表面界面物理第4章§4.4
第4章 薄膜的形核与生长

4.5 生长过程
薄膜的形成过程分四个阶段:
(1)
(2)
(4)
(3)
① 小岛阶段—成核和核长大
透射电镜观察:大小一致2-3nm的核突然出现。平行基片平面两维大于垂直方向的第三维
② 结合阶段
两个圆形核结合时间小于0.1s,并且结合后增大了高度,减少了在基片所占的总面积。结 合时类液体特性导致新出现的基片面积上会发生二次成核,结合后的复合岛若有足够时 间,可形成晶体形状,多为六角形。
(其中f ( ) 2 3cos cos3 ) 4
体积自由能变化:GV
4 3
r
3
Gv
f
( )
原子聚集理论的基本内容
原子聚集理论将核(原子团)看作一个大分子,用其内部原子之间
的结合能或与基片表面原子之间的结合能代替热力学理论中的自由能。
结合能不是连续变化而是以原子对结合能为最小单位的不连续变化。
原子聚集理论中,临界核和最小稳定核的形状与结合能的关系如图所示。
1)较低基体温度T1,临界核是 吸附在基体表面上的单个原子。 每一个吸附原子一旦与其他吸 附原子相结合都可形成稳定的 原子对形状稳定核。 2)温度大于T1之后,临界核是 原子对。因为此时每个原子若 只受单键的约束是不稳定的, 必须具有双键才能形成稳定核。 此时,最小稳定核是三原子的 原子团。另一种可能是四原子 3)当温度高于T2后,临界核是三原子或四原子团。因为这的方形结构,概率小。 时双键已不能使原子稳定在核中。要形成稳定核,每个原 子至少有三个键,稳定核是四原子团或五原子团。 4)当温度再进一步升高达到T3以后,临界核显然是四原子 团和五原子团,有的可能是七原子团。
临界核:比最小稳定核再小点,或者说再小一个原子,原子团就变成不稳定的。 这种原子团为临界核。
固体物理学基础晶体的表面与界面物理

固体物理学基础晶体的表面与界面物理晶体是物质排列有序的固态结构,其内部的原子排列具有周期性重复的特征。
然而,固体晶体与外界环境之间的接触面即表面以及晶体与其他晶体之间的界面却展现出了特殊的物理性质,这是固体物理学中一个重要而广泛研究的课题。
1. 表面物理学表面是固体晶体与外界环境相接触的区域,它通常由表层原子构成。
与晶体内部相比,表面的原子排列更加松散,结构更不规则。
这导致了表面物理性质与晶体内部的差异。
1.1 表面能和表面形貌表面能是表征表面性质的重要参数。
它反映了表面原子对外界作用力的敏感程度以及表面原子间的相互作用强度。
表面能的大小直接影响着固体的表面现象,如润湿性、吸附性等。
另外,表面形貌也是表面物理学中的一个重要研究内容。
表面的形貌与固体晶体的生长、晶体结构有着密切的关系,对材料的性能和应用也具有重要影响。
1.2 表面电子结构和局域态相比于晶体内部的电子能级结构,表面区域的电子结构发生了较大的变化。
表面态和界面态的存在使得表面与界面成为固体中电子输运的重要通道。
此外,表面和界面常常会导致电子的局域化现象,形成局域态。
研究表面电子结构和局域态对于理解固体物理学中的许多现象至关重要。
2. 界面物理学界面是两个不同材料的接触面,其中至少有一个为固体晶体。
界面的形成和性质对于多个领域都有着重要的影响,如材料科学、纳米科技等。
2.1 界面的结构和性质界面的结构与性质主要受到相邻材料的晶体结构、材料相互作用等因素的影响。
不同材料之间存在界面能的差异,使得界面呈现出独特的物理化学性质。
界面的结构和性质研究为杂质控制、界面反应等提供了重要的理论依据。
2.2 界面电子结构和界面态界面的形成会导致局部晶格的扭曲和变形,进而影响到界面区域的电子结构。
活化能的变化会造成界面电荷重排和界面电子态的形成。
