第10讲 数据的统计分析与描述
统计学之数据的描述

数据的特征
任何一组计量数据都有两个重要的特征:
中心值
(典型值)
围绕中心值
(典型值)的变
动幅度
数据的标记
如果我们进行一系列的观察,得到 个数,我们可以使用简单的记号标注数据,这样对数据统计与分析大有帮助。
我们可以将数据按如下方式进行标注:
1 , 2 , 3 , … …
标准差:s = 2 =
1
σ=1
−1
2ቤተ መጻሕፍቲ ባይዱ
2
− ҧ
2
和的特性
ҧ
平均数和标准差适合概括没有异类点、完全对称的直方图。如右图所示。
5
8
9
13
200
中位数为:9,平均数为:47
此时用平均数不能体现总
体毕业生的薪资水平,扭
曲了毕业生的平均薪资
异类点(极
端数值)
变动度的测量
变动度是描述数据偏离中心值有多远的量。
例如:调查学校7个学生的体重,恰好都是145斤,那
如果学生重量轻重不一,如下图所示。
就根本没有变动度,用直方图表示会很窄。如下图所
举例:随机调查某大学毕业生中5个人薪资水平,数据如下:
学号
B0034
A0003
B0020
D1005
C0096
薪资(K)
5
8
9
13
10
中位数为:9,平均数为:9
如果随机调查某大学毕业生中5个人薪资水平,其中C0096号同学薪资为200K,则:
学号
B0034
A0003
B0020
D1005
C0096
薪资(K)
示。
直方图将会变宽
第十章 数据的收集、整理与描述 全章教案

第十章数据的收集、整理与描述统计调查(1)学习目标:1.了解全面调查的概念。
2。
会设计简单的调查问卷,收集数据。
3。
掌握划记法,会用表格整理数据。
4。
会画扇形统计图,能用统计图描述数据;5、经历统计调查的一般过程,体验统计与生活的关系.重点、难点:全面调查的过程(数据的收集、整理、描述)是重点;绘制扇形统计图是难点。
导学流程:一、问题导入在日常生活中,我们可能遇到下面一些问题:[投影1](1)中央电视台《青年歌手大奖赛》的收视情况怎样?[投影2](2)班级里同学出生主要集中在哪一年?[投影3](3)本年度最受欢迎的影片是哪几部?要解决这些问题,需要进行统计调查。
二、数据的收集看下面的问题:[投影4]问题1 现在我们如果要了解全班同学对新闻、体育、动画、娱乐四类电视节目的喜爱情况,你怎样才能知道结果?举手表决、问卷调查等。
问卷调查是一种比较常用的调查方式,采用这种方式要设计好调查问卷。
你认为设计调查问卷应包括哪些内容?问卷设计的内容应包括调查中所提的问题、答案选项以及要求等。
就上面的问题我们可以设计如下的调查问卷:[投影5]如果想了解男、女生喜爱节目的差异,问卷中还应该包含什么内容?应加“男□女□(打勾)”这一项.问卷设计好后,请每位同学填写,然后收集起来。
例如,调查的结果是:[投影6]D C A D B C A D C DC D A B D D B C D BD B D C D B D C D BA B B D D D C D B D注意:用字母代替节目的类型,可方便统计.三、数据的整理从上面的数据中你容易看出全班同学喜爱各类节目的情况吗?为什么?不容易。
因为这些数据杂乱无章,不容易发现其中的规律。
为了更清楚地了解数据所蕴含的规律,需要对数据进行整理。
你认为应该怎样整理我们收集到的数据?划“正”字。
这就是所谓的划记法。
下面我们利用下表整理数据。
全班同学最喜爱节目的人数统计表:上表可以清楚地反映全班同学喜爱各类节目的情况。
初中数学 人教版 第十章 数据的收集、整理与描述 章节小练

人教版数学七下数据的收集、整理与描述章节小练一、单选题1.下列统计图表中,能够直观地反映各部分占总体的百分比的是()A. 条形统计图B. 扇形统计图C. 折线统计图D. 频率分布直方图2.为了了解某县八年级1985名学生的身高情况,从中抽查了200名学生的身高进行统计分析,下面四个判断正确的是()A. 1985名学生的全体是总体B. 从中抽取的200名学生的身高是总体的一个样本C. 每名学生是个体D. 样本容量是19853.下列调查中,适合用全面调查方式的是()A.了解某班学生的身高情况B.了解一批灯泡的使用寿命C.了解目前中学生的睡眠情况D.了解一批炮弹的杀伤半径4.下列调查中,最适合采用全面调查方式的是()A.调查重庆市中学生的视力情况B.调查长江某段流域的水质情况C.调查“嫦娥五号”月球探测器零部件的合格情况D.调查某品牌汽车的抗撞击情况5.下列采用的调查方式中,合适的是()A.为了解嘉陵江的水质情况,采用抽样调查的方式B.某鞋厂检测生产的鞋底能承受的弯折次数,采用普查的方式C.某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式D.教育部为了解中小学生的视力情况,采用普查的方式6.下列调查中,适宜采用全面调查方式的是()A.调查一批新型节能灯炮的使用寿命B.调查长江流域的水污染情况C.调查广州市初中学生的视力情况D.为保证“神七”的成功发射,对其零部件进行检查7.如图是华联商厦某个月甲、乙、丙三种品牌彩电的销售量统计图,则甲、丙两种品牌彩电该月的销售量之和为()A. 50台B. 65台C. 75台D. 95台8.下列调查中,适宜采用全面调查方式的是()A. 一批节能灯管使用寿命的调查B. 对量子科学通信卫星上某种零部件的调查C. 检测武汉市的空气质量D. 对《中国诗词大会》节目收视率的调查9.以下调查中,适宜全面调查的是()A. 