹣2x )的值.19.如图,AD ∥BC ,AP 、BP 分别平分∠DAB 、∠ABC ,CD 过点P 且与AD 垂直.(1)求证:.(2)若CD =8,AB =10,求△ABP 的面积.20.在如图所示的网格中,线段AB 和直线a 如图所示,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在格点上.(1)在图中画出以线段AB 为一边的正方形ABCD ,且点C 和点D 均在格点上,并直接写出正方形ABCD 的面积为______;(2)在图中以线段AB 为一腰的等腰三角形ABE ,点E 在格点上,则满足条件的点E 有______个;(3)在图中的直线a 上找一点Q ,使得△QAB 的周长最小,最小值是多少?022024)14.3()31()1(π--+--BP AP ⊥21.口袋里有除颜色外其它都相同的5个红球和3个白球.(1)先从袋子里取出m (m ≥1)个白球,再从袋子里随机摸出一个球,将“摸出红球”记为事件A .如果事件A 是必然事件,则m =;如果事件A 是随机事件,则m = ;(2)先从袋子中取出m 个白球,再放入m 个一样的红球并摇匀,摸出一个球是红球的可能性大小是,求m的值.22.小明和小亮准备用所学数学知识测一池塘的长度,经过实地测量,绘制如下图,点B 、F 、C 、E 在直线l 上(点F 、C 之间的距离为池塘的长度),点A 、D 在直线l 的异侧,且AB ∥DE ,∠A =∠D ,测得AB =DE .(1)求证:△ABC ≌△DEF ;(2)若BE =120m ,BF =38m ,求池塘FC 的长度.23.一个蓄水池中装有一个进水管和一个出水管,单位时间内进、出水量都一定,先打开进水管10分钟后再两管同时开放12分钟,然后关闭进水管,直至把池中的水放完.池中的蓄水量y (升)随时间x (分钟)变化而变化的图象如图所示.(1)求进水管每分钟的进水量;(2)求出水管每分钟的出水量;(3)求打开进水管后几分钟蓄水池中的蓄水量为500升.4324.如图,在边长为m 的正方形纸片中剪去一个边长为n 的小正方形纸片(m >n ),把剩余的部分拼成一个长方形纸片.(1)如图1,通过计算两个纸片中阴影部分的面积,可得等式 (填字母);A 、m 2+2mn +n 2=(m +n )2B 、m 2﹣2mn +n 2=(m ﹣n )2C 、m 2﹣n 2=(m +n )(m ﹣n )D 、m 2﹣mn =m (m ﹣n )(2)请利用(1)中所选的结论,解答以下问题:①如图2,大正方形ABCD 的面积为S 1,小正方形CEFG 的面积为S 2,且S 1﹣S 2=30,求不规则四边形BGED 的面积;②计算:202411(202311(202211()411()311(211(222222-⨯-⨯-⨯⨯-⨯-⨯-25.如图,等边△ABC中,过顶点A在AB边的右侧作射线AP,∠BAP=α(0∘<α<180∘).点B与点E关于直线AP对称,连接AE,BE,且BE交射线AP于点D.过C,E两点作直线交射线AP于点F.(1)当α=40°时,求∠AEC的度数;(2)在α变化过程中,∠AFE的大小是否发生变化?如果变化,写出变化的范围;如果不变化,求∠AFE的大小;(3)探究线段AF,CF,DF之间的数量关系,并证明.。

北师大版七年级数学下册期末试卷(有答案)

北师大版七年级数学下册期末试卷(有答案)