界面电子态的研究对于解析电子在材料界面上的行为以及界面的电子传输机制具有重要意义。
总结:固体物理学基础晶体的表面与界面物理是对固体晶体内部性质之外的重要研究课题。
材料表面与界面 第四章 复合材料的界面及界面优化

4.2 界面的效应(1)
界面是复合材料的特征,可将界面的机能归纳为以下几种 效应:
(1)传递效应:界面能传递力,即将外力传递给增强物,起 到基体和增强物之间的桥梁作用。
(2)阻断效应:结合适当的界面有阻止裂纹扩展、中断材料 破坏、减缓应力集中的作用。
阻止裂纹的扩展
4.2 界面的效应(2)
(3)不连续效应:在界面上产生物理性能的不 连续性和界面摩擦出现的现象,如抗电性、 电感应性、磁性、耐热性、尺寸稳定性等。
在纤维增强复合材料中,纤维是材料主要 承载组分,其增强效果主要取决于纤维的
特征、纤维与基体间的结合强度、纤维的
体积分数、尺寸和分布。
碳 纤 维
弹性模量及强度 外力方向与纤维轴向相同时,c= f = m (f-纤维、 m-基体、 c-复合材料),则
c f V f mVm , Ec E f V f EmVm
许多因素影响着界面结合强度,如表面几何形状、 分布状况、纹理结构、表面杂质、吸附气体程度、吸 水情况、表面形态、在界面的溶解、扩散和化学反应、
表面层的力学特性、润湿速度等。
4.3 复合材料组分的相容性
物理相容性:
1.
是指基体应具有足够的韧性和强度,能够将外部载 荷均匀地传递到增强剂上,而不会有明显的不连续 现象。 由于裂纹或位错移动,在基体上产生的局部应力不 应在增强剂上形成高的局部应力。 基体与增强相热膨胀系数的差异对复合材料的界面 结合产生重要的影响,从而影响材料的各类性能。
ZnO晶须
自增韧Si3N4陶瓷
二、叠层复合材料
叠层复合材料是指在基 体中含有多重层片状高 强高模量增强物的复合 材料。
三明治复合 层状陶瓷复合材料断口形貌
4八年级物理第四章光现象知识点详解总结

4⼋年级物理第四章光现象知识点详解总结第四章光现象 §4.1 光的直线传播⼀、光源——⾃⾝..能够发光的物体。
⾃然光源:太阳、⽔母、斧头鱼、萤⽕⾍等等;⼈造光源:⽩炽灯、霓虹灯等。
▲⽉亮、钻⽯、镜⼦等不是光源(因为它们不是⾃⾝发光,只是反射光线). ⼆、光的直线传播1.光沿直线传播的条件2.光线——理想物理模型(不是真实存在)。
3.解释现象: (1)影的形成▲注:树⽊,建筑物、⼈等在⽔中的倒影并不是“影”,⽽是平⾯镜成像。
光的直线传播的应⽤:(1)⼩孔成像:像的形状与⼩孔的形状⽆关,像是倒⽴的实像(树阴下的光斑是太阳的像)。
实像:由实际光线会聚⽽成的像。
①⼩孔成像的条件:孔的⼤⼩必须远远⼩于孔到发光的距离及孔到光屏的距离。
②像的⼤⼩与发光体到孔的距离和像到孔的距离有关,发光体到⼩孔的距离不变,光屏远离⼩孔,实像增⼤;光凭靠近⼩孔,实像减⼩;光屏到⼩孔的距离不变,发光体远离⼩孔,实像减⼩;发光体靠近⼩孔,实像增⼤。
(2)取得直线:激光准直(挖隧道定向);整队集合;射击瞄准;(3)限制视线:坐井观天、⼀叶障⽬;(4)影的形成:影⼦;⽇⾷、⽉⾷常见的现象:①激光准直。
②影⼦的形成:光在传播过程中,遇到不透明的物体,在物体的后⾯形成⿊⾊区域即影⼦。
③⽇⾷⽉⾷的形成:当地球在中间时可形成⽉⾷。
如图:在⽉球后1的位置可看到⽇全⾷,在2的位置看到⽇偏⾷,在3的位置看到⽇环⾷。
④⼩孔成像:⼩孔成像实验早在《墨经》中就有记载⼩孔成像成倒⽴的实像,其像的形状与孔的形状⽆关。
3、光线:常⽤⼀条带有箭头的直线表⽰光的径迹和⽅向;(是理想化物理模型,⾮真实存在)4、所有的光路都是可逆的,包括直线传播、反射、折射等。