调查某批次汽车的抗撞击能力B. 调查某班学生的视力情况C. 调查春节联欢晚会的收视率D. 了解武汉市中学生课外阅读情况10.下列调查中,适宜采用全面调查方式的是()A. 对长江中下游流域水质情况的调查B. 调查某中学七年级(2)班学生视力情况.C. 了解一批导弹的杀伤半径D. 了解一批手机电池的使用寿命.11.一个瓶子中装有一些豆子,从中取出m粒豆子做上标记后放回瓶中并混合均匀,接着取出p粒豆子,数出其中有n粒带有记号的豆子,则估计这袋豆子的粒数约为()A. mpn B.mnp C.npm D.pmn12.一个样本容量为60 的样本,最大值是128,最小值是52,取组距为10,则可以分为()A. 8组B. 7组C. 6 组D. 5组13.下列调查中,适合用全面调查方式的是()A. 对全国中学生心理健康现状的调查B. 对某航班旅客上飞机前的安检C. 了解一批签字笔的使用寿命D. 对冷饮市场上冰淇淋质量情况的调查14.下列调查方式合适的是()A. 为了解全国中学生的视力状况,采用普查的方式B. 为了解某款新型笔记本电脑的使用寿命,采用普查的方式C. 调查全省七年级学生对新型冠状病毒传播途径的知晓率,采用抽样调查的方式D. 对“天问一号”火星探测器零部件的检查,采用抽样调查的方式15.一次跳远比赛中,成绩在4.05米以上的有8人,频率为0.4,则参加比赛的共有()A. 40人B. 30人C. 20人D. 10人二、填空题16.垃圾分类己成新风尚,为增强学生对垃圾分类知识的了解,某学校设置了:非常了解、了解、基本了解、不了解四个选项,随机抽查了部分学牛,要求每名学生都只选其中的一项,并将抽查结果绘制成如下统计图(不完整)根据统计图中的信息,若该校共有1000名学生参与调查,根据抽查结果,则该校学生对垃圾分类知识的了解程度是“非常了解”和“了解”的学生共有人17.某初级中学坚持开展阳光体育活动,七年级至九年级每学期均进行体育技能测试.其中A 班甲、乙两位同学6个学期的投篮技能测试成绩(投篮命中个数)折线图如图所示.为参加学校举行的毕业篮球友谊赛,A班需从甲、乙两位同学中选1人进入班球队,从两人成绩的稳定性考虑,请你决策A班应该选择的同学是 .18.希望中学制作了学生选择棋类、武术、摄影、绘画四门校本课程情况的扇形统计图.该校有1200名学生,从图中可以看出选择绘画的学生约为人.19.某校共有1000名学生.为了解学生的中长跑成绩分布情况,随机抽取100名学生的中长跑成绩,画出条形统计图,如图.根据所学的统计知识可估计该校中长跑成绩优秀的学生人数是 .20.杂交水稻之父袁隆平为我国粮食安全和世界粮食安全做出了巨大的贡献.他和他的团队为了考察某种杂交水稻穗长的分布情况,在一块试验田里随机抽取了100个谷穗作为样本,测得它们的长度(单位:cm),并对样本数据适当分组后,列出了如下频数分布表由此可算出这块试验田里谷穗长在5.5≤x<7范围内的谷穗所占的百分比为.三、综合题21.春宁中学开展以“我最喜欢的冰雪运动项目”为主题的调查活动,围绕“在冰球、冰壹、短道速滑、高山滑雪四种冰雪运动项目中,你最喜欢哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢短道速滑的学生人数占所调查人数的40%.请你根据图中提供的信息解答下列问题:(1).在这次调查中,一共抽取了多少名学生?(2).请通过计算补全条形统计图;(3).若春宁中学共有1500名学生,请你估计该中学最喜欢高山滑雪的学生共有多少名.22.某校积极开展“大课间”活动,共开设了跳绳、足球、篮球、踢键子四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下不完整的统计图,请根据图中信息解答下列问题.(1).求本次被调查的学生人数;(2).通过计算补全条形统计图;(3).该校有1000名学生,请估计全校最喜爱足球的人数为多少人?23.为庆祝建党100周年,某学校组织党建知识竞赛,随机抽取部分同学的成绩进行统计,制作如下频数分布表和频数分布直方图请根据图表中提供的信息,解答下列问题:党建知识竞赛成绩频数分布表(1).该校随机抽取了多少名学生成绩进行统计?(2).求m,n的值,并补全频数分布直方图;(3).若该校学生共有1000人,请估计该校分数在100≤x<120的学生有多少人?答案部分一、单选题1. B2. B3. A4. C5. A6. D7. C8. B9. B10. B11. A12. A13. B14. C15. C二、填空题16. 70017. 甲18. 12019. 27020. 70%三、综合题21. (1)解:24÷40%=60(名),答:在这次调查中,一共抽取了60名学生;(2)解:喜欢冰壶项目的学生有:60-16-12-24=8(名),补全统计图如下:(3)解:1500×1260=300(名),答:该中学最喜欢高山滑雪的学生共有300名.22. (1)解:由题意可得:调查的学生人数=10÷25%=40,答:本次被调查的学生人数为40人;(2)解:由题意可得:足球的人数=40﹣15﹣2﹣10=13,补全统计图如图所示,(3)解:由题意可得:喜爱足球的人数= 1000×1340=325人,答:估计全校最喜爱足球的人数为325人.23. (1)解:6÷0.15=40名(2)解:m=8÷40=0.2n=40×0.3=12作图如下(3)解:1000×(0.2+0.15)=350人答:估计该校分数在100≤x<120的学生有350人解析部分一、单选题1. B【解析】【解答】解:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频率分布直方图,清楚显示在各个不同区间内取值,各组频率分布情况,易于显示各组之间频率的差别,根据统计图各自的特点,扇形统计图表示的是部分在总体中所占的百分比.