计量经济学实验报告

合集下载

计量经济学实验报告

计量经济学实验报告

计量经济学实验报告实验报告实验课程名称:计量经济学实验案例1:近年来,中国旅游业⼀直保持⾼速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作⽤⽇益显现。

中国的旅游业分为国内旅游和⼊境旅游两⼤市场,⼊境旅游外汇收⼊年均增长22.6%,与此同时国内旅游也迅速增长。

改⾰开放20多年来,特别是进⼊90年代后,中国的国内旅游收⼊年均增长14.4%,远⾼于同期GDP 9.76%的增长率。

为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。

解题过程:⾸先,通过Eviews,得出回归模型:Y=-274.377+0.013X2+5.438X3+3.272X4+12.986X5-563.108X6tc=-0.208 t2=1.031 t3=3.940 t4=3.465 t5=3.108 t6=-1.753R^2=0.995 F=173.354 DW=2.311从估计结果来看,模型可能存在多重共线性。

因为在OLS下,R^2^2与F值较⼤,⽽各参数估计量的t检验值较⼩,说明各解释变量对Y的联合线性作⽤显著,但各个解释变量存在共线性从⽽使得它们对Y的独⽴作⽤不能分辨,故t检验不显著。

应⽤Eviews,写下命令:cor X2 X3 X4 X5 X6。

得到相关系数矩阵。

可以从中看出五个经济变量之间两两简单相关系数⼤都在0.80以上,甚⾄有的在0.96以上。

表明模型存在着严重的多重共线性。

从⽽为了消除多重共线性,这⾥采⽤逐步回归法。

第⼀步,⽤每个解释变量分别对被解释变量做简单回归。

得:Y=-3462+0.0842X2 t=8.666 R^2=0.903 F=75Y=-2934+9.052X3 t=13 R^2=0.956 F=173Y=640+11.667X4 t=5.196 R^2=0.771 F=27Y=-2265+34.332X5 t=6.46 R^2=0.839 F=42Y=-10897+2014X6 t=8.749 R^2=0.905 F=77根据R^2统计量的⼤⼩排序,可见重要程度依次为X3, X6, X2, X5, X4。

计量经济学实训报告

计量经济学实训报告

计量经济学实训报告一、实验设计:本次实验是基于计量经济学的理论知识和方法,通过对已有的数据进行回归分析,验证理论假设的可行性。

实验的目的是了解计量经济学在实际应用中的重要性,以及掌握回归分析等基本方法。

二、实验过程:1.数据收集:我们选择了一个包含多个变量的数据集,包括自变量和因变量,旨在通过回归模型来预测因变量的取值。

2.数据清洗:对收集到的数据进行清洗和预处理,包括处理缺失值、异常值等。

3.变量选择:根据计量经济学的原理和假设,选择适合的自变量和因变量,并对其进行初步的分析。

4.模型建立:根据选择的自变量和因变量,建立回归模型,并假设一些条件。

5.模型估计:利用统计软件对建立的回归模型进行估计和拟合,获得回归系数和拟合度等相关参数。

6.模型诊断与检验:对建立的回归模型进行诊断和检验,检查模型的拟合度和有效性。

7.结果分析:根据模型估计和检验结果,分析自变量对因变量的影响程度和显著性等,并解读模型。

三、实验结果:经过以上的实验过程和分析,我们得到了以下结论:1.自变量X对因变量Y的影响具有统计显著性;2.自变量X1对因变量Y的影响程度较大,而自变量X2的影响相对较小;3.拟合度较高,模型的解释能力较强。

四、实验感想:通过本次实验,我们深刻认识到计量经济学在实际问题中的重要性。

通过建立回归模型,我们可以对研究对象的变量关系进行实证分析,从而对问题进行解释和预测。

同时,我们也了解到了回归分析中的一些注意事项,如数据的选择和处理、模型的建立和检验等。

在今后的学习中,我们将进一步掌握和应用计量经济学的方法,提高对实际问题的分析和解决能力。

同时,我们也意识到计量经济学的方法和理论需要结合实际问题来进行应用,只有在实际问题中进行实践和应用,才能更好地理解和掌握计量经济学的知识。

计量经济学实验报告(一)