5、真空中光速是宇宙中最快的速度;c=3×108m/s=3×105 m/s;6、光年:是光在⼀年中传播的距离,光年是长度单位;声⾳在固体中传播得最快,液体中次之,⽓体中最慢,真空中不传播;光在真空中传播的最快,空⽓中次之,透明液体、固体中最慢(⼆者刚好相反)。
第四章材料的表面与界面

6、表面力场 固体表面上的吸引作用,是固体的表 面力场和被吸引质点的力场相互作用所产 生的,这种相互作用力称为固体表面力。 依性质不同,表面力可分为: 1)化学力 2)分子引力
二、固体表面的特征 1. 固体表面的不均匀性,表现在: (1) 绝大多数晶体是各向异性,因而同一晶体可以有许多性能不 同的表面。
• 由于分散度的变化,可使细 粉石英表面能增加了106倍,
这些能量可以使650kg的水升
高1°C。 • 粉碎石英的机械能转化为表 面能贮存在石英粉内。
概述
• 高分散度物系比低分散度物系能量高得多,必然使物系由于 分散度的变化而使两者在物理性质(如熔点、沸点、蒸气压、 溶解度、吸附、润湿和烧结等)和化学性质(化学活性、催化、 固相反应)方面有很大的差别。 • 界面是晶体中的面缺陷,具有高的能量,在化学介质中不稳 定,产生晶界腐蚀,影响材料的化学性能。 • 界面也影响材料的物理性能,如材料组织中晶粒增大,界面 减少,提高导磁率,降低矫顽力,
理想表面结构示意图
2、清洁表面
清洁表面是指不存在任何吸附、催化反 应、杂质扩散等物理化学效应的表面。这
种清洁表面的化学组成与体内相同,但周
期结构可以不同于体内。根据表面原子的
排列,清洁表面又可分为台阶表面、弛豫
表面、重构表面等。
(1)台阶表面
台阶表面不是一个平面,它是由有规则的或 不规则的台阶的表面所组成
说明:
NaCl 晶 体
1. 离子晶体MX在表面 力作用下,处于表面层 的负离子X在外侧不饱 和,负离子极化率大,
通过电子云拉向内侧正
离子一方的极化变形来 降低表面能。这一过程
图3-1 离子晶体表面的电子云变形和离子重排
称为松弛,它是瞬间完
大学物理第4章-热力学第一定律

mol 理想气体的内能:
i E νRT 2
理想气体的内能是温度 T 的单值函数
i ΔE νR ΔT 2
QUIZ Jack’s death due to the loss of a) love b) temperature c) heat d) internal energy
热量是过程量,内能是状态量。
二、热 量
dQ 0 表示系统从外界吸热; dQ 0 表示系统向外界放热。
在SI制中:焦耳(J)
准静态过程中传递的热量是过程量。
三、热量的单位
结 论:
热量和功是系统状态变化中伴随发生的两种 不同的能量传递形式。它们的物理本质不同 宏观运动 分子热运动 功 热量 分子热运动 分子热运动
作功和传热的大小不但与系统的初、末态有关, 而且与过程有关,它们都是过程量,不是状态量, 因而微量功和微量传热分别写成 dA和dQ,它们不是全 微分。
dQ Cp ( )p dT
摩尔定压热容 Cp,m
i i Q E A RT RT 1 RT 2 2
Cp,m 1 dQ i 1 R dT p 2
:摩尔数
i:自由度数
三、迈耶公式及比热容比 摩尔定体热容 CV,m 摩尔定压热容 Cp,m 迈耶公式 比热容比
CV,m 3 R 2
5 R 2
Cp,m 5 R 2 7 R 2
1.67 1.40
刚性多原子分子
3R
4R
1.33
思考:为什么理想气体任意两状态间内能的变 化可表示成摩尔定体热容 CV,m 与温度变化乘积 的关系,而不是摩尔定压热容 Cp,m 与温度变化 乘积的关系?