故答案为:B.【分析】根据扇形统计图表示的是部分在总体中所占的百分比,由此可得答案.2. B【解析】【解答】解:A、1985名学生的身高情况是总体,故原说法错误,此选项不符合题意;B、从中抽取的200名学生的身高是总体的一个样本,故原说法正确,此选项符合题意;C、每名学生的身高情况是个体,故原说法错误,此选项不符合题意;D、样本容量是200,故原说法错误,此选项不符合题意.故答案为:B.【分析】根据总体:所要考察的对象的全体;个体:组成总体的每一个考察对象;样本:从总体中取出的一部分个体;样本容量:一个样本包括的个体的数量,由此对各选项逐一判断.3. A【解析】【解答】解:A.了解某班学生的身高情况,适合全面调查;B.了解一批灯泡的使用寿命,适合抽样调查;C.了解目前中学生的睡眠情况,适合抽样调查;D.了解一批炮弹的杀伤半径,适合抽样调查;故答案为:A.【分析】全面调查是对调查对象中的所有个体单位加以调查,要求数据不多,花费时间和人力、物力和费用不多,抽样调查是从研究的总体中按随机原则抽取部分样本单位进行调查。
10:数据统计与分析 gbb

计算众数是有一定条件的 只有在总体单位数较多,巳有明显集中趋势的资料中 才能计算众数。如果总体单位少,或总体单位虽多, 但无明显集中趋势,这种资料不适宜计算众数;如果 总体单位足够多,而且也有集中趋势,但最多次数的 标志值不是一个而是两个或多个,这时要检查总体单 位是否属于同一类型,考虑总体单位的同质性问题, 此时往往要重新分组后才能找出众数。 利用众数表示总体中各单位数量指标的集中趋势,简 单容易,可以消除极端值。
顺序数据的整理
(可计算的指标)
1. 累积频数(cumulative frequencies):各类别频 数的逐级累加 2. 累积频率(cumulative percentages):各类别 频率(百分比)的逐级累加
怎么分析数值性的数据?
Organizing Numerical Data
变量变换: 将身高转化成一个新变量(组段) Transform-recode-into different variables(身 高-组段)--change-old and new-old value (range)-new value (value)-old-new—add— continue (可以试用不同的分组方法,例如“5‖―2‖) 产生新变量(组段)
編碼或過錄(coding):
文字資料的過錄
步驟一:分类与計量 步驟二:虚拟化变量(dummy variable) 虚拟化变量
文字转数字 类别转连续 解释上的困难 编码的瑕疵与困難度 分析方法的问题
虚拟化的问题
編碼簿(Codebook)
功能
(必考题)初中七年级数学下册第十单元《数据的收集整理与描述》习题(答案解析)

一、选择题1.为了调查某校学生的视力情况,在全校的1000名学生中随机抽取了100名学生,下列说法正确的是()A.此次调查属于全面调查B.样本容量是100C.1000名学生是总体D.被抽取的每一名学生称为个体B解析:B【分析】根据全面调查与随机抽样调查、样本容量、总体、个体的定义逐项判断即可得.【详解】A、此次调查属于随机抽样调查,此项错误;B、样本容量是100,此项正确;C、1000名学生的视力是总体,此项错误;D、被抽取的每一名学生的视力称为个体,此项错误;故选:B.【点睛】本题考查了全面调查与随机抽样调查、样本容量、总体、个体,熟练掌握统计调查的相关概念是解题关键.2.某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是()A.实际问题→收集数据→表示数据→整理数据→统计分析合理决策B.实际问题→表示数据→收集数据→整理数据→统计分析合理决策C.实际问题→收集数据→整理数据→表示数据→统计分析合理决策D.实际问题→整理数据→收集数据→表示数据→统计分析合理决策C解析:C【解析】统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据,故选C.3.学校体育室里有6个箱子,分别装有篮球和足球(不混装),数量分别是8,9,16,20,22,27,体育课上,某班体育委员拿走了一箱篮球,在剩下的五箱球中,足球的数量是篮球的2倍,则这六箱球中,篮球有()箱.A.2 B.3 C.4 D.5B解析:B【分析】先计算出这些水果的总质量,再根据剩下的足球与篮球的数量关系,通过推理判断出拿走的篮球的个数,从而计算出剩余篮球的个数.【详解】解:∵8+9+16+20+22+27=102(个)根据题意,在剩下的五箱球中,足球的数量是篮球的2倍,∴剩下的五箱球中,篮球和足球的总个数是3的倍数,由于102是3的倍数,所以拿走的篮球个数也是3的倍数,只有9和27符合要求,假设拿走的篮球的个数是9个,则(102-9)÷3=31,剩下的篮球是31个,由于剩下的五个数中,没有哪两个数的和是31个,故拿走的篮球的个数不是9个,假设拿走的篮球的个数是27个,则(102-27)÷3=25,剩下的篮球是25个,只有9+16=25,所以剩下2箱篮球,故这六箱球中,篮球有3箱,故答案为:B.