计量经济学实验报告(一)

计量经济学实验报告(一)
一、实验背景
计量经济学实验是一种采用经济理论和方法来设计实验的经济研究方法。

经济实验的主要目的是检验经济理论,比如检验假设和改进预测。

它还可以用于定性评价和定量评价政策方案和市场动态,以及验证行为经济学理论。

二、实验内容
本次实验通过一组独立的在线调查来研究人们对收入分配政策的态度。

调查中,受访者被要求就14种不同的收入分配政策支持、反对和中立做出反应。

这14种收入分配政策包括财政公平政策、税收和补贴政策、劳动力市场政策和参与机会政策等。

以及根据态度的强度来改变互动形式,不同类型的回答有不同的加分,比如更强烈的支持会比中立的有更多分数。

三、实验结果
实验结果显示,在14种收入分配政策中,受访者大部分表示支持或者反对。

最受支持的是劳动力市场政策,而最受反对的是税收和补贴政策。

同时,实验还发现,这14种收入分配政策受实验者支持或反对的原因大部分是经济实惠:如果一个政策能够为普通大众带来经济实惠,这个政策很可能受到受访者的支持。

此外,一些政策因其有助于实现平等收入而受到支持。

四、实验结论
本次实验结论清楚地表明,受访者支持或反对收入分配政策跟经济实惠有关。

当人们普遍受益于收入分配政策时,他们很可能支持这种政策。

另外,实验还发现,有些政策受支持的原因还在于它们有助于实现平等收入的目的。

本次实验不仅对计量经济学的理论和方法提供了有价值的信息,而且还为构建经济实证提供了重要的参考意见。

可以认为,经过本次实验的进一步检验和优化,可以发现更详细、更准确的数据,以便进一步检验和发展计量经济学的理论与方法。

计量经济学虚拟变量实验报告

计量经济学虚拟变量实验报告

第七章虚拟变量实验报告一、研究目的改革开放以来,我国经济保持了长期较快发展,与此同时,我国对外贸易规模也日益增长。

尤其是2002年中国加入世界贸易组织之后,我国对外贸易迅速扩张。

2012年,我国进出口总值38667.6亿美元,与上年同期相比增长6.2%。

至此,我国贸易总额首次超过美国,成为世界贸易规模最大的国家。

为了考察我国对外贸贸易与国内生产总值的关系是否发生巨大的变化,以国内生产总值代表我国经济整体发展水平,以对外贸易总额代表我国对外贸易发展水平,分析我国对外贸易发展受国内生产总值的影响程度。

二、模型设定为研究我国对外贸易发展规模受我国经济发展程度影响,引入国内生产总值为自变量。

设定模型为:+β1X t+ U t (1)Y t=β参数说明:Y t——对外贸易总额(单位:亿元)X t——国内生产总值(单位:亿元)U t——随机误差项收集到数据如下(见表2-1)表2-1 1985-2011年我国对外贸易总额和国内生产总值注:资料来源于《中国统计年鉴》1986-2012。

为了研究1985-2011年期间我国对外贸易总额随国内生产总值的变化规律是否有显著不同,考证对外贸易与国内生产总值随时间变化情况,如下图所示。

图2.1 对外贸易总额(Y)与国内生产总值(X)随时间变化趋势图从图2.1中,可以看出对外贸易总额明显表现出了阶段特征:在2002年、2007年和2009年有明显的转折点。

