太阳能电池系列之硅片质量引起的组件早期衰减
光伏组件光衰减现象及影响因素有哪些

光伏组件光衰减现象及影响因素有哪些1.0绪论太阳能组件制作完成之后,进行功率测试时,组件功率正常,但是客户接收到组件,安装并运营时发现功率衰减较大。
这种现象大多是由于电池片的光致衰减引起的。
本文将系统、简要的阐述光致衰减现象。
2.0光致衰减光伏组件光致衰减可分为两个阶段:初始光致衰减和老化衰减。
1.初始光致衰减初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定。
导致这一现象发生的主要原因是P型(掺硼)晶体硅片中的硼氧复合体降低了少子寿命。
通过改变P型掺杂剂,用稼代替硼能有效的减小光致衰减;或者对电池片进行预光照处理,是电池的初始光致衰减发生在组件制造之前,光伏组件的初始光致衰减就能控制在一个很小的范围之内,同时也提高组件的输出稳定性。
光致衰减更多的与电池片厂家有关,对于组件厂商的意义在于选择高质量的电池片来降低光致衰减带来的影响。
2.老化衰减老化衰减是指在长期使用中出现的极缓慢的功率下降,产生的主要原因与电池缓慢衰减有关,也与封装材料的性能退化有关。
其中紫外光的照射时导致组件主材性能退化的主要原因。
紫外线的长期照射,使得EV A及背板(TPE结构)发生老化黄变现象,导致组件透光率下降,进而引起功率下降。
这就要求组件厂商在选择EV A及背板时,必须严格把关,所选材料在耐老化性能方面必须非常优秀,以减小因辅材老化而引起组件功率衰减。
3.0光致衰减机理P型(掺硼)晶体硅太阳电池的早期光致衰减现象是在30多年前观察到的,随后人们对此进行了大量的科学研究。
特别是最近几年,科学研究发现它与硅片中的硼氧浓度有关,大家基本一致的看法是光照或电流注人导致硅片中的硼和氧形成硼氧复合体,从而使少子寿命降低,但经过退火处理,少子寿命又可被恢复,其可能的反应为:据文献报道,含有硼和氧的硅片经过光照后其少子寿命会出现不同程度的衰减,硅片中的硼、氧含量越大,在光照或电流注人条件下在其体内产生的硼氧复合体越多,其少子寿命降低的幅度就越大。
硅基太阳能电池性能衰减原因分析

硅基太阳能电池性能衰减原因分析近年来,随着环境保护和可再生能源的重要性逐渐凸显,太阳能电池作为一种清洁能源的代表,受到了广泛关注。
然而,随着使用时间的增加,硅基太阳能电池的性能往往会出现衰减现象。
本文将对硅基太阳能电池性能衰减的原因进行分析。
首先,硅基太阳能电池性能衰减的主要原因之一是光照条件的变化。
太阳能电池是利用光照产生电能的,而光照条件的变化会直接影响太阳能电池的输出功率。
在实际应用中,光照强度和角度会随着季节、天气等因素而发生变化,这就导致了太阳能电池的输出功率也会有所波动。
特别是在阴雨天气或冬季光照较弱的时候,太阳能电池的性能衰减现象更加明显。
其次,硅基太阳能电池性能衰减的原因还包括温度的影响。
太阳能电池在工作过程中会产生热量,而温度的升高会导致太阳能电池的效率下降。
研究表明,太阳能电池的温度升高每摄氏度1度,其输出功率会下降约0.5%。
因此,在高温环境下,太阳能电池的性能衰减更加明显。
此外,温度的变化还会导致太阳能电池的寿命缩短,进一步影响其性能。
第三,硅基太阳能电池性能衰减的原因还与电池内部结构的变化有关。
太阳能电池的核心是由硅材料组成的,而硅材料在长时间的使用过程中会发生一些变化,如晶格缺陷、杂质积聚等。
这些变化会导致太阳能电池的光电转换效率下降,从而使其性能衰减。
此外,电池内部还可能出现接触不良、电极腐蚀等问题,进一步影响太阳能电池的性能。
最后,硅基太阳能电池性能衰减的原因还与外部环境的影响有关。
例如,太阳能电池的表面可能会受到污染物的覆盖,如尘土、树叶等,这会降低太阳能电池的吸光能力,从而影响其性能。
此外,太阳能电池还可能受到风雨、冰雹等恶劣天气的侵蚀,导致电池表面损坏,进一步影响其性能。
综上所述,硅基太阳能电池的性能衰减是由多种因素共同作用的结果。