【点睛】本题主要考查的是学生能否通过初步的分析、比较、推理得出正确的结论,培养学生有顺序、全面思考问题的意识.4.下列调查中:①检测保定的空气质量;②了解《奔跑吧,兄弟》节日收视率的情况;③保证“神舟9号“成功发射,对其零部件进行检查;④调查某班50名同学的视力情况;⑤了解一沓钞票中有没有假钞其中通合采用抽样调查的是()A.①②③B.①②C.①③⑤D.②④B解析:B【解析】根据全面调查和抽样调查的定义可知:①②可进行抽样调查,③④⑤可进行全面调查,故选B.5.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.6B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.6.下列调查中,适宜采用全面调查方式的是()A.了解全国中学生的视力情况B.调查某批次日光灯的使用寿命C.调查市场上矿泉水的质量情况D.调查某校九年级一班50名同学的身高情况D解析:D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.了解全国中学生的视力情况的调查适宜采用抽样调查方式;B.调查某批次日光灯的使用寿命的调查适宜采用抽样调查方式;C.调查市场上矿泉水的质量情况的调查适宜采用抽样调查方式;D.调查某校九年级一班50名同学的身高情况适宜采用全面调查方式;故选:D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.以下调查中,适合用抽样调查的是()A.了解我校初一(1)班学生的视力情况B.企业招聘,对应聘人员进行面试C.检测武汉市的空气质量D.了解北斗导航卫星的设备零件的质量情况C解析:C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、了解我校初一(1)班学生的视力情况,必须准确,故适合普查;B、企业招聘,对应聘人员进行面试,必须准确,故适合普查;C、检测武汉市的空气质量,适合抽样调查;D、了解北斗导航卫星的设备零件的质量情况,必须准确,故适合普查.故选:C.【点睛】此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.8.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是()A.个体B.总体C.样本容量D.总体的样本C解析:C【分析】根据总体:所要考察的对象的全体叫做总体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量可得答案.【详解】为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是样本容量,故选C.【点睛】此题主要考查了总体、个体、样本、样本容量,关键是掌握定义.9.去年某校有1 500人参加中考,为了了解他们的数学成绩,从中抽取200名考生的数学成绩,其中有60名考生达到优秀,那么该校考生达到优秀的人数约有()A.400名B.450名C.475名D.500名B解析:B【分析】根据已知求出该校考生的优秀率,再根据该校的总人数,即可求出答案.【详解】∵抽取200名考生的数学成绩,其中有60名考生达到优秀,∴该校考生的优秀率是:60×100%=30%,200∴该校达到优秀的考生约有:1500×30%=450(名);故选B.【点睛】此题考查了用样本估计总体,关键是根据样本求出优秀率,运用了样本估计总体的思想.10.下列调查中,适合用全面调查方式的是()A.了解一批iPad的使用寿命B.了解电视栏目《朗读者》的收视率C.疫情期间,了解全体师生入校时的体温情况D.了解滇池野生小剑鱼的数量C解析:C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】A、了解一批iPad的使用寿命适合用抽样调查,故本选项不符合题意;B、了解电视栏目《朗读者》的收视率适合抽样调查,故本选项不符合题意;C、疫情期间,了解全体师生入校时的体温情况适合用全面调查方式,故本选项符合题意;D、了解滇池野生小剑鱼的数量适合用抽样调查,故本选项不符合题意;故选:C.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题11.为提高服务质量,学校食堂对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序:①绘制扇形统计图;②收集最受学生欢迎菜品的数据;③利用扇形统计图分析出最受学生欢迎的菜品;④整理所收集的数据.请按正确的调查统计顺序重新排序(只填番号):_________.②④①③【分析】根据统计的一般顺序排列即可统计的一般步骤:一般要经过收集数据整理数据绘制统计图表分析图表得出结论【详解】统计的一般步骤:一般要经过收集数据整理数据绘制统计图表分析图表得出结论故答案为解析:②④①③【分析】根据统计的一般顺序排列即可,统计的一般步骤:一般要经过收集数据,整理数据,绘制统计图表,分析图表得出结论,【详解】统计的一般步骤:一般要经过收集数据,整理数据,绘制统计图表,分析图表得出结论,故答案为:②④①③.