为了分析对外贸易总额在2002年前后、2007年前后及2009年前后几个阶段的数量关系,引入虚拟变量D1、D2、D3。

这三个年度对应的GDP分别为120332.69亿元、265810.31亿元和340902.81亿元。

据此,设定以下以加法和乘法两种方式同时引入虚拟变量的模型:Y t=β0+β1Xt+β2(Xt-120332.69)D1+β3(Xt-265810.31)D2+β4(Xt-340902.81)D3+ Ut(2)其中,⎩⎨⎧===年及以前年以后2002200211ttDt,⎩⎨⎧===年及以前年以后7200720012ttDt,⎩⎨⎧===年及以前年以后9200920013ttDt。

计量经济学实验报告

计量经济学实验报告

计量经济学实验报告《计量经济学》实验报告一,数据某年中国部分省市城镇居民家庭人均年可支配收入(X)与消费性支出(Y)统计数据二,理论模型的设计解释变量:可支配收入X 被解释变量:消费性支出Y 软件操作:(1)X与Y散点图从散点图可以粗略的看出,随着可支配收入的增加,消费性支出也在增加,大致呈线性关系。

因此,建立一元线性回归模型:1iiiY X ββμ=++(2)对模型做OLS 估计OLS 估计结果为272.36350.7551Y X∧=+011.705732.3869t t ==20.9831.. 1.30171048.912R DW F ===三,模型检验从回归估计结果看,模型拟合较好,可决系数为0.98,表明家庭人均年可消费性支出变化的98.31%可由支配性收入的变化来解释。

t检验:在5%的显著性水平下1β不显著为0,表明可支配收入增加1个单位,消费性支出平均增加0.7551单位。

1,预测现已知2018年人均年可支配收入为20000元,预测消费支出预测值为0272.36350.75512000015374.3635Y=+⨯=E(X)=6222.209,Var(X)=1994.033则在95%的置信度下,E(Y)的预测区间为(874.28,16041.68)2,异方差性检验对于经济发达地区和经济落后地区,消费支出的决定因素不一定相同甚至差异很大。

如经济越落后储蓄率越高,可能出现异方差性问题。

G-Q检验对样本进行处理,X按从大到小排序,去掉中间4个,分为两组数据,128n n==分别回归1615472.0RSS =2126528.3RSS =于是的F 统计量:()()12811 4.86811RSS F RSS --==--在5%的想著想水平下,0.050.05(6,6) 4.28,(6,6)FF F =>,即拒绝无异方差性假设,说明模型存在异方差性。

计量经济学》实验报告

计量经济学》实验报告

计量经济学》实验报告一、经济学理论概述1、需求是指消费者(家庭)在某一特定时期内,在每一价格水平时愿意而且能够购买的某种商品量。

需求是购买欲望与购买能力的统一。

2、需求定理是说明商品本身价格与其需求量之间关系的理论。

其基本内容是:在其他条件不变的情况下,一种商品的需求量与其本身价格之间成反方向变动,即需求量随着商品本身价格的上升而减少,随商品本身价格的下降而增加。

3、需求量的变动是指其他条件不变的情况下,商品本身价格变动所引起的需求量的变动。

需求量的变动表现为同一条需求曲线上的移动。

二、经济学理论的验证方法在此次试验中,我运用了Eviews和Excel软件对相关数据进行处理和分析。

1、拟合优度检验——可决系数R2统计量回归平方和反应了总离差平方和中可由样本回归线解释的部分,它越大,参差平方和越小,表明样本回归线与样本观测值的拟合程度越高。

2、方程总体线性的显着性检验——F检验(1)方程总体线性的显着性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显着成立作出判断。

(2)给定显着性水平α,查表得到临界值Fα(k,n-k-1),根据样本求出F统计量的数值后,可通过F>Fα(k,n-k-1) (或F ≤Fα(k,n-k-1))来拒绝(或接受)原假设H0,以判定原方程总体上的线性关系是否显着成立。

3、变量的显着性检验——t检验4、异方差性的检验——怀特检验怀特检验不需要排序,对任何形式的异方差都适用。

5、序列相关性的检验——图示法和回归检验法6、多重共线性的检验——逐步回归法以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计。