光照条件和温度的变化、电池内部结构的变化以及外部环境的影响都会对太阳能电池的性能产生影响。
为了提高太阳能电池的稳定性和寿命,需要在制造和使用过程中加强对这些因素的控制和管理,以减少性能衰减的发生。
晶体硅太阳能电池光致衰减效应及其应对措施

晶体硅太阳能电池光致衰减效应及其应对措施晶体硅太阳能电池是目前应用最广泛的太阳能电池技术之一,具有高效转换率、稳定性好等优点。
然而,长时间的工作会导致晶体硅太阳能电池出现光致衰减效应,从而降低其光电转换效率。
本文将重点介绍晶体硅太阳能电池光致衰减效应的原因和机制,并探讨一些应对措施。
晶体硅太阳能电池光致衰减效应是指太阳能电池在长时间工作后,其光电转换效率逐渐下降的现象。
这主要是由于晶体硅材料在光照条件下发生一系列的物理和化学变化所导致的。
光致衰减效应是晶体硅太阳能电池不可避免的现象,但可以通过一些措施来减缓其发展速度,提高电池的使用寿命。
光致衰减效应的主要原因之一是晶体硅材料中的氧原子与硅原子形成的氧化物缺陷。
这些缺陷会吸收光子能量,并损失在光电转换过程中产生的电子能量。
此外,晶体硅材料中的杂质和缺陷也会对光致衰减效应起到一定的影响。
这些杂质和缺陷会引起电子的重新组合和能量损失,从而降低电池的效率。
针对晶体硅太阳能电池光致衰减效应,目前有一些应对措施可以采取。
首先,可以通过选择合适的材料来减少光致衰减效应。
例如,可以选择掺杂有抗衰减效应的杂质的晶体硅材料,如锗、磷等。
这些杂质可以降低氧化物缺陷的形成和影响,从而减轻光致衰减效应。
改变电池的结构也是一种有效的减轻光致衰减效应的方法。
例如,可以利用反射层和抗反射涂层来增加光的入射量,提高光电转换效率。
同时,可以采用多层结构或堆叠结构来分散光致衰减效应,减少杂质和缺陷对电池性能的影响。
定期对晶体硅太阳能电池进行清洁和维护也是减轻光致衰减效应的重要措施。
尘埃、污染物等附着在电池表面会减弱光的透过性,影响光电转换效率。
因此,定期清洁电池表面可以保持较高的光吸收和转换效率。
除了上述措施外,研究人员还在开展其他一些应对光致衰减效应的研究。
例如,可以通过控制电池的工作温度和湿度来减轻光致衰减效应。
此外,利用新型材料和工艺技术也是未来的发展方向,可以提高晶体硅太阳能电池的光电转换效率,减轻光致衰减效应。
硅片质量对太阳能电池性能的影响

尚德电力控股有限公司张光春1.引言2007年全球商业化光伏电池市场中,由单晶硅和多晶硅组成的晶体硅太阳能电池的市场份额达%,是光伏市场的绝对主流产品,而且在可见的未来几年内,这种局面不会改变。
1999年-2007年全球商业化光伏电池市场份额硅片作为晶体硅太阳能电池的基础材料,其质量对电池性能具有很重要的影响。
一方面,硅片的内部缺陷和杂质会直接影响电池的效率和稳定性;另一方面,硅片的外观缺陷和表面质量对电池的制造和外观等也具有很重要的影响。
只有通过硅片供应商和电池片制造商的共同努力,不断改善和提高硅片质量,才能更好地为我们的客户提供高质量的电池和组件。
2. 单晶硅片质量对电池性能的影响单晶硅由于其本身内部完整的晶体结构,其电池效率明显高于多晶硅电池。
然而,单晶硅内部杂质和晶体缺陷的存在会严重影响太阳能电池的效率,比如:(a)光照条件下B-O复合体的产生会导致单晶电池的早期光致衰减;(b)内部金属杂质和晶体缺陷(位错等)的存在会成为少数载流子的复合中心,影响其少子寿命,导致电池性能的下降。
2.1少子寿命对电池性能的影响少子寿命是指半导体材料在外界注入(光或电)停止后,少数载流子从最大值衰减到无注入时的初值之间的平均时间。
少子寿命是用于表征材料的重金属沾污及体缺陷的重要参数,少子寿命值越大,相应的材料质量越好。
少子寿命已成为生产线上常规测试的一个参数。
我们选取某供应商某批单晶硅片进行实验,将硅片按不同少子寿命区分后,按正常电池工艺做成电池,其少子寿命和电池效率具有很好的对应关系,如下图所示。
早期光致衰减对电池性能的影响早期光致衰减机理P型掺硼晶体硅太阳电池的早期光致衰减现象最早在30多年前就有相关报道。