a b21第3题图 ABC D第10题图教学质量监测 七年级数学下册模拟试卷(全卷满分120分,考试时间120分钟)题号 一 二 三 总分 得分一、填空题(本大题共6个小题,每小题3分,满分18分)1.︱-3︱= .2.地球表面积约为510000000 km 2,这个数据用科学记数法表示 为 km 2. 3.如图,已知a ∥b ,∠1=46°, 则∠2等于= .4.某商店上月收入为a 元,本月的收入比上月的3倍还多20元,本月的收入 是 元.5.任意掷一枚质地均匀的骰子,掷出的点数是6的概率是 . 6.如图,是用火柴棒拼成的图形,则第n 个图形需 根火柴棒.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.-5的倒数是( )A .15B .15- C .-5 D .58.下列计算正确的是( )A .67a a a ⋅=B .222(3)6ab a b -=C .66a a a ÷=D .4222()()bc bc b c -÷-=- 9.如图所示的几何体的俯视图是( )A .B .C .D .10.如图,AD 是△ABC 的高,已知∠B=44°, 则∠BAD 的度数是( ) A .44° B .46° C .54° D .56° 11.下列事件中,是确定事件的是( ) A .打开电视机,它正在播放广告 B .明天一定是天晴C .任意掷一枚质地均匀的骰子,掷出的点数是奇数D .抛出的篮球会下落12.为了了解我县七年级2000名学生的身高情况,从中抽取了200学生测量身高,在这个问题中,样本是( )A .200得分 评卷人得分 评卷人第9题图正面 ↗2B .2000名学生C .200名学生的身高情况D .200名学生13.下列说法正确的是( ) A .两边分别相等的两个三角形全等 B .两边及一角分别相等的两个三角形全等 C .两角及一边分别相等的两个三角形全等 D .三个角分别相等的两个三角形全等14.柿子熟了,从树上落下来.下面的( )图可以大致刻画出柿子下落过程 中(即落地前)的速度变化情况.三、解答题(本大题共9个小题,满分70分)15.(7分)计算: 022212017222--+⨯--()16.(7分)解方程:235134x x -+=-17.(7分)如图:AC ∥ED ,∠A=∠EDF ,试说明AB ∥FD .A .B .C .D ./分速度/(km/h)ECF D第17题图BAF CD EBA第19题图18.(8分)一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元? 如果设每件服装的成本价为x 元,那么:每件服装的标价为: ; 每件服装的实际售价为: ; 每件服装的利润为: ; 由此,列出方程: ; 解方程,得x = . 因此每件服装的成本价是 元.19.(8分)如图,BE ⊥AE ,CF ⊥AE ,垂足分别是E 、F ,又知D 是EF 的中点.试问△BED 与△CFD 全等吗?请你说明理由.20.(8分)如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况. (1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少? (2)汽车在那些时间段保持匀速行驶?时速分别是多少? (3)出发后8分到10分之间可能发生了什么情况? (4)用自己的语言大致描述这辆汽车的行驶情况.ACEDB21.(8分)小明和小颖用一副扑克牌做摸牌游戏(去掉大小王):小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J ,Q ,K ,A ,且牌面的大小与花色无关).然后两人把摸到的牌都放回,重新开始游戏. (1)现小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是多少?小颖获胜的概率又是多少?(2)若小明已经摸到的牌面为2,情况又如何?如果若小明已经摸到的牌面为A 呢?22.(9分)小明对某音像制品店十月份的销售量情况进行调查.如图是小明对所调查结果的条形统计图.(1)该店十月份共销售多少张音像制品?(2)请你改用扇形统计图来表示该店十月份销售音像制品的种类. (3)从统计图中看,流行歌类与民歌类销售量之比是多少?故事片占总销售量的百分比是多少?23.(8分)如图,(1)如果,AC 垂直平分BD .那么,CA 平分∠BAD 吗?CA 平分∠BCD 吗? (2)如果,CA 平分∠BAD ,且CB ⊥AB ,CD ⊥AD . 那么,AC 垂直平分BD .F CD EBA第19题图ECFD第17题图BA参考答案一、填空题(本大题共6个小题,每小题3分,满分18分)1.3 2.5.1×1083.134° 4.3a +20 5.166.2n +1 二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.B 8.A 9.D 10.B 11.D 12.C 13.C 14.A三、解答题(本大题共9个小题,满分70分)15.(7分)022212017222114424--+⨯--=+⨯-=-解:()16.(7分)17.(7分) 解:因为,AC ∥ED所以,∠A=∠BED (两直线平行,同位角相等) 又因为,∠A=∠EDF所以,∠BED =∠EDF (等量代换)所以,AB ∥FD (内错角相等,两直线平行)18.(8分)解:设每件服装的成本价为x 元,那么:每件服装的标价为:(1+40%) x (1分) 每件服装的实际售价为:(1+40%) x ×80% (1分) 每件服装的利润为:(1+40%) x ×80%- x (2分) 由此,列出方程: (1+40%) x ×80%- x =15 (2分)解方程,得x =125 (1分) 因此每件服装的成本价是125元。