三、验证步骤1、确定变量(1)被解释变量“货币流通量”在模型中用“Y”表示。

(2)解释变量①“货币贷款额”在模型中用“X”表示;1②“居民消费价格指数”在模型中用“2X ”表示;③把由于各种原因未考虑到和无法度量的因素归入随机误差项,在模型中用“μ”。

计量经济学实验报告(范例)

计量经济学实验报告(范例)
在本例中是截面数据,选择“Undated or irreqular”。并在“observations”中输入,样本数量如“31”点击“ok”出现“Workfile UNTITLED”工作框。其中已有变量:“c”—截距项“resid”—剩余项。
在“Objects”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK”出现数据编辑窗口。
1.学会OLS方法的估计过程
2.掌握了模型的估计和检验方法
3.深入了解了消费函数的计量结果,扩大了思路。
一、研究目的和意义
我们研究的对象是各地区居民消费的差异。居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。所以模型的被解释变量Y选定为“城市居民每人每年的平均消费支出”。
若要将工作文件存盘,点击窗口上方“Save”,在“SaveAs”对话框中给定路径和文件名,再点击“ok”,文件即被保存。
2、输入数据
在数据编辑窗口中,首先按上行键“↑”,这时对应的“obs”字样的空格会自动上跳,在对应列的第二个“obs”有边框的空格键入变量名,如“Y”,再按下行键“↓”,对因变量名下的列出现“NA”字样,即可依顺序输入响应的数据。其他变量的数据也可用类似方法输入。
Annual (年度) Weekly (周数据)
Quartrly (季度) Daily (5 day week ) (每周5天日数据)
Semi Annual (半年) Daily (7 day week ) (每周7天日数据)

《计量经济学》实验报告-副本

《计量经济学》实验报告-副本

计量经济学作业 1运用Eviews软件:1.作出散点图,建立税收随国内生产总值GDP变化的一元线性回归方程,并解释斜率的经济意义;1.对所建立的回归方程进行检验;2.若2008年某地区国内生产总值为8500亿元,求该地区税收收入的预测值及预测区间。

《计量经济学》实验报告行知学院11数学精算班实验序号实验名称中国内地2007年各地区税收与国内生产总值课程名称计量经济学姓名尐所在实验室文东202班级11数学精算计划学时2实验类型上机操作学号专业数学与应用数学(保险精算)实验要求运用Eviews软件:1.作出散点图,建立税收随国内生产总值GDP变化的一元线性回归方程,并解释斜率的经济意义;3.对所建立的回归方程进行检验;4.若2008年某地区国内生产总值为8500亿元,求该地区税收收入的预测值及预测区间。

备注实验步骤1.建立工作文件2.输入数据3.图形分析4.估计线性回归模型主要实验结论和数据1、建立模型假设拟建立如下一元回归模型:X1Y下表给出采用Eviews软件对数据进行回归分析的计算结果。

一般可写出如下回归分析结果:GDPY0710.0)6296.10(?7603.02R F= .=散点图如下:2、模型检验从回归估计的结果看,模型拟合较好。

可决系数2R =,表明税收的变化的%可由国内生产总值GDP 的变化来解释。

从斜率项的t 检验值看,大于5%显著性水平下自由度为n-2=29的临界值05.2)29(025.0t ,且斜率满足0<<1,表明2007年每增加一元的GDP ,税收收入增加元。

3、预测若2008年某地区国内生产总值为8500亿元,代入上式回归方程得该地区税收收入的预测值为:Y?+=(亿元)由于GDP 的样本均值与样本方差E(GDP)=D(GDP)=1于是,在95%的置信度下,E (Y )的预测区间为)1734694021)131()1258.88918500(3112-3127603102()(即:(,)填卡日期:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学实验 基于EViews的 中国能源消费影响因素分析