大量的科学研究发现它与硅片中的硼氧浓度有关,大家基本一致的看法是光照或电流注入导致硅片中的硼和氧形成硼氧复合体,从而使少子寿命降低,但经过退火处理,少子寿命又可恢复,其反应为:正是由于掺硼单晶硅在光照条件下硼氧复合体的生成,引起少子寿命的下降,最终导致太阳电池和组件功率的下降。
硅片质量对太阳能电池性能的影响1

硅片质量对太阳能电池性能的影响尚德电力控股有限公司张光春1.引言2007年全球商业化光伏电池市场中,由单晶硅和多晶硅组成的晶体硅太阳能电池的市场份额达87.4%,是光伏市场的绝对主流产品,而且在可见的未来几年内,这种局面不会改变。
1999年-2007年全球商业化光伏电池市场份额硅片作为晶体硅太阳能电池的基础材料,其质量对电池性能具有很重要的影响。
一方面,硅片的内部缺陷和杂质会直接影响电池的效率和稳定性;另一方面,硅片的外观缺陷和表面质量对电池的制造和外观等也具有很重要的影响。
只有通过硅片供应商和电池片制造商的共同努力,不断改善和提高硅片质量,才能更好地为我们的客户提供高质量的电池和组件。
2. 单晶硅片质量对电池性能的影响单晶硅由于其本身内部完整的晶体结构,其电池效率明显高于多晶硅电池。
然而,单晶硅内部杂质和晶体缺陷的存在会严重影响太阳能电池的效率,比如:(a)光照条件下B-O复合体的产生会导致单晶电池的早期光致衰减;(b)内部金属杂质和晶体缺陷(位错等)的存在会成为少数载流子的复合中心,影响其少子寿命,导致电池性能的下降。
2.1少子寿命对电池性能的影响少子寿命是指半导体材料在外界注入(光或电)停止后,少数载流子从最大值衰减到无注入时的初值之间的平均时间。
少子寿命是用于表征材料的重金属沾污及体缺陷的重要参数,少子寿命值越大,相应的材料质量越好。
少子寿命已成为生产线上常规测试的一个参数。
我们选取某供应商某批单晶硅片进行实验,将硅片按不同少子寿命区分后,按正常电池工艺做成电池,其少子寿命和电池效率具有很好的对应关系,如下图所示。
2.2 早期光致衰减对电池性能的影响早期光致衰减机理P型掺硼晶体硅太阳电池的早期光致衰减现象最早在30多年前就有相关报道。
大量的科学研究发现它与硅片中的硼氧浓度有关,大家基本一致的看法是光照或电流注入导致硅片中的硼和氧形成硼氧复合体,从而使少子寿命降低,但经过退火处理,少子寿命又可恢复,其反应为:正是由于掺硼单晶硅在光照条件下硼氧复合体的生成,引起少子寿命的下降,最终导致太阳电池和组件功率的下降。
硅片质量对太阳能电池性能的影响

硅片质量对太阳能电池性能的影响尚德电力控股有限公司张光春1.引言2007年全球商业化光伏电池市场中,由单晶硅和多晶硅组成的晶体硅太阳能电池的市场份额达87.4%,是光伏市场的绝对主流产品,而且在可见的未来几年内,这种局面不会改变。
1999年-2007年全球商业化光伏电池市场份额硅片作为晶体硅太阳能电池的基础材料,其质量对电池性能具有很重要的影响。
一方面,硅片的内部缺陷和杂质会直接影响电池的效率和稳定性;另一方面,硅片的外观缺陷和表面质量对电池的制造和外观等也具有很重要的影响。
只有通过硅片供应商和电池片制造商的共同努力,不断改善和提高硅片质量,才能更好地为我们的客户提供高质量的电池和组件。
2. 单晶硅片质量对电池性能的影响单晶硅由于其本身内部完整的晶体结构,其电池效率明显高于多晶硅电池。
然而,单晶硅内部杂质和晶体缺陷的存在会严重影响太阳能电池的效率,比如:(a)光照条件下B-O复合体的产生会导致单晶电池的早期光致衰减;(b)内部金属杂质和晶体缺陷(位错等)的存在会成为少数载流子的复合中心,影响其少子寿命,导致电池性能的下降。
2.1少子寿命对电池性能的影响少子寿命是指半导体材料在外界注入(光或电)停止后,少数载流子从最大值衰减到无注入时的初值之间的平均时间。
少子寿命是用于表征材料的重金属沾污及体缺陷的重要参数,少子寿命值越大,相应的材料质量越好。
少子寿命已成为生产线上常规测试的一个参数。
