华南理工大学高等数学统考试卷上2010期中
华南理工大学高等数学统考试卷下07期中

2007-2008高等数学下册期中考试试卷姓名: 班级: 成绩单号:一、填空题(45⨯)1、[4分] 与直线112211-=+=+z y x 及112x y t z t =⎧⎪=+⎨⎪=+⎩都平行,且过原点的平面方程为 。
2、[4分]设()()(),,sin ,arctan ,,z f u v u xy v y f u v ===可微,则,z z x y ∂∂∂∂各为 。
3、[4分]设2x y u e =,则2u x y∂=∂∂ 。
4、[4分] 设函数u x xy xyz =++在点()1,2,0的所有方向导数中,最大的方向导数是沿方向 。
5、[4分]曲面1xy yz zx ++=在点()3,1,2-处的切平面方程为 ,法线方程为 。
二、(8分) 设(,)f s t 具有连续的偏导数,且(,)0f s t ≠,方程(,)0y z f x x=确定了z 是,x y 的函数,试求z z x y x y∂∂+∂∂ 三、(8分) 设arctan 1x y z xy-=+,求(dz 四、[8分] 求函数2223u x y z z =++-在点()01,1,2M -的梯度及沿梯度方向上函数的方向导数五、[8分]设直线0:30x y b L x ay z ++=⎧⎨+--=⎩在平面π上,而平面π与曲面22z x y =+相切于点()1,2,5-,求,a b 之值。
六、 [8分] 计算二重积分{}max ,1Dxy dxdy ⎰⎰,其中:02,02D x y ≤≤≤≤七、[8分] 计算10010x dx +⎰⎰八、[8分] 计算()22I x y dv Ω=+⎰⎰⎰,其中Ω为平面曲线220y z x ⎧=⎨=⎩ 绕z 轴旋转一周的曲面与平面8z =所围的区域。
九、 [8分] 设由曲面22z x y =+与2z =所围成的立体中每点的密度与该点到xoy 平面距离成正比,试求该立体的质量M十、计算()222357x y z dxdydz Ω++⎰⎰⎰,其中:0z Ω≤≤十一、 [8分]1=上求一点()0000,,M x y z ,使曲面上过点的切平面与三个坐标面所围成的四面体的体积为最大十二、 [附加题5分] 计算积分C⎰,式中曲线C 是y =在02x a ≤≤上的一段弧。
华南理工大学高等数学统考试卷上2002A

华南理工大学高等数学(试卷号:2002-A 时间:150分钟 总分100)院(系): 专业班:姓名: 成绩报告表序号:目要求,把所选项前的字母填写在题后的括号内。
1、极限)31ln()21ln(lim 220x x x -+→的值为( ) (A) 0 (B) 1(C) 32- (D) 不存在 2、设⎩⎨⎧≥+<=0,120,2cos )(2x x x x x f ,则)0(f '值为( ) (A) 0 (B) 1(C) 2 (D) 不存在3、若积分⎰+∞-0dx e kx 收敛,则 ( ) (A) 0>k (B) 0<k(C) 0≥k (D) 0≤k4、设⎰=431ln xdx I ,⎰=4322ln xdx I 则( ) (A) 21I I > (B) 21I I =(C) 21I I < (D) 不能确定它们的大小5、设f ''在]1,0[上连续,0)1(='f ,3)1(=f ,1)0(-=f ,则⎰''10)(dx x f x 的值为( ) (A) 4 (B) 3(C) 4- (D) 以上都不对二、填空题(本题18分,每小题3分)1.设)(x f y =,f 可微,则=')(x y2.设e x x x x y cos tan ln sin 3+-⋅=,则=dy3.=+⎰1x x e dx e 4. ⎰=202sin πxdx5.设⎪⎩⎪⎨⎧=≠-=0,0),(1)(sin 2sin x a x e e x x f x x 在0=x 连续,则=a三、(本题6分)设210x y =,求y ''四、(本题10分)求函数233xx y -=的单调增、单调减区间和极值。
五、(本题6分)设⎪⎩⎪⎨⎧=+=t e y t t x t cos sin 2,求dx dy 六、(本题6分)求定积分⎰--6322x x dx 七、(本题6分)求不定积分⎰-221x dx x 八、(本题6分)已知11lim 2040=+⎰→x x t a tdt x ,求a 的值。
《高等数学》(上理工) 试卷A