【点睛】本题考查统计的一般步骤,一般要经过收集数据,整理数据,绘制统计图表,分析图表得出结论.12.有效的垃圾分类,可以减少污染、保护地球上的资源.为了更好地开展垃圾分类工作,某社区居委会对本社区居民掌握垃圾分类知识的情况进行调查.从中随机抽取部分居民进行垃圾分类知识测试,并把测试成绩分为A,B,C,D四个等次,绘制成如图所示的两幅不完整的统计图.下面有四个推断:①本次的调查方式是抽样调查,样本容量是40;②扇形统计图中,表示C 等次的扇形的圆心角的度数为72°;③测试成绩为D 等次的居民人数占参测总人数的10%;④测试成绩为A 或B 等次的居民人数共30人.所有合理推断的序号是______.①②④【分析】根据扇形统计图中A 等级对应的百分比为条形统计图中读取其人数为12人可得样本容量;利用C 等级的人数占样本容量的比例可得其圆心角度数;测试成绩为D 等次的居民人数占参测总人数的百分比为求解即解析:①②④【分析】根据扇形统计图中A 等级对应的百分比为30%,条形统计图中读取其人数为12人,可得样本容量;利用C 等级的人数占样本容量的比例,可得其圆心角度数;测试成绩为D 等次的居民人数占参测总人数的百分比为81304540-%-%-⨯100%,求解即可;测试成绩为A 或B 等次的居民人数共()403045⨯%+%,求解即可.【详解】解:①样本容量为1230%40÷=,故①正确;②表示C 等次的扇形的圆心角的度数为83607240⨯︒=︒,故②正确; ③测试成绩为D 等次的居民人数占参测总人数的百分比为81304540-%-%-⨯100%=5%,故③错误; ④测试成绩为A 或B 等次的居民人数共()40304530⨯%+%=(人),故④正确; 故答案为:①②④.【点睛】本题考查扇形统计图与条形统计图信息关联,读取两个统计图中相关信息是解题的关键. 13.已知某组数据的频数为49,频率为0.7,则样本容量为_______70【分析】根据即可求解【详解】解:样本容量为故答案为:70【点睛】本题考查频数与频率掌握是解题的关键解析:70【分析】 根据=频数频率总数即可求解. 【详解】 解:样本容量为49=700.7, 故答案为:70.【点睛】本题考查频数与频率,掌握 频数频率总数是解题的关键.14.某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄分布统计图和当地90后从事互联网行业岗位分布统计图:互联网行业从业人员年龄分布统计图 90后从事互联网行业岗位分布图对于以下四种说法,你认为正确的是_____ (写出全部正确说法的序号).①在当地互联网行业从业人员中,90后人数占总人数的一半以上②在当地互联网行业从业人员中,80前人数占总人数的13%③在当地互联网行业中,从事技术岗位的90后人数超过总人数的20%④在当地互联网行业中,从事设计岗位的90后人数比80前人数少①③【分析】观察比较扇形统计图和条形统计图获取相关信息然后再进行分析即可【详解】解:①从扇形统计图中可发现互联网行业从业人员中90后占56占一半以上即①正确;②互联网行业中从事技术岗位的80前人数占解析:①③【分析】观察、比较扇形统计图和条形统计图获取相关信息,然后再进行分析即可【详解】解:①从扇形统计图中可发现互联网行业从业人员中90后占56%,占一半以上,即①正确;②互联网行业中从事技术岗位的80前人数占总人数1-56%-41%=3%,故②错误;.③B互联网行业中从事技术岗位的90后人数占总人数的0.56×0.41=0.2296 >0.2,故③正确;④从事设计岗位的90后人数占总人数的0.56×0.08=0.0448>0.03故选④错误;故答案为①③.【点睛】本题主要考查对扇形统计图和条形统计图的观察分析能力,掌握条形统计图和扇形统计图的关联是解答本题的关键.15.某商场2019年1~4月份的投资总额一共是2005万元,商场2019年第一季度每月利润统计图和2019年1~4月份利润率统计图如下(利润率=利润÷投资金额).则商场2019年4月份利润是______万元.120【分析】根据条形统计图可以得出一二三月份的利润再根据折线统计图中各月份的利润率可以求出前三个月的成本进而求出四月份的成本再求出四月份的利润【详解】解:一月份的成本:125÷200=625万元二解析:120【分析】根据条形统计图可以得出一、二、三月份的利润,再根据折线统计图中各月份的利润率,可以求出前三个月的成本,进而求出四月份的成本,再求出四月份的利润.【详解】解:一月份的成本:125÷20.0%=625万元,二月份的成本:120÷30.0%=400万元,三月份的成本:130÷26.0%=500万元,四月份的成本:2005−625−400−500=480万元,四月份的利润为:480×25.0%=120万元,故答案为:120.【点睛】考查条形统计图、折线统计图的意义和制作方法,从统计图中获取数据和数据之间的关系式正确解答的关键.16.为了考察我区七年级学生数学知识与能力测试的成绩,从中抽取30本试卷,每本试卷30份,在这个问题中样本容量是_____________.【分析】样本中调查对象的数量即是样本容量根据定义解答【详解】∵从测试的成绩中抽取本试卷每本试卷份共900份∴这个问题中样本容量是900故答案为:900【点睛】此题考查样本容量的定义熟记定义是解题的关键解析:900【分析】样本中调查对象的数量即是样本容量,根据定义解答.【详解】∵从测试的成绩中,抽取30本试卷,每本试卷30份,共900份,∴这个问题中样本容量是900,故答案为:900.