我们选取某供应商某批单晶硅片进行实验,将硅片按不同少子寿命区分后,按正常电池工艺做成电池,其少子寿命和电池效率具有很好的对应关系,如下图所示。
2.2 早期光致衰减对电池性能的影响早期光致衰减机理P型掺硼晶体硅太阳电池的早期光致衰减现象最早在30多年前就有相关报道。
大量的科学研究发现它与硅片中的硼氧浓度有关,大家基本一致的看法是光照或电流注入导致硅片中的硼和氧形成硼氧复合体,从而使少子寿命降低,但经过退火处理,少子寿命又可恢复,其反应为:正是由于掺硼单晶硅在光照条件下硼氧复合体的生成,引起少子寿命的下降,最终导致太阳电池和组件功率的下降。
晶体硅太阳电池封装损失与组件性能衰退的研究

晶体硅太阳电池封装损失与组件性能衰退的分析
通过理论模型给出了焊接造成损失的一个较为准确的计算方法。 第四章对 SE 晶体硅太阳电池组件的封装和初期衰减的研究,分析了不同
制绒方式的 SE 晶体硅单片组件的封装特性。通过室外的暴晒对 SE 根据接收的 不同的能量来进行性能的测试分析,分析了 SE 组件的衰减特性,最后通过 100 小时 120℃,20 小时 95℃ 、95%湿度,最加速老化做了性能分析。
Above all, in order to improve the performance of PV modules after the solar cells are encapsulated, this paper tests and analyzes the reason of power loss in solar cells encapsulation, especially analyzes selective emitter solar cells’ encapsulated power loss and initial degradation. It also presents methods to improve the encapsulation performance for common silicon solar cells and SE high efficiency. Afterwards, by testing, diagnosing, analyzing 177 PV modules which have been exposed on field for 23 years, a series of precious, firsthand materials, data, degradation phenomenon was collected, the performance of these PV modules, the
组件功率衰减原因及优化措施

多晶硅光伏组件功率衰减的原因分析以及优化措施一、多晶硅光伏组件衰减现象的分类近年来,在新能源理念的大力倡导下,太阳能发电装置逐渐在全世界范围得到推广。
多晶硅太阳能组件由于其价格合理、性能良好而在市场上占有一定的份额。
但是与单晶光伏组件、薄膜光伏组传类织,多晶硅组件在使用过程中同样会产生或多或少的功率衰减现象。
影响多晶硅组件功率衰减的主要因素是什么?又该如何降低这些影响因素呢?多晶硅光伏组件(如图一所示)是由玻璃、EVA、电池片、背板、铝边框、接线盒、硅胶等主材,按照一定的生产工艺进行封装,在一定的光照条件下达到一定输出功率和输出电压的光伏器件。
组件功率的衰减是指随着光照时间的增长,组件输出功率逐渐下降的现象。
其衰减现象可大致分为三类:第一类,由于破坏性因素导致的组件功率骤然衰减,破坏性因素主要指组件在焊接过程中焊接不良、封装工艺存在缺胶现象,或者由于组件在搬运、安装过程中操作不当,甚至组件在使用过程中受到冰雹的猛烈撞击而导致组件内部隐裂、电池片严重破碎等现象;第二类,组件初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定;第三类,组件的老化衰减,即在长期使用中出现的极缓慢的功率下降现象。