华南理工大学 广州汽车学院 2008——2009学年度第一学期期末考试 《高等数学》(上册•理工类) 试卷A考生注意:1.考前请将密封线内各项填写清楚,“序号”即交作业的序号,勿写学号;2.本试卷共四个大题,满分100分,考试时间120分钟;3.所有答案应直接写在试卷上。
一.填空题(本大题共5小题,每小题3分,共15分。
将答案写在横线上)1.函数ln(1)y x =+的定义域是 。
2.设0sin 2lim 3x kx x→=,则常数k = 。
3.设y =dy = 。
4.不定积分2x dx xe ⎰= 。
5.反常积分 (0)a pI a dxx +∞=>⎰,当1p >时,I = 。
二.单项选择题(本大题共5小题,每小题3分,共15分。
将正确选项的字母填在括号内)1.曲线ln y x x =在点(1,0)处的切线方程是 ( ) A .(ln 1)(1)y x x =+- B .1y x -= C .1y x =- D .(1)y x =--2.设||,0;()1,0,x x f x x x ⎧≠⎪=⎨⎪=⎩,则()f x 在0x =处 ( )A .0lim ()x f x →不存在 B .'(0)f 存在C .0lim ()x f x →存在,但()f x 在0x =处不连续D .()f x 在0x =处连续,但不可导3.在区间[1,1] -上,不满足罗尔中值定理条件的是 ( ) A .2()1x f x e =- B .2()ln(1)f x x =+ C.()f x = D .21()1f x x=+ 4.下列等式中,正确的是 ( ) A .[()]()d f x dx f x =⎰ B .[()]()df x dx f x dx dx=⎰ C .()()df x f x =⎰ D .' ()()f x dx f x C =+⎰5.设()f x 连续,且()sin xa f t dt x x =⎰,则()2f π= ( )A .sin cos x x x +B .12π-C .2πD .1三.计算题(本大题共7小题,每小题7分, 共49分) 1.求极限 22sin 1lim (2)x x x ππ→--。
华南理工大学2007~2010年概率论试卷答案

2007级概率论与数理统计试卷A 卷参考答案一、1. C注释:由“A ⊂B 成立”得P(A)=P(AB) ()()(|)()()P AB P A P A B P B P B ==故2. C3. B 注释:参考课本86页4.B 2sin 1A xdx π=⎰0注释: ?5.6. B A 项参见课本64页,D 项参见课本86页二、 1. 2 注释:若X 服从Poisson 分布,则EX=λ,DX=λ。
(课本84页) 2. 12 注释:cov(X,Y)= r X Y DX DY ⋅⋅。
(参考课本86页) 3. 1/5 注释:运用等比求和公式S=1(1)1na q q--4. 38.4 注释:22()(),(,),,E D E B n p E np D npq ξξξξξξ=+== 对于 5.p(x)=,00,0x e x x λλ-⎧>⎨≤⎩,211,E D ξξλλ==6. 0.2 注释:类似2006级试卷填空题第6题7.2/5三、(1)1/20; (2)14/15 注释:(1)P(A)=224431078910C C C,表示从、、、这四个数中选两个;(2)B =“三个号码中既含4又含6” 四、(1)C=4; (2)112()-2{1}41-3e ;xx y P dx edy ξη--++<==⎰⎰(3)222__02__0(),()0_____00_____0()()(,),x y e x e y p x p y x y p x p y p x y ξηξηξη--⎧⎧≥≥==⎨⎨<<⎩⎩⋅=因故与独立?(4)2222022112,2221()41124xxE x edx E x edx D E E E D ξηξηξξξξξηη+∞+∞--=⋅==⋅==-===⎰⎰与独立,所以cov(,)=0故同理,,五、 0.9979 注释:运用全概率公式,类似2006级试卷第三题 六、0.9525100(100,0.9),))85{85)1)1( 1.67)(1.67)0.9525X X B P X ⨯⨯≈Φ-Φ≥≈-Φ=-Φ-=Φ=注释:设这个部件中没有损坏部件数为, 则服从二项分布且有______EX=np=1000.9=90,DX=npq=900.1=9由拉普拉斯定理,b-EX a-EX