3 1 单组元材料热力学
化工热力学马沛生第一版第三章习题答案

习题3-1. 单组元流体的热力学基本关系式有哪些? 答:单组元流体的热力学关系包括以下几种:(1)热力学基本方程:它们适用于封闭系统,它们可以用于单相或多相系统。
V p S T U d d d -= p V S T H d d d += T S V p A d d d --= T S p V G d d d -=(2)Helmholtz 方程,即能量的导数式pV S H S U T ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂= T S V A V U p ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂=- TS p G p H V ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂= p V T G T A S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=- (3)麦克斯韦(Maxwell )关系式 V S S p V T ⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ p S S V p T ⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ TV V S T p ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ Tp p S T V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ 3-2. 本章讨论了温度、压力对H 、S 的影响,为什么没有讨论对U 的影响?答:本章详细讨论了温度、压力对H 、S 的影响,由于pV H U -=,在上一章已经讨论了流体的pVT 关系,根据这两部分的内容,温度、压力对U 的影响便可以方便地解决。
3-3. 如何理解剩余性质?为什么要提出这个概念?答:所谓剩余性质,是气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想气体状态下热力学性质之间的差额,即:),(),(p T M p T M M ig R -=M 与M i g 分别表示同温同压下真实流体与理想气体的广度热力学性质的摩尔量,如V 、U 、H 、S 和G 等。
需要注意的是剩余性质是一个假想的概念,用这个概念可以表示出真实状态与假想的理想气体状态之间热力学性质的差额,从而可以方便地算出真实状态下气体的热力学性质。
材料热力学(4-8-)

第五章:溶液(溶体)理论—二组元相
3.溶体的性质 微观分布:a. b. c.
I AB 0 时,无序分布 I AB 0 时,短程有序 I AB 0 时,偏聚状态
4.偏摩尔量与化学位 化学势:偏摩尔吉布斯自由能
G i ni T , P ^
化学位反映了某一组元从某一相中逸出的能力,某一 组元在某一相中的化学位越高,它从这一相迁移到另一相 中的倾向越大。 利用 G m X 截距法可求得偏摩尔量(化学位) 多相平衡中,各个组分在各相中的化学位相等。
b.条件:每个组元在各个相中的化学位相等
3.两个重要定律 a.相律:F =c-p+2 推导:对于c个组元,p个相的某体系,可以独立变化的总 数为p(c-1)+2;平衡条件的限制条件数c(p-1) 所以,F= p(c-1)+2-c(p-1)=c-p+2 b.溶质分配定律:
第六章:二元体系相平衡及其热力学
G , , G 为整个任意量溶液的 ni T , P ^ 容量性质
物理意义:某一组元浓度的改变对溶液性质的影响。 ① 只有广度性质才有偏摩尔量,但偏摩尔量是强度性质。 ② 纯物质的偏摩尔量就是它的摩尔量 ③ 任何偏摩尔量都是T、P和组元的函数 ④ 集合式:
G, G1n1 G2n2
对于理想溶液,恒温恒压下,溶质溶解平衡时:
i0 ( ) i0 ( )
RT
Xi k e Xi
对于正规溶体:
XB k e XB
0 ( 0GB GB ) ( I AB I AB ) RT
致谢
I AB 0
第六章:二元体系相平衡及其热力学
1.混合物的自由能 a.在 Gm X 曲线中:
材料热力学复习提纲

(2)金属晶体在某一温度下的平衡空位浓度 推导及计算
a)掌握公式推导; b)计算(注意单位转换)、及温度影响分析。
(3) Richard规则,trouton规则。
单组元相平衡规律描述(P, T)-Clausius-Clapeyron方程
二组元相
(1)理想溶体近似和正规溶体近似的定义及特点; (2)理想溶体近似和正规溶体近似摩尔自由能的描 述及由来; (3)溶体的微观不均匀性分为哪几种? (4)混合物自由能公式的推导 (5)化学势的定义及物理意义 (6)化学式与摩尔自由能的关系 (7) 利用正规溶体近似,求出溶体化学势的具体表 达式 (8) 活度的定义 (9)稀溶液两个定律
材料热力学
江苏大学 材料科学与工程学院
材料热力学复习提纲
单组元材料热力学
(1)纯金属固态相变的体积效应热力学解释;
(2)晶体中热空位浓度推导及计算; (3) Richard规则,trouton规则;
(4)两相平衡
(1)纯金属固态相变的体积效应热力学解释;
热力学解释:
G H TS
在低温时,TS项的贡献很小,G主要决定于H项。 H疏排 > H密排,→G疏排 > G密排。低温下密排相是稳定相。 在高温下,TS项的贡献很大,G主要决定于TS项。 S疏排 > S密排,→ G密排 G疏排 。高温下疏排相是稳定相。
二组元材料热力学
1 两相平衡的判据及热力学条件 2 公切线法则 3 第二相为纯组元、化合物的溶解度公式的推导 4 溶质元素的分配比
相变热力学
(1)相变概述及分类; (2)马氏体相变平衡; (3)描述晶间偏析。
热力学基础