北师大版数学七年级下册期末考试模拟试题

北师大版数学七年级下册期末考试模拟试题

北师大版数学七年级下册期末考试模拟试题(一)一、选择题(12×3=36分) 1、下列运算中,正确的是( )A.22(3)6a a = B. 623a a a ÷= C. 336()a a = D. 325a a a ⋅=2、下列图形不是轴对称图形的是( )A.B. C.D. 3、已知2(3)(2)x x x bx c +-=++,那么b 、c 的值分别是( )A .1b =,6c =-B .1b =,6c =C .5b =,6c =-D .5b =,6c = 4、如图1,由AB//DC ,能推出正确的结论是( )A .∠3=∠4B .∠1=∠2C .∠A=∠CD .AD//BC 5、如图2,往地板中随意一颗石头,石头落在黑色区域的概率为( )A .12B .516C .38D .346、对于四舍五入得到的近似数43.2010⨯,下列说法正确的是( )A .有3个有效数字,精确到百分位B .有5个有效数字,精确到个位C .有3个有效数字,精确到百位D .有2个有效数字,精确到百分位 7、已知△ABC 的三个内角满足:22A B C ∠=∠=∠,则△ABC 的形状是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定8、佳佳星期六下午在商场购物时,通过镜子看到她背后墙上一面普通时钟的时针与分针的位置如图3所示.这时实际时间是( )A .3:20B .3:40C .4:20D .8:209、如图4,AB=8,AC=7,PB 、PC 分别平分∠B 、∠C ,DE ∥BC .则△ADE 的周长是( )A .15B .20C .25D .3010、洗衣机洗衣经历了注水(此前机内无水)、洗涤、脱水(包括排水)三个连续的过程.下列图中可以近似地刻画出洗衣机在这段时间内的水量变化情况的是( )CCA .B .C . D.11、以下不一定能判定两个三角形全等的条件是( )A .两角及它们的夹边对应相等B .两角及其中一角的对边对应相等C .两边及它们的夹角对应相等D .两边及其中一边的对角对应相等 12、如图5所示的是线段AB 关于直线l 对称的图形,那么:①AB A B ''= ; ②直线l 垂直平分BB ';③BB AA ''∥ ;④AB 延长线与A B ''的延长线的交点在直线l 上。

最新北师大版七年级下册数学期末模拟试卷以及答案

最新北师大版七年级下册数学期末模拟试卷以及答案

七年级第二学期数学期末测试试卷一、选择题。

1、下列标志中,可以看作是轴对称图形的是()A B C D2、济南春夏之季鲜花烂漫,空气中弥漫着各种花粉,有一种花粉的直径是0.000063米,将0.000063用科学记数法表示应为()A. 6.3X 10_4B. 0.63X 10_4C. 6.3X 10 -5D. 63X 10 一53、如图,直线c与直线a,b相交,且a// b,Z 1 = 60°,则/2的度数()A. 30°B. 60°C. 80°4、下列计算正确的是( )A. a5+ a2= a7B. 2a2- a2= 2C. a3• a2= a8D. (a9)3= a95、如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A. 三角形的稳定性B. 两点之间钱段最短C两点确定一条直线D. 垂线段最短7如图所示,货车匀速通过的隧道长大于货车长时,货车从进入隧道至离开隧8以下各组线段为边不能组成直角三角形的是( )A. 3,4,5B. 6, 8,10C. 5, 12,13D. 8, 15,20道的时间x与货车在隧道内的长度y之间的关系用图象描述大致是8 —枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投 掷这个骰子一次,得到的点数与 3, 4作为等腰三角形三边的长,能构成等腰三 角形的概率是()22 3 3 6 下列说法正确的是()A. 同位角相等B. 两条直线被第三条直线所截,内错角相等C 对顶角相等D.两条平行直线被第三条直线所裁,同旁内角相等10、如图,在边长为a 的正方形中,剪去一个边长为 b 的小正方形(a >b ,如 图I ),将余下的部分剪开后拼成一个梯形(如图 2),根据两个图形阴影部分 面积的关系,可以得到一个关于 a , b 的恒等式为()A. (a — b)2 = a 2— 2ab + b 2A、 B、 C 、DA BCDB. (a + b)2 = a 2 + 2ab + b 2C. a 2-b 2 = (a + b)(a — b)D. a(a + b) = a 2+ ab11、如图,在△ MBC 中,AB = 4, AC = 6,/ ABC 和/ACB 的平分线交于 O 点, 过点O 作BC 的平行线交 AB 于M 点,交AC 于N 点,则△ AMN 的周长为A. 7B. 8C. 9D. 1012、如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律, 最后一个三角形中y 与n 之间的关系是()A 、 y = 2n + 1B 、 y = 2n +n bC、y= 2n+1+ nD、y= 2n+ n+ 1二、填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版 七年级数学下学期期末模拟试卷
一、 填空题:(2⨯15=30)
1、 已知二元一次方程0132=-+y x ,用含x 的代数式表示y ,y =
2、 若32b a y x +与y x b a --54是同
x = ,y = 。