P{a<X<b}((DXDX故至少须有个部件工作的概率为:85-90(9七、M=160,X ⨯⨯⨯≈⨯⨯≥≥≤≥≤注释:设出事人数为则有X B(5000000,0.0003)EX=50000000.0003=1500,DX=50000000.00030.99971500若要以99%的概率保证保险公司在此项保险中获得60万元以上的利润,则P{5000000M (1-40%)-X 300000600000}99%得P{X 10M-2}99%X-150010M-2-1500故需满足P{15001}99%99% 2.33159.22,160M M ≥Φ≥≈Φ≥=50010M-2-1500即()()1500解得故八、(1)课本98页辛欣大数定理(2)22222n 11221222211()0(1)()0()()[()]()211_____0(1)()()211,2,3,,()()0112)()2n n n n n n n kn kk k n n k k E n n nnn D E E E n n nnnk E E nn D n nnnξξξξξξξξξξξ++==+==⋅-+⋅+-⋅==-==⋅-+⋅+-⋅===⋅⋅⋅====⋅=∑∑∑由于令则______________________ D(由契比雪夫2n 0,2()|}1lim ()|}1}n n n n n E n E εξξεεξξεξ→∞>-<≥--<=不等式,对任意的有________________P{|故有P{|即{服从大数定律2008年概率论与数理统计试卷A 卷参考答案一、1.D 1(1)()X u u uP X u P σσ-+-≤+=≤注释:=1()σΦ2.C 注释:参考课本第8页3.A 注释:连续型随机变量在某一个点上的概率取值为零,故A 正确 ?B 项是否正确4.B 注释:参考课本86页5.A 二、 1. 1.33(或者填13591024) 2.25 注释:参考课本86页 3. 0.254. (X+Y )~B(7,p)注释:E(X)=3p,E(Y)=4p,故E(X+Y)=E(X)+E(Y)=3p+4p=7p;D(X)=3p(1-p),D(Y)=4p(1-p)且X 、Y 独立,故D(X+Y)=D(X)+D(Y)= 3p(1-p)+ 4p(1-p) 设(X+Y )~B(n,P),则有E (X +Y )=7p=nPD (X +Y )=3p(1-p)+4p(1-p)=nP(1-P)⎧⎨⎩解得n=7,P=p5. 2/52215041()5b 4(2)41(54)0,1 4.112555X f x ac X X X X P dx dx =∆=-=-⨯⨯-≥≤≥=+=⎰⎰的密度函数为方程有实根,则必须满足即或者故方程有实根的概率6. 0.3522(35)112(35),9322242{24}0.15,{}0.15333200.1532233202222}33333E X EX D X D X D X X P X P X σσσσσσσσσσσσσσ+==+===---<<=<<=ΦΦ=-ΦΦ----<=ΦΦΦ由得由得因故所以()-()所以()-()=0.3P{X<0}=P{()=[1-()-()]/2______=[1-0.3]/2=0.35?7. 相关 三、四、1__1___30.3_0.5_0.2(1)0.310.530.20.8X EX -⎛⎫⎪⎝⎭=-⨯+⨯+⨯=五、1022201____02(1)()1___021____02()11_0211(2)(510)1)(2211(322_____012xx xx xxxe xf x e x e x F x e x P X eex e dx x e dx EXx e dx x ---∞--∞-∞⎧≤⎪⎪=⎨⎪>⎪⎩⎧≤⎪⎪=⎨⎪->⎪⎩-<<=--⋅+⋅===⋅+⋅⎰⎰⎰0+0由题意故()EX=221211___[22][22(2xxxxe dx x e xe e xD X EX ∞--∞=-++-=-=⎰+2EX)?