如LiF的熔点为848℃,相变潜热为1300kJ·kg-1; LiH的熔点为688℃,相变潜热高达2840kJ·kg-1。
量、物质交换
(2)体系的性质与状态函数
经典热力学中把系统在任何瞬时所处的宏观物理状 况称为系统的状态,而把用来描述系统所处状态的物理 量,即系统的宏观性质称为状态参数(状态函数),又 称为热力学变量。
体系状态确定后,各性质就有完全确定的值,即性 质与(热力学平衡)状态间存在单值对应关系,性质之 中只有几个是独立的。
前言
热力学-研究各种形式的能相互转化规律 以及与此转化有关的物质性质间相互关系的科学。
热力学一般从两个方面来讨论物质进行的变 化: (1)物质的性质按指定要求发生变化时(各种 物理变化和化学变化过程),必须与外界交换多 少各种形式的能(热、功和其他形式能量之间的 相互转换及其转换过程中所遵循的规律)?
热力学是材料科学的重要基础,是理解材 料制备加工(如金属渗碳、熔化-凝固、陶瓷烧 成、聚合物合成)、相的平衡与转变、元素在 不同相之间的分布以及金属的腐蚀、氧化、材 料表面与界面性质、结构上的物理和化学有序 性以及各类晶体缺陷的形成等一系列重要现象 的的钥匙,而动力学研究有助于了解这些现象 的发展历程,深入揭示材料中的组织形成规律。
内能为状态函数,用符号U表示。它的绝对值
尚无法测定,只能求出变化值。 对于组成与质量确定的体系而言,
U f (T ,V )
§1. 2 热力学第一定律
1.2.1 表达式
• 热力学第一定律的实质就是能量守恒原理。热力学 第一定律适用于任何系统的任何过程。
材料热力学课件—简单共晶三元相图

C初晶+(B+C)二元共晶+(A+B+C)三元共晶
C初晶+(A+C)二元共晶+(A+B+C)三元共晶
A初晶+(A+C)二元共晶+(A+B+C)三元共晶
A初晶
+(A+B+C)三元共晶
B初晶
+(A+B+C)三元共晶
C初晶
+(A+B+C)三元共晶
(A+B)二元共晶+(A+B+C)三元共晶
(B+C)二元共晶+(A+B+C)三元共晶
2023/2/13
7
L→A+B三相区
L→A+C三相区
2023/2/13
L→B+C三相区
8
小结----简单三元共晶相图空间模型 由点、线、面、区构成。
点:3个二元共晶点,1个三元共晶 点,
线:3条二元共晶线或单变量线,
面:3个初晶液相面,3组6个二元共 晶开始面,3个二元共晶完毕面,1个三 元共晶水平面
A+B+C三相区
2023/2/13
5
三组共六个二元共晶开始面
右图为L→A + B的开始 面,即e1EαA1和 e1EbB1两个面,其完 毕面与三元共晶等温面 αEb重叠
2023/2/13
6
三个二元共晶完毕面=一个三元共晶面 AB二元共晶完毕面aEb,BC二元共晶完毕面 bEc,AC二元共晶完毕面cEa,与三元共晶水平 面重合,即:二元共晶反应完毕就是三元共晶反 应开始。
2023/2/13
07310160+材料热力学

材料热力学Thermodynamics of Materials课程编号:07310160学分:2学时:30 (其中:讲课学时:30 实验学时:0 ; 上机学时:0 )先修课程:物理化学、材料科学与工程适用专业:材料物理与化学,无机非金属材料,金属材料,高分子材料与工程,复合材料与工程教材:《材料热力学》,郝士明主编,化学工业出版社,2004年1月第1版开课学院:材料科学与工程学院一、课程的性质与任务:《材料热力学》课程是材料类相关专业教学计划中重要的专业课,以热力学和统计热力学的原理和方法研究材料问题,它与动力学、晶体学以及固体物理和固体化学组成材料科学的基础。
材料科学与工程已成为一个整体。
热力学对发展材料的品种、提高材料的质量、日益显示其积极的作用,应用材料热力学原理可以阐明和预测相图,相变以及材料的其他物理现象。
要求学生在完成学习《物理化学》、《材料科学与工程》等课程,以及进行了认识实习,有一定的生产实际知识的基础上再安排学习本课程。
学好本课程对进一步学好材料专业的专业课具有奠定基础的重要作用。
材料热力学课程的任务是:1、掌握热力学的基本知识,理解相图的构成规则和诠释相图,深入理解材料热力学的基本理论和研究方法;2、能应用材料热力学的原理和方法来分析和解决实际的材料问题。
二、课程的基本内容及要求第一章绪论1、教学内容(1)热力学发展史及分类;(2)热力学定律回顾。
2、基本要求了解材料热力学发展史及分类,掌握材料热力学的基本概念,熟悉各种热力学关系式的推导、适用条件和在材料中的应用。
3、重难点(1)重点是热力学关系式的推导、适用条件和在材料中的应用;(2)难点是热力学关系式的推导。
第二章单组元材料的热力学1、教学内容(1)金属相变的体积效应的热力学解释;(2)纯金属中的平衡空位浓度;(3)晶体的热容及由热容计算自由能;(4)单组元材料两相平衡。
2、基本要求掌握单组元材料的相变体积效应、热容的概念;掌握热容计算自由能的计算;掌握单组元材料的两相平衡的计算;了解Gibbs-Helmholtz方程的推导和应用。
材料热力学 第三章 单组元材料热力学