3、 不等式ax 〉1(a 〈0)的解集是 。

4、 某班同学35人去春游,共收款90元,由小军去买点心,每人一包。

已知有
3元一包和2.5元一包的两种,试问3元的最多能买几包?
设3元的最多能买x 包,根据题意,列不等式得 。

5、点P (5,-3)在第 象限,它到y 轴的距离是 。

6、y=-3x+1的图象的过第 象限,y 随x 的减小而 ,它和x 轴的交点坐标是 。

7、函数()713+-=x y 的图象在y 轴上的截距为 。

8、把直线y=2x+3向下平移5个单位就得到了函数 的图象。

9、已知一次函数y=3x -2的图象经过点(3 , 1y ),(-2 ,2y ),则1y 2y 。

10、∠EOB 的对顶角是 ,邻补角是 。

11、在△ABC 中,∠ACB=90°,CD ⊥AB ,垂足是D ,则点C 到AB 的距离是 。

12、三角形有两边的长为2cm 和6cm ,第三边的长为xcm ,则x 的范围是 。

13、已知等腰三角形的两边长为2,7,则它的周长为 。

14、已知在△ABC 中,∠A=30°,∠B - ∠C = 30°,则△ABC 是 三角形。

15、已知:在△ABC 中,∠B=60°,∠BAC=70°,AD ⊥BC 于D 。

∠CAD= 。

二、 选择题:(2⨯6=12)
1、如果a 〉b ,则下列各式不成立的是( ) A 、a + 4 〉 b + 4 , B 、2 + 3a 〉2 + 3b
C 、a - 6 〉 b - 6 ,
D 、4 - 3a 〉4 - 3b 2、如果P (m+3 ,m -5)在X 轴上,那么点P 的坐标是( ) A 、(-3,0) B 、(0,-3) C 、(8,0) D 、(5,0)
3、汽车油箱中有油24升,如果每小时耗油4升,求油箱中的余油量y (升)与行驶时间x (时)之间的函数关系和是图象( )
A 、y=4x -24(0≤x ≤6),
B 、y=24-4x
C 、y=-24+4x
D 、y=24-4x (0≤x ≤6) 4、直线外一点到这条直线的距离是这点到这条直线的( ) A 、垂线段 B 、 垂线 C 、垂线段的长度 D 、垂线的长度 5、以下各组线段为边不能组成三角形的是( ) A 、4,3,3 B 、1,5,6 C 、2,5,4 D 、5,8,4
6、由A 测B 的方向角是( )
A 、南偏东30°
B 、南偏东60°
C 、北偏西30°
D 、北偏西60°
三、 作图题:(3+2=5)
1、
作△ABC 的高CD ,角平分线AE 2、 作DE ∥AB 交AC 于
E ,D
F ∥AC 交AB 于F
四、 填空:(0. 5⨯16=8)
1、(1)∵∠A= (已知), ∴AC ∥ED (
(2)∵∠A+ =180°(已知),
∴AB ∥FD ( ) (3)∵ ∥ (已知), ∴∠2+∠AED =180°( ) (4)∵AC ∥ED (已知),
∴∠C= ( )
2、∵AB ∥CE F
A C
B
C
D

A
B
D
C
∴∠1= ( ), ∠2= ( ) ∵∠ACB+∠1+∠2= ( ) ∴∠A+∠B+∠ACB= ( ) 五、 计算题:(5⨯9=45)
1、解方程组⎩⎨
⎧=+=-27
651537y x y x 2、解不等式组()⎪
⎩⎪
⎨⎧-≥+〈--13
213115x x
x x
3、y +3与x 成正比例,且图象经过点(-3,6), 求(1)y 与x 的函数关系式, (2)求当x=4时y 的值;
4、已知变量y 与x 的函数如图所示,则函数的关系式是什么?
5、作出函数y=-2x+3的图象,根据图象,求: (1) 方程-2x+3=0的解;
(2) 不等式-2x+3>0,-2x+3<0的解集; (3) 不等式组-3≤-2x+3≤4的解集。

5、 长方形的周长是12,设它的长为y ,宽为x ,试求y 与x 之间的函数关系式,写
出自变量取值范围,并画出图象。

6、 某人装修房屋,原预算25000元。

装修时因材料费下降了20%,工资涨了10%,
实际用去21500元。

求原来材料费及工资各是多少元?
7、 直线AB 与CD 相交于O ,∠AOC=60°,OE 平分∠BOD ,OF
⊥AB 于点O 。

试求∠EOF
的度数。

8、 已知AE ∥CD ,∠A=40°,∠B=70°,求∠BCF 的度数。

附加题:(2⨯10=20)
1、 在同一坐标系内画出直线y=3x + 5和y=-2x 的图象,利用图象: (1) 求它们交点的坐标,
(2) 求不等式3x + 5〉-2x 的解集。

2、图示不等式组 ⎩⎨
⎧-+〈--0402〈
x y x y 解的区域。

C D F。

相关文档
最新文档