六、2220001(0.005,0.035)0.0050.03510.02,(0.0350.005)0.000075212a 1(,),,())2120.0250.02520005020000{50}{i i i i i i i ii X i X U EX D X b X U a b EX D X b a Y X Y Y P Y P =+===-=+==-=<⨯=-⨯<=∑设为第台机床生产的次品率(注:对于均匀分布有设总次品率若要满足这批产品的平均次品率小于,则.025020000.02}(25.8)20000.00007520000.000075-⨯<=Φ⨯⨯A=B =B =B =B B B B (B )|)0.50.9|)0.540.83P A ⨯⨯⨯⋅⨯====甲乙丙乙甲丙甲甲甲甲设“取出的产品是正品”; 取出的产品是甲厂生产的” 取出的产品是乙厂生产的” 取出的产品是丙厂生产的”则P(A)=P(A )+P(A )+P(A )=0.50.9+0.30.8+0.20.7=0.83P(A )P(A B P(B P(A)P(A)?试卷中没有给出(25.8)Φ的值,且直观上感觉(25.8)Φ的值太大了,故不能肯定题中的做法是否可行 七、____,0_______2________()0__________2________()0__________22(2)0,0a b ababa x ab y b a x a x ab y b y bEX x dx EY y dy a bππππππ--=⎧-≤≤-≤≤⎪⎨⎪⎩⎧-≤≤⎪=⎨⎪⎩⎧-≤≤⎪=⎨⎪⎩=⋅==⋅=⎰⎰椭圆X Y (1)S 1故(x,y)的联合密度函数f(x,y)=ab其它X 的边缘密度函数f 其它Y 的边缘密度函数f 其它222222222222,2424,3344()25,()4335332(3),22()()ab aba b EXx dx EY y dy aba b D X EX EX D Y EY EY a b a x a b y b x y a bπππππππππππ--=⋅==⋅==-===-====-≤≤-≤≤⋅=⋅≠⎰⎰X Y 解得,时,1f f ,故X与Y不独立ab八、555511___________5()1(1)(xzzZ dx zedx eeF z z e ----≤⋅≤≤=-=-=--⋅-⎰⎰1z 1z的分布函数F(z)=P{Z z}=1-P(Z>z)=1-P{min(X,Y)>z}_______________=1-P(X>z,Y>z)=1-P(X>z)P(Y>z)当z 0时,P(X>z)=P(Y>z)=1故F(z)=1-1=0当0<z 1时,P(X>z)=P(Y>z)=故555555)z 1()1010__________________0()1(1)()__0_____________________0()65_______010_____________________1z z z e F z z F z z e e z f z e ze e z z ------>=-=≤⎧⎪=--⋅-≤⎨⎪⎩≤⎧⎪=--<≤⎨⎪>⎩当时,P(X>z)=0故所以0<z 11__________________z>12009年2学分参考答案一、解:设i A ={第i 枚弹道导弹击沉航空母舰},i B ={第i 枚弹道导弹击伤航空母舰}i C ={第i 枚弹道导弹没有击中航空母舰},i =1,2,3,4D ={发射4枚弹道导弹能击沉航空母舰}()31=i A P ,()21=i B P ,()61=i C P ,i =1,2,3,443214321432143214321B C C UC C B C UC C C B UC C C C UB C C C C D =()()()()()()434432143214321432143216132161461=⨯⎪⎭⎫⎝⎛⨯+⎪⎭⎫ ⎝⎛=++++=B C C C P C B C C P C C B C P C C C B P C C C C P D P()()461311-=-=D P D P = 0.99二、解:(1)A ={同花顺(5张同一花色连续数字构成)}()55255236)413(4C C A P =-⨯=(只要说明顺子的构成,分子40也算对)(2)A ={3张带一对(3张数字相同、2张数字相同构成)}()5522411234113CC C C C A P =(3)A ={3张带2散牌(3张数字相同、2张数字不同构成)}()552141421234113C C C C C C A P =三、解:(1)设A ={被查后认为是非危险人物}, B ={过关的人是非危险人物},则()()()()()B A P B P B A P B P A P +=9428.005.004.098.096.0=⨯+⨯= ()()()()998.0==A PB A P B P A B P(2)设需要n 道卡,每道检查系统是相互独立的,则Ci={第i 