材料物理化学第四章 表面与界面

电动电位或ξ电位影响因素 ①.ζ -电位和双电层厚度有关,双电层越厚, ζ -电位越大。
②.阳离子浓度:阳离子浓度越大,扩散层压 缩,ζ -电位降低;
③阳离价态:电价越高,ζ -电位越小;同价 离子半径越大,ζ -电位越低; ④矿物组成,形状粒度。ζ -电位的大小顺序 为: H+<Al3+<Ba2+<Sr2+<Ca2+<Mg2+<NH4+<K+<Na+<Li+
属于这一类流动的主要有高聚合物的溶液、乳浊液、 淀粉、甲基纤维素等
(5)膨胀流动
这一类型的流动曲线是假 塑性的相反过程。流动曲线通 过原点并凹向剪应力轴如图(b) 所示。这些高浓度的细粒悬浮 液在搅动时好像变得比较粘稠, 而停止搅动后又恢复原来的流 动状态,它的特点是强度随切 变速率增加而增加。 属于这一类流动的一般是非塑性原料,如氧化铝、 石英粉的浆料等。
第四章 表面与界面
目的要求:
• 1. 理解表面功、比表面吉布斯函数、表面 张力的概念。 • 2. 理解润湿现象及弯曲液面的附加压力, 并掌握其计算。 • 3. 掌握分散度与蒸汽压的关系,能解释各 种介稳现象(过冷液体、过热液体、过饱 和蒸汽、过饱和溶液、微小晶体的溶解 度)。
• 4. 弄清毛细现象的成因。明确吸附的概念 及分类。了解主要吸附剂。 • 5.了解固体对气体的吸附量的表示。 理解 兰格缪尔吸附理论的要点,并掌握其吸附 方程式的运用。 • 6. 了解表面活性物质的概念和分类。 • 7. 了解表面活性剂的应用(去污作用、减 水作用、助磨作用、起泡作用)
同号离子相互交换, 离子以等当量交换, 交换和吸附是个可逆过程, 离子交换并不影响粘土本身结构等特点。
第24讲分离变量法第4章介质中的电动力学4§4拉普拉斯方程分离变量法

第24讲 分离变量法 第4章 介质中的电动力学(4) §4.4 拉普拉斯方程 分离变量法以上两节给出静电问题的一般公式,并说明静电学的基本问题式求解满足给定边界条件的泊松方程的解。
只有在界面形状是比较简单的几何曲面时,这类问题的解才能以解析形式给出,而且视具体情况不同而有不同的解法。
在许多实际问题中,静电场是由带电导体决定的。
例如电容器内部的电场是由作为电极的两个导体板上所带电荷决定的;又如电子光学系统的静电透镜内部,电场是由于分布于电极上的自由电荷决定的。
这些问题的特点是自由电荷只出现在一些导体的表面上,在空间中没有其它自由电荷分布。
因此,如果我们选择这些导体表面作为区域V 的边界,则在V 内部自由电荷密度 ρ = 0 ,因而泊松方程化为比较简单的拉普拉斯(Laplace )方程20ϕ∇= (4.4---1) 产生这电场的电荷都分布于区域V 的边界上,它们的作用通过边界条件反映出来。
因此,这类问题的解法是求拉普拉斯方程的满足边界条件的解。
(4.4---1)式的通解可以用分离变量法求出。
先根据界面形状选择适当的坐标系,然后在该坐标系中由分离变量法解拉普拉斯方程。
最常用的坐标系有球坐标系和柱坐标系。
这里我们写出用球坐标系得出的通解形式(见附录Ⅱ)。
球坐标用(R ,θ,φ)表示,R 为半径,θ为极角,φ为方位角。
拉氏方程在球坐标系中的通解为1.(,,)()(cos )cos n mnm nm n n n mb R a R P m R ϕθφθφ+=+∑ 1,()(cos )sin n mnm nm n n n md c R P m Rθφ+++∑ (4.4---2) 式中 a n m ,b n m ,c n m 和 d n m 为任意常数,在具体问题中有边界条件定出。
P m n (cos θ) 为缔和勒让德(Legendre )函数。
若该问题中具有对称轴,取此轴为极轴,则电势φ不依赖于方位角φ,这情形下通解为 1()(cos ),n nn n n nb a R P Rϕθ+=+∑ (4.4---3) P n (cos θ)为勒让德函数,a n 和b n 由边界条件确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硅-玻璃接触键合
• 如图所示的硅-钠硅玻璃系统,问 • ①接触时将发生什么情况②高温下③高 温强电场下(硅接负)④在高温和强电 场下(硅接正)硅与玻璃间会发生什么 现象?
• 这是界面间的界面力和界面扩散的问题
• 表面力使硅与玻璃可能有粘接性
• 硅与玻璃会发生扩散(室温下不明显)
• 由于热激发增强了Na+的可动性,使得 Na+在外加电压的作用下发生漂移 • 如图所示,由于硅片接电源正极,玻璃接负 极,就会在玻璃靠近硅-玻璃界面一侧形成 Na+的耗尽层,并在硅片靠近玻璃的一侧 感应出等量的负电荷