二、多晶硅组件功率衰减的原因分析及试验验证1、第二类衰减现象的研究分析第二类衰减的原因分析、试验对比以及优化措施导致这一现象发生的主要原因是P型(掺硼)晶体硅片中的硼氧复合体降低了少子寿命。
含有硼和氧的硅片经过光照后出现不同程度的衰减。
硅片中的硼、氧含量越大,在光照或电流注入条件下产生硼氧复合体越多,少子寿命降低的幅度就越大,引起电池转换效率下降。
(1)试验条件及试验步骤试验的条件:A组采用经过初始光照的电池片,B组采用未经初始光照的电池片,A组和B组使用同样的玻璃、EVA、背板和同样的封装工艺。
生产出的所有组件经红外隐形裂纹检测仅探测,并采用3A级脉冲模拟仪测试组件I-V曲线,确定组件完好无损,各选择5块进行试验,电池片经过初始光照的组件采用"A·x"进行编号,电池片未经始光照的组件采用"B-x"进行编号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:本篇丫丫将探讨硅片质量对太阳能电池性能的影响,主要涉及少子寿命、早期光致衰减、位错对电池性能的影响,以及组件功率下降的原因与解决方式等内容。
一、相关概念
1、少子
少子,即少数载流子,它相对于多子而言。
半导体材料中有电子和空穴两种载流子。
如果在半导体材料中某种载流子占少数,导电中起到次要作用,则称它为少子。
如,在 N型半导体中,空穴是少数载流子,电子是多数载流子;在P型半导体中,空穴是多数载流子,电子是少数载流子。
2、光致衰减
对于硼掺杂的Cz法生长的单晶硅太阳能电池,当它暴露于光照下时,电池性能会衰减,并最终达到一个稳定的效率,这种现象叫作光致衰减。
3、热斑
太阳电池热斑是指太阳电池组件在阳光照射下,由于部分组件受到遮挡无法工作,使得被遮盖的部分升温远远大于未被遮盖部分,致使温度过高出现烧坏的暗斑。
热斑可能导致整个电池组件损坏,造成损失。
因此,需要研究造成热斑的内在原因,从而减小热斑形成的可能性。
太阳电池热斑的形成主要由两个内在因素构成,分别与内阻和太阳电池自身暗电流大小有关。
4、反向电流(reverse current)
反向电流原本是针对二极管提出的一个概念,当二极管反向偏置的时候本来应该是不导通的,没有电流;但是实际在二极管两端加反向电压的时候,会有微弱的电流流过二极管,这个电流就是反向电流。
从反向电流和漏电流都可以判断Si片中杂质含量高低。
5、暗电流(dark current)与暗电流曲线
指无光照条件下,P-N结在不同电压下的电流。
暗电流曲线是指太阳能电池在没有光照下的电压-电流(IV)曲线,测试方法与光电流一样,只是必须完全隔绝光线。
测量暗电流的意义在于表征电池的整流效应。
好的电池应该有比较高的整流比,也就是正向暗电流比反向暗电流高越多越好。
电流的整流效应与电池开路电压有关。
二、少子寿命对电池性能的影响
少子寿命是指半导体材料在外界注入(光或电)停止后,少数载流子从最大值衰减到无注入时的初值之间的平均时间。
少子寿命值越大,相应的材料质量越好。
电池片从线上下来测试的时候,如果是烧结后的测试,在电场的作用下少子会定
向移动,一般少子是由半导体本征激发而产生,暗电流过大会导致开路电压变小,直接导致转换率下降,然而暗电流过小的话,说明少子的量少,少子少说明少子寿命短,在少子被激发出来后很快的被复合掉。
少子寿命由少子的有效质量和散射有关,有效质量是与能带结构决定,一般片子都是固定的,有效质量也是固定的,所以少子寿命主要与散射有关,散射分离子散射,缺陷散射,和晶格散射等,如果片子内部缺陷多,离子多,晶格震动越厉害,散射率越明显,散射率越大,少子寿命大大越低,此外散射还与温度有关,温度越高,内部的微观运动越剧烈,导致散射率变大,少子寿命下降,少子寿命下降直接导致片子的短路电流减小,导致转换率下降,因此通过判断暗电流的大小,我们可以知道片子的基本状况,是好是坏,坏在哪里也就一清二楚了。
三、早期光致衰减对电池性能的影响
1、光伏组件输出功率的衰减的两个阶段
第一个阶段,我们可以把它称作初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定。