关危险人物被误认为非危险人物},{}n n C C P 05.01= ,所以999.005.01≥-n,05.0ln 0001.0ln ≥n ,即1005.0ln 0001.0ln +⎥⎦⎤⎢⎣⎡=n =[3.0745]+1 = 4 四、解:当1=a 时,1=Y ,则()⎩⎨⎧>≤=1110y y y F Y当10<<a 时,当0≤y 时,()()0=<=y Y P y F Y ,()()0==dyy dF y f Y Y当0>y 时,()()()y a X P y a P y F X Y ln ln <=<=()⎪⎭⎫ ⎝⎛>=a y X P y F Y ln ln ⎪⎭⎫⎝⎛Φ-=⎪⎭⎫ ⎝⎛≤-=a y a y X P ln ln 1ln ln 1()()222)ln ln (21ln 1σμπσ--⋅-==ay Y Y ea y dyy dF y f当1>a 时,当0≤y 时,()()0=<=y Y P y F Y ,()()0==dyy dF y f Y Y当0>y 时,()⎪⎭⎫ ⎝⎛<=a y X P y F Y ln ln ⎪⎭⎫⎝⎛Φ=a y ln ln ()()222)ln ln (21ln 1σμπσ--⋅==ay Y Y ea y dyy dF y f五、解:(1)E(X+Y)=6.0315.0314.0213.0103.0101.0114.023=+--=⨯+⨯+⨯+⨯+⨯--⨯--=b a b a174.015.014.013.012.003.002.001.014.0=++=+++++++++b a b a联立解得:17.0=a ,09.0=b (2)X 的概率分布函数:-2-110.17 0.23 0.060.54(3)E(XY)=8.015.0214.0112.0114.0117.02=⨯+⨯+⨯-⨯+⨯六、解:95.01.0≥⎭⎬⎫⎩⎨⎧<-p n m P ,因()()1,0~1N np p pnm--()()95.011.01≥⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-<--n p p np p pnm P ,()96.111.0975.0=≥-u np p()()p p n -≥16.192;因为()4/11≤-p p ,取()4/6.192≥n =96.04即97=n七、解:(1)二维随机变量(X,Y)的联合概率密度:⎩⎨⎧<<<<=othersby a x ab y x f ,00,0,/1),(边缘概率密度:⎩⎨⎧<<=othersa x a x f X ,00,/1)(,⎩⎨⎧<<=othersb y b y f Y ,00,/1)((2)36)12/1(,12)12/1(22====b DY a DX ,312,12==b a (3)随机变量X 与Y 相互独立,因为)()(),(y f x f y x f Y X = 八、解: 333||33||33||||)(||)(||)()|(|tc tE x dF tx x dF tx x dF t P x t x tx ==≤≤=>⎰⎰⎰≥>>ξξ九、解:(1)dx Axydy dxdy y x f ⎰⎰⎰⎰⎪⎭⎫ ⎝⎛=+∞∞-+∞∞-1010),(4A ==1,A =4 (2)P(X<0.4,Y<1.3)=16.044.0010=⎪⎭⎫ ⎝⎛⎰⎰dx xydy (3)⎰⎰⎪⎭⎫ ⎝⎛=++1014dx xydy e Eesytx sYtX ⎰⎰⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛=101114dx dy e s s ye x e sysy txX⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+-=2222114t t e t e s s e s e tt s s (4)32410102=⎪⎭⎫ ⎝⎛=⎰⎰dx ydy x EX ,214101032=⎪⎭⎫ ⎝⎛=⎰⎰dx ydy x EX()91942122=-=-=EX EXDX ,()=XY E 944101022=⎪⎭⎫ ⎝⎛⎰⎰dx dy y x ()0323294,=⨯-=⋅-=EY EX EXY Y X Cov十、解:(1)设ξ表示该观众答对题数, ,2,1,0=ξ 则第ξ+1次解答答错(即首次出错)。
华南理工大学2009-2010高等数学下册期中考试试卷答案.