【点睛】此题考查样本容量的定义,熟记定义是解题的关键.17.运算能力是一项重要的数学能力.王老师为帮助学生诊断和改进运算中的问题,对全班学生进行了三次运算测试.下面的气泡图中,描述了其中5位同学的测试成绩.(气泡圆的圆心横、纵坐标分别表示第一次和第二次测试成绩,气泡的大小表示三次成绩的平均分的高低;气泡越大平均分越高.)①在5位同学中,有_____位同学第一次成绩比第二次成绩高;②在甲、乙两位同学中,第三次成绩高的是_____.(填“甲”或“乙”)3;甲【分析】①看横坐标比纵坐标大的有几个同学;②看甲乙两位同学哪个的气泡大【详解】①在5位同学中有3个同学横的横坐标比纵坐标大所以有3位同学第一次成绩比第二次成绩高;故答案为3;②在甲乙两位同学中解析:3;甲【分析】①看横坐标比纵坐标大的有几个同学;②看甲、乙两位同学哪个的气泡大.【详解】①在5位同学中,有3个同学横的横坐标比纵坐标大,所以有3位同学第一次成绩比第二次成绩高;故答案为3;②在甲、乙两位同学中,根据甲、乙两位同学的位置可知第一次和第二次成绩的平均分差不多,而甲的气泡大,表示三次成绩的平均分的高,所以第三次成绩高的是甲.故答案为甲.【点睛】考查了象形统计图,象形统计图是人们描述数据常用的一种方法,其类型较多,其中用所统计的物体的象形图形来表示的一类统计图叫做象形统计图.解题的关键是得出每个象形符号代表什么.18.某校九年级(1)班体育委员对本班50名同学参加球类项目做了统计(每人选一种),绘制成如图所示的统计图,则该班参加乒乓球和羽毛球项目的人数总和为__________.25【分析】用总人数乘以羽毛球和乒乓球所占比例之和即可得【详解】该班参加乒乓球和羽毛球项目的人数总和为50×(+30)=25(人)故答案为:25【点睛】此题主要考查了扇形统计图的应用求出乒乓球人数和解析:25【分析】用总人数乘以羽毛球和乒乓球所占比例之和即可得.【详解】该班参加乒乓球和羽毛球项目的人数总和为50×(72360︒︒+30%)=25(人),故答案为:25.【点睛】此题主要考查了扇形统计图的应用,求出乒乓球人数和羽毛球人数所占比例之和是解本题的关键.19.扇形统计图中,某统计项目所对应的扇形的圆心角度数为72°,则该项目点总体的百分比为_____.20【分析】根据每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比计算即可【详解】解:根据题意知该项目点总体的百分比为×100=20故答案为:20【点睛】考核知识点:扇形图理解扇解析:20%【分析】根据每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比计算即可.【详解】解:根据题意知该项目点总体的百分比为72360×100%=20%,故答案为:20%.【点睛】考核知识点:扇形图.理解扇形图中圆心角的计算公式是关键.20.建设路实验学校为了了解本校学生参加课外体育锻炼情况,随机抽取本校部分学生进行问卷调查统计整理并绘制了如下扇形统计图,如果抽取的学生中,从不参加课外体育锻炼的学生有9人,则抽取的学生中经常参加课外体育锻炼的学生有_____人.24【分析】根据不参加课外锻炼的人数和百分比求出总人数然后求出答案即可【详解】解:根据题意总人数为:(人)经常参加:(人)故答案为:24【点睛】本题考查了扇形统计图用样本估计总体解题的关键是正确求出解析:24【分析】根据不参加课外锻炼的人数和百分比求出总人数,然后求出答案即可.【详解】解:根据题意,总人数为:915%60÷= (人),经常参加:()60115%45%6040%24⨯--=⨯=(人) .故答案为:24.【点睛】本题考查了扇形统计图,用样本估计总体,解题的关键是正确求出抽取的总人数.三、解答题21.某超市双11对销售A 、B 、C 三个品牌服装进行了统计,绘制成图1,图2统计图,根据图中提供的信息,解答下列问题:(1)该日销售这三个品牌服装共_______件;(2)补全条形统计图;(3)求扇形统计图中A 品牌服装对应扇形的圆心角的度数.(4)该超市明年双11对A 、B 、C 三个品牌服装如何进货?请你提出一条合理化建议.解析:(1)2400;(2)补图见解析;(3)60°;(4)A、B、C三个品牌服装大约按1:2:3的比例进货.【分析】(1)用C品牌的销售量除以它所占的百分比即可得销售这三种品牌服装总个数;(2)B品牌的销售量=总销售量﹣1200﹣400,然后补全图形即可;(3)用A品牌服装所占的百分比乘以360度即可;(4)按照三钟品牌的销售比例进货即可.【详解】解:(1)销售这三种品牌服装的总销售量为:1200÷50%=2400(件),故答案为:2400;(2)B品牌的销售量为:2400﹣1200﹣400=800(件),条形统计图如下:(3)A品牌服装在图中所对应的圆心角的度数=360°×4002400=60°;(4)建议:从今年的服装销售情况可以看出,市民对C品牌的服装比较感兴趣,而对A、B品牌特别是A品牌并不看好,因此明年进货C品牌的服装应该多进货,A、B、C三个品牌服装大约按1:2:3的比例进货.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.泉州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,某校从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.