学院: 班级: 学号: 姓名: 基于EViews的中国能源消费影响因素分析 一、背景资料 能用消费是引是指生产和生活所消耗的能源。能源消费按人平均的占有量是衡量一个国家经济发展和人民生活水平的重要标志。能源是支持经济增长的重要物质基础和生产要素。能源消费量的不断增长,是现代化建设的重要条件。我国能源工业的迅速发展和改革开放政策的实施,促使能源产品特别是石油作为一种国际性的特殊商品进入世界能源市场。随着国民经济的发展和人口的增长,我国能源的供需矛盾日益紧张。同时,煤炭、石油等常规能源的大量使用和核能的发展,又会造成环境的污染和生态平衡的破坏。可以看出,它不仅是一个重大的技术、经济问题,而且以成为一个严重的政治问题。 在20世纪的最后二十年里,中国国内生产总值(GDP)翻了两番,但是能源消费仅翻了一番,平均的能源消费弹性仅为0.5左右。然而自2002年进入新一轮的高速增长周期后,中国能源强度却不断上升,经济发展开始频频受到能源瓶颈问题的困扰。鉴于此,研究能源问题不仅具有必要性和紧迫性,更具有很大的现实意义。由于我国目前面临的所谓“能源危机”,主要是由于需求过大引起的,而我国作为世界上最大的发展中国家,人口众多,所需能源不可能完全依赖进口,所以,研究能源的需求显得更加重要。

二、影响因素设定 根据西方经济学消费需求理论可知,影响消费需求的因素有:商品的价格、消费者收入水平、相关商品的价格、商品供给、消费者偏好以及消费者对商品价格的预期等。对于相关商品价格的替代效应,我们认为其只存在能源品种内部之间,而消费者偏好及消费者对商品价格的预期数据差别较大,不容易进行搜集整理在此暂不涉及。另外,发展经济学认为,来自知识、人力资本的积累水平所体现的技术进步不仅可以带动劳动产出的增长,而且会通过外部效应可以提高劳动力、自然资源、物质资本与生产要素的生产效率,消除其中收益递减的内在联系,带来递增的规模收益。 这里我们引入能源价格、居民收入、科技进步、能源供给量和工业产出五个变量对能源需求进行分析。

三、数据选取 1.能源需求总量,在模型中用y表示,是指一次性能源消费总量,由煤炭,石油,天然气和水电4项组成(单位:万吨标准煤)。 2.能源需求的影响因素: (1)能源价格,用能源产品出厂价格指数来衡量,在模型中用X1表示,它由煤炭、石油、电力工业出厂价格指数加权计算得到。 (2)剔除物价的工业总产值(亿元),在模型中用X2表示,它由由现价计算的工业总产值除以当年的工业总产值价格指数。 (3)剔除物价的城镇居民家庭人均可支配收入(元),用X3表示,它也是由各年家庭人均可支配收入绝对数用价格指数计算得到。 (4)科学研究与综合技术服务业人员数(万人),用X4表示,直接由各年度统计年鉴查得。 (5)能源生产总量(万吨标准煤),用X5表示,直接由各年度统计年鉴查得。 (6)其他因素。我们将由于各种原因未考虑到和无法度量的因素归入随机误差项,如国家的经济结构政策、消费者偏好等。 表1: 年份 能源消费总量(万吨标准煤) 能源产品出厂价格指数 剔除物价的工业总产值 (亿元) 剔除物价的城镇居民家庭人均可支配收入 (元) 科学研究与综合技术服务业人员数(万人)

能源生产总量

(万吨标准煤)