华南理工大学期中考试2009-2010学年第二学期《高等数学》期中考试试卷注意事项:1. 考试形式:闭卷;.本试卷满分100分,考试时间90分钟。
. 解答下列各题 (每小题5分,共20分)设函数由方程确定,其中F为可微函数,且,求z是由方程所确定的函数,其中具有二阶导数,且22求dz.对等式两端取微分得22,x在点处的梯度. yiP为椭球面上的一动点,若S在点P处的切平面与xoy面垂直,P的轨迹C。
椭球面S点处的法向量是,222《高等数学》试卷第 1 页共 6 页点P处的切平面与xoy面垂直的充要条件是n⋅{0,0,1}=2z-y=0⎧232⎧x2+y2+z2-yz=1⎪x+y=1所以点P的轨迹C的方程为:⎨,即⎨ 4⎩2z-y=0⎪⎩2z-y=0二. 解答下列各题 (每小题10分,共30分)5.求二元函数f(x,y)=x解 fx'(x,y)=2x2+y2(2+y)+ylny的极值 22y(2),f'(x,y)=2xy+lny+1令fx'(x,y)=0,fy'(x,y)=0,解得唯一驻点 0,⎪⎛⎝1⎫e⎭'' 0,⎪=2 2+由于A=fxx⎛⎝1⎫e⎭⎛⎝1⎫1⎛1⎫''>0,B=f0,=4⋅0⋅=0 xy⎪2⎪e⎭e⎝e⎭1⎫1⎫⎛22''⎛C=fyy0,=2⋅0+e=e,B-AC=-2e2+<0 ⎪ 2⎪ee⎝⎭⎝⎭从而f 0,⎪=-是f(x,y)的极小值⎛⎝1⎫e⎭1e∂2u∂2u∂2u+52=0。
确定的6.设函数u=f(x,y)具有二阶连续偏导数,且满足等式42+12∂x∂x∂y∂y∂2u=0 a,b值,使等式在变换ξ=x+ay,η=x+by下简化为∂ξ∂η2∂u∂u∂u∂2u∂2u∂u∂u2=+,=+2+解,∂x∂ξ∂η∂x2∂ξ2∂ξ∂η∂η222∂u∂u∂u∂2u∂2u∂2u∂2u∂2u∂2u2∂u2∂u=a+b,2=a+2ab+b=a2+(a+b)+b222∂y∂ξ∂η∂y∂ξ∂ξ∂η∂η∂x∂y∂ξ∂ξ∂η∂η将以上各式代入原等式,得∂2u∂2u∂2u2(a+12a+4)2+⎡⎣10ab+12(a+b)+8⎤⎦∂ξ∂η+(5b+12b+4)∂η2=0 ∂ξ2《高等数学》试卷第 2 页共 6 页由题意,令a+12a+4=0,10ab+12(a+b)+8≠0,5b+12b+4=0 22解得a=-2,b=-22,或a=-,b=-2 55⎧x2+y2-2z2=07.已知曲线C:⎨,求C上距离xOy面最远的点和最近的点。
2010(秋)《高等数学A1》期中考试题及参考答案.

2010(秋)《高等数学A1》期中考试题及参考答案一、填空题(每小题3分,共15分.请将答案填在题中横线上,不填解题过程)1.若时,与是等价无穷小,则__________.(答案:1)2.若是可导的奇函数,且,则__________.(答案:)3.设,且存在,,则微分__________.(答案:)4.曲线的凸区间为__________.(答案:)5.抛物线在点(2, 4处的曲率半径=.(答案:)二、选择题(每小题3分,共15分.每小题给出四种选择,有且仅有一个是正确的,请将你认为正确的代号填在题中横线上)1.1.设在开区间内连续,则(D).(A 在内有界; (B 在内能取得最大值与最小值;(C 在内有零点; (D 当单调时,存在反函数2.曲线的渐近线情况是____C_____.(A)有且仅有水平渐近线;(B)有且仅有铅直渐近线;(C)既有水平渐近线又有铅直渐近线;(D)既无水平渐近线又无铅直渐近线.3.设函数在的某邻域内有连续的二阶导数,且,则D .(A)是的零点;(B)为极小值点;(C)当时,为拐点;(D)当时,为拐点.4.设满足,若且,则函数在点A .(A)取极大值;(B)取极小值;(C)在某邻域内单调增;(D)在某邻域内单调减.5.设,则(B).(A ;(B ; (C ;(D三、求解下列各题(每小题5分,共20分.要求有解题过程)1.解:= 1.2.设求.解:,.3.设函数是由方程所确定的隐函数,求曲线在点处的切线方程.解:,将点代入得.4.设,求.解:,,................或者,,.四、(本题满分10分)已知在处有二阶导数,试确定常数.解:(1)由在处连续得,.(2),,由得.(3),由得.五、(本题满分10分)设具有二阶导数,且,求.解:.因为,所以,而连续,故,于是,所以,故原式=.六、设都在区间上可导,证明:在的任意两个零点之间,必有方程的实根.证: 设……………3分则在的两个零点间满足罗尔中值定理条件,使,……………5分即即为所求.七、(本题满分10分)过曲线任意点作该曲线的切线,切线夹在两坐标轴之间的部分为,求的最小长度以及的长度达到最小时的切点坐标.解:曲线上任一点的切线斜率为,.曲线上任一点处的切线方程为,可化为.令,令,故,,,,得到,此时,故.因此的最小长度为,的长度达到最小时的切点坐标为.八、(本题满分10分)设在[0,]上连续,在(0,)内可导,且证明,使得.证: 设,……………3分由于在[0,]上满足罗尔中值定理条件使,………………5分即,所以有.。
华南理工大学高等数学统考试卷下04期中卷答案.