每天课外阅读时间()t h频数频率00.5t<≤240.51t<≤360.31 1.5t<≤0.41.52t<≤12b合计a1根据以上信息,回答下列问题:(1)表中a=_________ ,b=_________.(2)请补全频数分布直方图;(3)若该校有学生2000人,试估计该校学生每天课外阅读时间超过1h的人数.解析:(1)120;0.1;(2)见解析;(3)1000人【分析】(1)由0.5<t≤1的频数与频率可得总人数a,再用12除以总人数可得b的值;(2)总人数乘以0.4得出第3组频数,从而补全图形;(3)利用样本估计总体思想可得.【详解】解:(1)a=36÷0.3=120,b=12÷120=0.1,故答案为:120,0.1;(2)1<t≤1.5的人数为120×0.4=48,补全图形如下:(3)估计该校学生每天课外阅读时间超过1小时的人数为2000×(0.4+0.1)=1000(人).∴该校学生每天课外阅读时间超过1h的人数约1000人.【点睛】本题主要考查频率分布直方图和频率分布表的知识和分析问题以及解决问题的能力,解题的关键是能够读懂统计图,并从中读出有关信息.23.农历五月初五是我国传统佳节“端午节”民间历来有吃“粽子”的习俗,某市食品厂为了解市民对去年销售量较好的栗子粽、豆沙粽、红枣粽、蛋黄棕、大肉粽(下分别用A,B,C,D,E表示)这五种不同口味粽子的喜爱情况,在节前对某居民区市民进行了调查,并将调查结果绘制成如下两幅不完整统计图.根据以上统计图解答问题:(1)在本次调查中,适宜________.(填普查或者抽样调查)(2)本次被调查的市民有________人;并补全条形统计图;(3)扇形统计图中蛋黄棕对应的圆心角是________度;(4)若该市有居民约50万人,估计其中喜爱大肉粽的有多少人?解析:(1)抽样调查;(2)200人,统计图见解析;(3)90°;(4)17.5万人【分析】(1)根据普查和抽样调查的特点进行判断;(2)根据D种类的对应的数据可以求得本次调查的市民人数,并计算出喜爱B种类的人数,从而可以将条形统计图补充完整;(3)用蛋黄棕对应的百分比乘以360即可;(4)根据样本估计总体可以计算出喜爱大肉粽的人数.【详解】解:(1)由于人员较多,数量较大,∴适宜抽样调查,故答案为:抽样调查;(2)本次被调查的市民:50÷25%=200(人),B的人数:200-40-10-50-70=30(人),补全统计图如下:(3)扇形统计图中蛋黄棕对应的圆心角为:25%×360=90°;(4)50×70200=17.5万人.答:估计其中喜爱大肉粽的有17.5万人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.人工智能(ArtificialIntelligence),英文缩写为AI它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学.某科学小组抽取了本校50名学生进行问卷调查:您是否了解人工智能(AI)的发展状?A.非常了解;B.了解;C.基本了解;D.不了解,将调查结果制成了如图1所示的条形统计图.(1)回答“基本了解”的学生有______名.请补全条形统计图;(请画在答题卷相对应的图上)(2)若该校共有600名学生,则估计该校全体学生中回答“非常了解”和“了解”的一共有多少人?(3)为进一步提高大家对人工智能的认识,科学小组举办了一次关于人工智能的宣传活动,活动结束后按同样的方式抽取了与第一次样本里相等的学生数进行第二次问卷调查,将调查结果制成了如图2所示的扇形统计图,求前后两次调查中回答“非常了解”的学生人数的增长率.解析:(1)20人,补全图形见解析;(2)240人;(3)14%.【分析】(1)根据各发展状况的人数之和等于总人数即可求得“基本了解”的人数,从而补全条形图;。
数学数据分析统计

数学数据分析统计数据分析是数学中一个重要的分支,它通过对数据的收集、整理、处理和解释,帮助我们揭示现象背后的规律和趋势。
统计学作为数据分析的一种方法论,提供了有效的工具和技术来解决现实世界中的各种问题。
本文将介绍数学数据分析统计的基本概念和应用,以及它们在各个领域中的价值。
一、数据收集数据收集是数据分析的第一步,它包括确定研究目标、制定调查计划、设计问卷和采集数据等环节。
在这个过程中,统计学提供了抽样技术和调查方法,帮助我们从整体中获取样本,以便做出对总体的推断。
例如,我们要评估某一产品的市场份额,可以通过抽取一定数量的消费者进行调查,然后利用统计学方法来估计整个市场的情况。
二、数据整理数据整理是将收集到的原始数据转换为可供分析的格式,包括数据清洗、变量构建、缺失值处理等步骤。
在这个过程中,统计学提供了描述性统计的方法,如计算均值、中位数、标准差等,帮助我们了解数据的基本特征。
此外,统计学还提供了可视化方法,如绘制直方图、散点图和箱线图等,帮助我们展现和交流数据的信息。
三、数据处理数据处理是利用数学模型和统计方法对数据进行分析和推断,从而得出结论或作出预测。
统计学提供了各种方法,如假设检验、回归分析、时间序列分析等,帮助我们研究变量之间的关系和变化趋势。
例如,在医学研究中,统计学可以帮助我们评估某种治疗方法的疗效,并判断其与其他方法的差异是否显著。
四、数据解释数据解释是将分析结果转化为易于理解和接受的形式,并对结论的可靠性进行评估。