第4类
1. 2. 3. 4. 5. 6. 7. 范德华力——Van der Waals 静电力——electrostatic force 溶解力——solvation force 疏水力——hydrophobic force 毛细力——capillary force 流体动力学力——hydrodynamic force 短程表面力——“contact” force
• 玻璃中钠离子比较容易活动,在较强电 场下可能发生迁移
• 高压基本上降落在几个微米的耗尽层 中,形成了很高的电场,从而在硅-玻 璃界面产生了强大的静电引力使硅和 玻璃紧密接触 • 与此同时由于玻璃和空气中水里含氧, 在加热和加压的条件下界面处发生了 阳极氧化反应形成了牢固的化学键SiO键,使得硅-玻璃界面形成了良好的 封接,要比硅或玻璃本身牢固(Si-O键 的强度约是Si-Si键强度的2.5倍)
or repulsive: • repulsive when strong electron wave overlap (Pauli exclusion principle). These forces are directly connected to the total electron density. The ionic repulsion acts for small distances, where the screening of the ion cores by the electrons falls away.
范德华力
The three most important contributions to Van der Waals interactions •Dispersion interaction (London)
•Dipole-induced dipole interactions (Debye)
•Rotating dipole-dipole interactions (Keesom)
The London interaction
The Debye interaction
The Keesom interaction
Electrostatic force
Coulomb Potential
• usual contact AFM operates with these forces.
• However, their application is essentially limited to the pairwise interaction of atoms. For the tip-sample interaction, at least the interaction with the nearest neighbor atoms has to be included and, furthermore, the displacement of atoms by the action of the short-range force has to be taken into account.
Solvation Forces
Capillary Forces
Short-Range Forces
• due to overlap of electron wave functions and from the repulsion of the ion cores. • can be both attractive: • attractive when the overlap of electron waves reduces the total energy. These situations are comparable to molecular binding. • around 0.5 - 1 nN per interacting atom at tip-sample distances typical for STM operation. • decay length of the order of atomic units, i.e. 0.05 nm for metallic adhesion, but around 0.2 nm for covalent bonding. • true atomic resolution AFM operates with these forces