πy
解答:改变积分顺序,
6
ππ
π
π
∫ ∫ ∫ ∫ ∫ 6
6
dy
cos
xdx
=
6
dx
x
cos
xdy
=
6
cos
xdx
=
1
0 yx
0 0x
0
2
二. 选择题(每小题 3 分,共 15 分)
πx 6
1.函数 f (x, y) = 3 x 2 y 在点(0,0)处( B )
(A )不连续;
(B)连续,但偏导数 f(x′ 0,0)和 f(y′ 0,0)不存在;
高等数学
2004~2005 学年第二学期期中考试试卷
专业班级
姓名
学号
一. 填空题(每小题 3 分,共 15 分)
→→
→
→
→→
→→
1.已知向量 a 与 b 垂直,| a |= 3,| b |= 4 ,则|(3 a− b)×(a− 2 b)|=
解答:
⎜⎛
3
→
a−
→
b
⎟⎞
×
⎜⎛
→
a−
2
→
b
⎟⎞
=
�� �� − 6a × b − b × a
+
2cos β
,其中 cosα,cos β
为l
的方向余弦;
(D) f(x,y)在点(0,0)处沿 x 轴负方向的方向导数为 −1。
∫∫ 3.设 f (x, y) 连续,且 f (x, y) = xy + f (x, y)dxdy ,其中 D 是由 y = 0, y = x2 , x = 1
D
所围成的区域,则 f (x, y) =( C )
华南理工大学2010年数学分析考研试题及解答

华南理工大学2010年数学分析考研试题一.求解下列各题1.确定α与β,使)lim0n n αβ→∞−−=.2.讨论函数()f x ,()g x 在0x =处的可导性,其中(),,x x f x x x −⎧=⎨⎩为无理数,为有理数,和()22,,x x g x x x ⎧−⎪=⎨⎪⎩为无理数,为有理数.3.已知()f x 在[)0,+∞上连续,且满足()0f x x ≤≤,[)0,x ∈+∞,设10a ≥,()1n n a f a +=,1,2n =⋯,证明(1){}n a 收敛;(2)若lim n n a l →∞=,则()f l l =.4.判断下面的级数的收敛性()()()21111nnn x x x x ∞=+++∑⋯,0x ≥.5.讨论函数()(),1cos y y f x y e x ye =+−的极大值和极小值.6.计算33323Sx dydz y dzdx z dxdy ++∫∫,其中S 为球面2222x y z a ++=的外侧.二.设p 为正常数,函数()()cos p f x x =,证明:当01p <≤时,()f x 在[)0,+∞上一致连续.三.证明ax bx bxya e e e dy x −−−−=∫,并计算积分0ax bxe e dx x−−+∞−∫,()0b a >>.四.令()()ln 1,0,,,0,xy x f x y xy x +⎧≠⎪=⎨⎪=⎩证明(),f x y 在其定义域上是连续的.五.求积分D I dxdy =∫∫其中D由曲线1+=和x c =,y c =所围成,且,,0a b c >.六.设f 为定义在(),a +∞上的函数,在每一有限区间(),a b 上有界,且()()lim 1x f x f x A →+∞+−=⎡⎤⎣⎦,证明()lim x f x A x→+∞=.七.设()f x ,()g x 在[],a b 上连续,证明()()()()()01limnbi i i ai f g x f x g x dx λξθ∆→=∆=∑∫,其中∆为[],a b 的任一分割,01:n a x x x b ∆=<<<=⋯,[]1,,i i i i x x ξθ−∈,1,2,,i n =⋯,1i i i x x x −∆=−,(){}1max i i nx λ≤≤∆=∆.华南理工大学2010年数分考研试题解答一.1.解由条件知,lim 0n n n βα→∞⎞−=⎟⎟⎠,从而有lim 0n n βα→∞⎞−−=⎟⎟⎠,lim n n βα→∞⎞=−=⎟⎟⎠)limn β→∞=n →∞=24n →∞−===α=β=2.解显然()00f =,()00g =,()()0f x f x −≤,()()20g x g x −≤,()f x ,()g x 均在0x =处连续,当x 沿着无理点趋向0时,有()()0110f x f x −=−→−−,当x 沿着有理点趋向0时,有()()0110f x f xx x−==→−,()()0limx f x f x →−−不存在,所以()f x 在0x =处不可导.