Cp
H T
p
Cv
U T
v
H CpdT H (0K) U CvdT U(0K)
H(0K)和U(0K)是绝对零度的焓和内能, 目前其绝对值尚无法得知。
dS Q CdT
TT
S p
T 0
Cp T
dT
S(0K)
Sv
T 0
Cv T
dT
S (0K )
S(0K)为绝对零度下的熵,根据热力学第三定律(Third Law),认为单组元在绝对零度下的熵为0。
第三章 单组元材料热力学
3.2 晶体中的热空位
理想晶体中不存在空位,但实际金属晶体中存在空位。 随着温度升高,晶体中的空位浓度增加,大多数常用金 属(Cu、Al、Pb、W、Ag…)在接近熔点时,其空位 平衡浓度约为10-4,即晶格内每10000个结点中有一 个空位。
把高温时金属中存在的平衡空位通过淬火固定下来,形 成过饱和空位,这种过饱和空位状态对金属中的许多物 理过程(例如扩散、时效、回复、位错攀移等)产生重 要影响。
G
T
C pdT
0
T
T
0
Cp T
dT
H (0K)
F
T 0
Cv dT
T
T
0
Cv T
dT
U (0K)
能量均分定理在解释热容问题所遇到的巨大困 难迫使人们至新审查能量均分定理。能量均分 定理是由经典统计力学导出的,在经典物理包 括经典统计力学中有一个根本的假设就是能量 是连续改变的,能量均分定理在解释热容以及 热辐射问题上所遇到的不可克服的困难使得普 朗克提出量子论假设。
例题:
由实验求得Cp值: C p a bT cT 2 状态改变时:
第1章单组元材料的热力学资料.