导致这一现象发生的主要原因是光照或电流注入导致硅片中的硼和氧形成硼氧复合体,降低了少子寿命。
第二个阶段,我们可以把它称作组件的老化衰减,即在长期使用中出现的极缓慢的功率下降,产生的主要原因与电池缓慢衰减有关,也与封装材料的性能退化有关。
其中第一阶段的早期光致衰减是由硅片质量问题导致的。
2、早期光致衰减的危害
(1)危害
早期光致衰减一方面会引起组件功率在使用的最初几天内发生较大幅度的下降,使标称功率和实际功率不符;另一方面,如果同一组件内各个电池片光致衰减不一致,会造成原本分选时电性能一致的电池片,经过光照后,电性能存在很大偏差,引起组件曲线异常和热斑现象,导致组件早期失效。
热斑电池的温度与周电池的温度相差较大,过热区域可引起EVA加快老化变黄,使该区域透光率下降,从而使热斑进一步恶化,导致组件的早期失效。
(2)如何如何消除或减小热斑
为了防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗,该二极管的作用是当电池片出现热斑效应不能发电时,起旁路作用,让其它电池片所产生的电流从二极管流出,使太阳能发电系统继续发电,不会因为某一片电池片出现问题而产生发电电路不通的情况。
能解决热斑的二极管很多,但目前的关键是选择结温最低的,产生热斑时,很大
的电流将通过二极管,较短时间内,二极管的温度将上升很快,直至超过接线盒内部构件的融化温度,接线盒将被烧毁。
在IEC 61215 第二版中,有二极管发热测试,其方法如下:把组件放在75度烘箱中至热稳定,在二极管中通组件的实际短路电流,热稳定后(例如1h),测量二极管的表面温度,根据以下公式计算实际结温Tj=Tcase + R*U*I其中R 为热阻系数,由二极管厂家给出,Tcase是二极管表面温度(用热电偶测出),U是二极管两端压降(实测值),I为组件短路电流。
计算出的Tj不能超过二极管规格书上的结温范围。
所以,对于这个测试,选择二极管要看以下几个量:电流(大的好)、最大结温(大的好)、热阻(小的好)、压降(小的好)、反向击穿电压(一般40V就远远够了)。
3、解决办法
1)改善硅单晶质量
A.利用磁控直拉硅单晶工艺
此工艺不仅能控制单晶中的氧浓度,也使硅单晶纵向、径向电阻率均匀性得到改善,但需配置磁场设备并提供激磁电源,增加成本和工艺难度;
B.使用掺磷的N型硅片
从目前产业化的丝网印刷P型电池工艺来看,N型电池在转换效率和制造成本上还没有优势,一些关键工艺有待解决
C.用稼代替硼作为P型掺杂剂
由于稼在硅中的分凝系数为0.008,远小于硼的0.8,这使得掺稼单晶硅棒的电阻率分布相对掺硼单晶较宽,但对于市场上单晶硅电池要求电阻率为0.5-6欧姆的规格范围,这并不是个问题,现有电池工艺完全可以接受。
采用稼替代硼作为P型掺杂剂的优势主要有:
①对现有拉晶设备和工艺无任何影响,仅需将硼掺杂剂改为稼掺杂剂;
②对现有电池制造工艺无任何影响;
③每50千克硅料仅需掺稼1~2克,成本约为10元
2)电池片光照预衰减
四、位错对电池性能的影响
硅片中存在着极高的位错密度,成为少数载流子的强复合中心,最终导致电池和组件性能的严重下降。
五、太阳能电池生产工艺中每个工序的工艺难点
1、制绒的工艺难点是绒面金字塔要小而均匀,没有手指印,花篮印,色差,发白等现象;
2、扩散是核心工序,难点是方块电阻不均匀,以及PN结的深浅控制(结合硅片
情况);
3、去边要求刻去边上的PN结,对与刻边的控制,刻后漏电流要小;
4、去PSG就是去除表面的磷硅玻璃,腐蚀过后表面清洁,沥水效果好;
5、减反射膜主要是控制膜的厚度(最佳厚度为1/4光波长),以及没有色差;
6、印刷可以说是比较重要的环节,背面铝浆的厚度,栅线的宽度和高度,要求浆料的粘稠度要和网板匹配起来,和硅片的具体情况匹配才能达到比较好的效果。
7、烧结要重要的是温度以及履带的速度控制,这要根据硅片以及浆料的具体情况调整到比较好的范围。