当x 沿着无理点趋向0时,有()()2000g x f x x x x −−==−→−,当x 沿着有理点趋向0时,有()()2000g x g x x x x −==→−,于是有()()0lim00x g x g x →−=−存在,所以()g x 在0x =处可导,且()00g ′=.3.证明(1)有题设条件,知()2110a f a a ≤=≤,()10n n n a f a a +≤=≤,于是{}n a 单调递减,有下界,根据单调有界定理,知{}n a 收敛.(2)设lim n n a l →∞=,由于()f x 在[)0,+∞上连续,在()1n n a f a +=中,令n →∞,取极限,得()f l l =.4.解设()()()()2111nn nx u x x x x =+++⋯,显然当0x =时,()00n u =,()10n n u ∞=∑收敛,当0x >时,()0n u x >,()()11,011limlim,1120,1n n n n nx x u x xx u x x x ++→∞→∞<<⎧⎪⎪===⎨+⎪>⎪⎩,于是0x ≥,()1n n u x ∞=∑收敛.5.解()()1sin y fe x x∂=+−∂,()cos y y y fe x ye e y∂=−+∂()cos 1y e x y =−+⎡⎤⎣⎦.易知(,)f x y 的驻点集为()(){}2,0,(21),2:k k k Z ππ+−∈,又由()1cos y xx f e x =−+,sin y xy f e x =−,(cos 2)y yyf e x y =−−,知(2,0)20|01k Hf π−⎛⎞=⎜⎟−⎝⎠是负定矩阵,2((21),2)210|0k e Hf e π−+−−⎛⎞+=⎜⎟−⎝⎠,于是(,)f x y 在(){}2,0:k k Z π∈处取的最大值2,且(,)f x y 无极小值,也无最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等数学》试卷
(试卷号:2010期中 时间90分钟,总分100)
学院(系) 专业班 姓 名: 成绩报告表序号:
一、(6*4)
1.求极限()1
0lim 1arcsin cos x x x x →++ 2.求极限21lim ln 1x x x x →+∞⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦
3.求极限01lim x x x →⎡⎤⋅⎢⎥⎣⎦
,(其中[ ]表示取整函数). 4.设函数()f x 在0x 可导,求极限()()40020lim
1cosh h f x h f x →+--
二、[3小题,共19分] 解答题
5、(7分)设cos sin t t x e t y e t ⎧=⎪⎨=⎪⎩确定函数()y y x =,求22,dy d y dx dx
6、(7分)
设y f ⎛= ⎝,已知()f
x 可导,求22d y dx
7、(5
分)设(ln cos
y =,求dy 三、 [20分]
8、(6分)设(
))()()()1b x b f x x a x ++=
+-有无穷间断点10x =和可去间断点21x =,求,a b
的值 9、(6分)求曲线ln 1xy y +=在点()1,1处的法线方程
10、(8分)设()21
,00,0
x xe x f x x -⎧⎪≠=⎨⎪=⎩,求导函数()f x ',并试证()f x '在0x =处连续
四、 [15分]证明问题
11、(5分)用N ε-定义证明:2lim cos 1n n π→∞=
12、[10分]设()f x '在[],a b 上连续,开区间(),a b 内()f x ''存在,且()()0f a f b ==,并存在一点(),c a b ∈使()0f c >。
证明:必有一点(),a b ξ∈,使()0f ξ''<
五、应用问题[26分]
13、(12分)在椭圆
22
22
1
x y
a b
+=上第一象限内的曲线上求一点,使在该点的切线与两坐标
轴所围的三角形面积最小。
14、(14分)研究函数
()
()
2
2
1
1
x x
y
x
-
=
+
的性态(包括单调区间、极值、凹凸区间、拐点、渐
近线等),画出简图。