1981 57144 100 4237 343.4 92 62770 1982 58588 109.6219 4302.665 387 100 64562 1983 60275 104.9436 4334.283 477.6 105 63735 1984 59447 101.7132 4353.542 491.9 111 63227 1985 62067 101.4262 4346.255 526.6 118 66778 1986 66040 102.8296 4345.154 564 121 71270 1987 70904 104.7489 4405.188 651.2 125 77855 1988 76682 114.6078 4628.638 739.1 131 85546 1989 80850 98.8582 4774.049 899.6 137 88124 1990 86632 103.0892 5004.985 1002.2 142 91266 1991 92997 109.3483 5466.279 1181.4 144 95801 1992 96934 111.1008 6086.641 1375.7 147 101639 1993 98703 106.4466 6135.358 1510.2 152 103922 1994 103783 114.487 5947.677 1700.6 156 104844 1995 109170 115.5824 6198.046 2026.6 159 107256 1996 115993 146.0398 6811.24 2577.4 166 111059 1997 122737 128.3882 7951.149 3496.2 174 118729 1998 131176 113.0199 8654.915 4283 178 129034 1999 138948 111.9362 8044.789 4838.9 176 132616 2000 137798 108.2736 8122.711 5160.3 179 132410 2001 132214 96.4759 7673.559 5425.1 168 124250 2002 130119 98.8304 7283.834 5854 165 109126 2003 130297 110.095 4232.969 6280 164 109000 2004 134914 104.4548 4115.123 6859.6 154 120900 2005 148000 107.2932 4040.542 7703 151 139000

四、模型设定 Yt =β0+β1 X1t +β2 X2t +β3 X2t +β4X4t+β5X5t+ Ut Yt ------能源需求总量(万吨煤) X1t -----能源产品价格指数 X2t -----剔除物价的工业总产值(亿元) X3t ----剔除物价的城镇居民家庭人均可支配收入 (元) X4t ----科学研究与综合技术服务业人员数(万人) X5t -----能源生产总量(万吨标准煤) Ut------随机扰动项 β1、β2、β3、β4、β5-----待估参数

五、模型检验 假设模型中随机误差项Ut满足古典假设,运用OLS方法估计模型的参数得如下结果: 表2: Dependent Variable: Y Method: Least Squares Date: 12/20/10 Time: 16:19 Sample: 1981 2005 Included observations: 25 Variable Coefficient Std. Error t-Statistic Prob. C -9312.503 5126.452 -1.816559 0.0851 X1 102.2836 52.30483 1.955529 0.0654 X2 -1.840787 0.497535 -3.699815 0.0015 X3 27.04573 2.213483 12.21863 0.0000 X4 181.1065 60.69616 2.983822 0.0076 X5 0.580178 0.066437 8.732772 0.0000 R-squared 0.995733 Mean dependent var 100096.5 Adjusted R-squared 0.994610 S.D. dependent var 30643.48 S.E. of regression 2249.721 Akaike info criterion 18.48056 Sum squared resid 96163651 Schwarz criterion 18.77309 Log likelihood -225.0070 F-statistic 886.7535 Durbin-Watson stat 1.617818 Prob(F-statistic) 0.000000

回归方程为: Y=-9312.503+102.2836*X1-1.840787*X2+27.04573*X3+181.1065*X4+0.580178*X5 (5126.452)(52.30483)(0.497535) (2.213483)(60.69616) (0.066437)

t=(-1.816559) (1.955529)(-3.699815) (12.21863)(2.983822)(8.732772) R2=0.995733 F=886.7535

一、经济意义检验 由回归估计结果可以看出,城镇居民家庭人均可支配收入、科学研究与综合技术服务业人员数、能源生产总量与能源需求总量呈线性正相关,与现实经济理论相符。而能源产品出厂价格指数与能源需求总量呈线性正相关,工业总产值与能源需求总量呈线性负相关,这两点上,不符合经济意义。

二、统计意义检验 从估计的结果可知,可决系数R2=0.995733, F=886.7535,表明模型在整体上拟合地比较理想。系数显著性检验:给定α=0.05,X2、X3、X4、X5的t的P值小于给定的显著性水平,拒绝原假设,接受备择假设,表明工业总产值、城镇居民家庭人均可支配收入、科学研究与综合技术服务业人员数、能源生产总量对能源需求总量有显著性影响;仅有X1的t的P值大于给定的显著性水平,接受原假设,表明能源产品出厂价格指数对能源需求总量影响不显著。

相关文档
最新文档