第1章 单组元材料的热力学
1.2 Gibbs自由能
试样A吸收热量 QA –A之后,体积(V)的变化为dVA,对环境做功(Work)为PdVA,按热 力学第一定律(First law of thermodynamic),试样A的内能UA(Internal energy) 变化为:
这样,炉子A 的熵变可以用试样的状态函数来表示,即:
式(1.1)表明,在一个孤立系统中一个自发的不可逆过程总是熵增加的过程;熵减小的过程是 不可能发生的;而达到平衡态时熵达到最大值。
第1章 单组元材料的热力学
1.2 Gibbs自由能
设想一个材料样品A处于炉子A中,即使忽略炉子A与周围环境之间的热交换,也只能把A+A看 成一个孤立系统,判断样品A状态的变化或是否处于平衡态,都必须把炉子A的熵考虑在内,这当然是 很不方便的。
《材料热力学》(第二版)
目录
1
单单组击元此材处料添的加热文力字学内容
2
煤单二击组此元处相添加文字内容
3
二单组击元此材处料添的加热文力字学内容
4
两单个击重此要处的添溶加体文模字型内容
5
相单变击热此力处学添加文字内容
6 多单组击元此相处添加文字内容
7
多单元击材此料处热添力加学文字内容
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纯固体金属的理查德规则和楚顿规则
ST
S298
T 298
C
s p
d
ln
T
Sm
T Tm
C
l p
d
ln
T
固体金属的熔化熵 Sm H m / Tm
Richard 研究了H 和 Tm 的关系,发现
dS Q / T Q TdS 那么 dH Q VdP 可表示为
dH TdS VdP
根据此热力学关系式,可以讨论相变的体积效应。
17
对 dH TdS VdP 取偏微分
H / V T T S / V T V P / V T
根据Maxwell方程 S / V T V P / T V
P / T V 0
S / V T 0
体积不变时,压力随温度升高而增大
在一定温度下熵随体积增加而增大, 即疏排结构的熵高于密排结构。
对于凝聚态,P / V T 的值很小
H / V T T S / V T T P / T V 0
在一定温度下焓随体积增加而增大, 疏排结构的焓高于密排结构。
可以把 dH体系 TdS体系 作为判据,用来判断一个过程能 否自发进行,从而避免了必须考虑环境的熵变。
等温、等压下,定义:G H TS
G:Gibbs自由能
dG dH TdS d(H TS) 5
熵的统计意义
熵反映的是一种热力学几率,熵 和热力学几率(无序度、混乱度)之 间存在着简单的数学关系,即:
40
Heat Flow,mw
30
DSC (differential
20
scanning calorimetry)
10
Heating
测试焓变。
0
20
40
60
80
100
120
Temperature (oC)
Ni47Ti44Nb9合金经过变形后加热过程中的DSC曲线
4Hale Waihona Puke 自由能判据dH体系 TdS体系 0, 不可逆 dH体系 TdS体系 0, 可逆
材料热力学与动力学
北京航空航天大学 材料科学与工程学院
1
热力学动基本概念和基本定律de小结
热力学第零定律(热平衡和温度) 热力学第一定律(能量转换) 热力学第二定律(过程方向-判据-熵和自由能) 热力学第三定律(熵值计算-0 K的熵值)
2
熵增原理
dS Q T
dS 0
熵增原理:对于隔离体系,如果发生不可逆变化,其熵将增大。 一个隔离体系的熵永不减少。熵增原理只适用于隔离体系。
BCC是典型的高温相。BCC结构相在高温将变得比其他典型金属结 构(如FCC和HCP结构)更稳定。
几乎所有具有同素异构转变的金属都服从这个规律(见 下表),真正可以称为例外的,不是什么特别的金属, 而是在人类文明史上扮演了最重要作用的金属,Fe。
为什么?
合金的结构继承纯组元的特征,如铁合金,钛合金等。
对于一个不与外界隔离的体系,应将体系与环境热源一并作 为整个隔离体系来计算熵值变化
平衡、可逆过程: 自发、不可逆过程:
S S体系 S环境 0 S S体系 S环境 0
3
焓 H(Enthalpy)
H U PV
定义式中焓由状态函数(U,P,V)组成,因此焓也是状态函数 。 焓变等于等压热效应。 焓不是能量,虽然具有能量的单位,但不遵守能量守恒定律。 但是系统焓的变化(焓变)可由能量表达。
S k lnW
S k logW
6
Nernst定律
普朗克-路易斯-吉布逊:“在OK 时任何纯物质的完美晶体的熵值等 于零。”这是热力学第三定律的一 种表达形式。
T
ST S0 0 (Cp /T )dT
T
0
C
p
d
ln
T
7
3. 单组元材料热力学
8
很多单组元材料是重要的工程材料
例如: 工业纯铁是重要的软磁材料; 纯铝和纯钛都是重要的结构材料: 纯铜是重要的导电材料; 纯Si是重要半导体村料; 纯SiO2是重要的低膨胀村料 纯MgO和AI2O3是重要的耐火材料和耐热材料等。
单组元材料中没有成分的概念, 但温度和压力是重要的 变量。此外还有空位、磁性、体积效应等对相平衡构 成影响。
9
纯金属固态相变的体积效应 纯固体金属的理查德规则和楚顿规则 晶体中平衡状态下的热空位 晶体的热容 由热容计算自由能 单元材料的两相平衡(Clausius-Clapeyron方程) 磁性转变的自由能
12
BCC是典型的高温相,如在低温下,将具有特别的性质。
A ssessed T i - N b p h ase d i ag r am .
BCC是典型的高温相,如在低温下,将具有特别的性质。
14
热力学解释:
S V
T
0
在温度一定时,熵随体积而增大。即:对于同一金 属,在温度相同时,疏排结构的熵大于密排结构。
-Fe -Fe?
磁性转变自由能 15
进一步的热力学解释:
H U PV
焓和自由能的全微分可表示微
dH dU PdV VdP
只考虑体积功, 由热一律:
dU Q PdV
dH dU PdV VdP
Q VdP
16
根据熵的定义,如果将在相变温 dH dU PdV VdP 度下的过程视为可逆过程,那么 Q VdP
H V
T
0
在温度一定时,焓随体积而增大。即:对于同一金 属,在温度相同时,疏排结构的焓大于密排结构。
G H TS
在低温时,TS项的贡献很小,G主要决定于H项。H疏排 > H密排, →G疏排 > G密排。低温下密排相是稳定相。
在高温下,TS项的贡献很大,G主要决定于TS项。 S疏排 > S密排, →G疏排 < G密排。 高温下,疏排结构相是稳定相。
10
纯金属固态相变的体积效应
除非有可以理解的特殊理由,所有纯金属加热固态相变都是由密排 结构(Close Structure)向疏排结构(Open structure)的转变。加 热过程发生的相变要引起体积的膨胀。
高温下呈疏排结构,低温下呈密排结构
Packing Factor: 0.74(FCC,HCP), 0.68 (BCC)