在这个过程中,统计学提供了推论统计的方法,如置信区间、样本容量计算等,帮助我们给出结果的不确定性范围和置信水平。
此外,统计学还提供了交叉验证和模型选择的技术,帮助我们验证和改进分析模型,提高结果的准确性和可靠性。
五、数据应用数据分析统计在各个领域中都有广泛的应用。
在经济学领域,统计学可以帮助我们分析经济增长的影响因素、预测市场走势,并做出相应的政策建议。
在社会学领域,统计学可以帮助我们研究人口特征、社会关系和社会变迁等问题。
第十章 数据的收集、整理与描述 复习练习题(二)

数据的收集、整理与描述1.下列调查中,调查方式选择正确的是()A.为了了解100个灯泡的使用寿命,选择全面调查;B.为了了解某公园全年的游客流量,选择全面调查;C.为了了解生产的50枚炮弹的杀伤半径,选择全面调查;D.为了了解一批袋装食品是否有防腐剂,选择全面调查.2.为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生3.某地区有8所高中和22所初中,要了解该地区中学生的视力情况,下列抽样方式获得的数据最能反映该地区中学生视力情况的是( )A.从该地区随机选取一所中学里的学生B.从该地区30所中学生里随机选取800名学生C.从该地区的一所高中和一所初中各选取一个年级的学生D.从该地区的22所初中里随机选取400名学生4.为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是()A、某市八年级学生的肺活量B、从中抽取的500名学生的肺活量C、从中抽取的500名学生D、5005.为了解某市参加中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是()A、32000名学生是总体B、1600名学生的体重是总体的一个样本C、每名学生是总体的一个个体D、以上调査是普查6.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机;B.这批电视机的寿命;C.抽取的100台电视机的寿命;D.100.7.滨州市教育局为了了解实行课改后七年级学生在家的学习时间,应采用的最佳调查方式是()A.对所有学校进行全面调查B.抽取农村和城区部分学校进行调查C.只对一所学校进行调查D.只对城区学校进行调查8.为了了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,这100名学生的身高是()A.总体的一个样本 B.个体C.总体 D.样本容量9.今年我市有9万名初中毕业生参加升学考试,为了了解9万名考生的数学成绩,从中抽取2000名考生数学成绩进行统计分析.在这个问题中总体是()A.9万名考生B.2000名考生C.9万名考生的数学成绩D.2000名考生的数学成绩10.期末统考中,甲校优秀人数占30%,乙校优秀人数占35%,则两校优生人数()A.甲校多于乙校B.乙校多于甲校C..甲、乙校—样多D.无法比较11.某校公布了该校反映各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人。
人教版七年级下册数学第10章 数据的收集、整理与描述 数据的收集与描述

感悟新知
知2-练
2. 设计调查问卷时要注意( C ) ①问题应尽量简明;②不要提问被调查者不愿意回 答的问题;③提问不能涉及提问者的个人观点; ④提供的选择答案要尽可能全面;⑤问卷应简洁. A.①②④⑤B.①③④⑤ C.①②③④⑤D.①⑤
感悟新知
知识点 3 统计图
知3-讲
1.数据的描述方法有: 统计表和统计图两种.其中统计图常见的有: 条形统计图,折实际需要,常要把日常工作中所得到的相互关联的 知2-讲 数据按照一定的要求进行整理、归类,并按照一定的顺 序把数据排列起来,制成表格,这种表格叫做统计表. (2)统计表的作用: ①使数据更直观、清楚,便于分析; ②用数据把研究对象之间的变化规律清楚地表示出来; ③用数据把研究对象之间的差别清楚地表示出来,以便 于人们分析问题和研究问题.
知2-讲
感悟新知
知2-讲
选项
A
B
C
问题
划 记
人 数
百 分 比
划 记
人 数
百 分 比
划 记
人 数
百 分 比
1
2
感悟新知
归纳
知2-讲
1.设计调查问卷要根据调查的需要和要求进行设计,如果考虑不 周,有的数据了解不到,调查的结果就不具备代表性.因此设计 调查问卷时要进行周密的考虑.一份调查问卷的设计包括问题的 设计和答案的设计:(1)问题的设计要求:①表述要清楚;②表述 要简单明了;③一个问题只能包含一个内容;④易于回答.(2)答 案的设计:①答案要不同;②答案要涉及各种情况.
的变化规律.
感悟新知
知2-讲
例3 某厂准备在“六一”儿童节时送一批气球给幼儿园的 小朋友,特地对50名小朋友最喜欢的气球颜色进行调 查,数据如下: 红蓝红黄红蓝绿绿黄红 红蓝红蓝蓝蓝红蓝红绿 黄红红蓝红绿黄红黄红 黄红绿蓝蓝黄蓝红蓝红 绿红红蓝蓝红红黄蓝绿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称为似然函数.
i 的估计值
i 1
. 此估计值叫极大似然估计值 . 函数 的最大值的问题,则
求极大似然估计值的问题,就是求似然函数
L ( 1 , , k )
即
L 0 i 1,2, , k i LnL 0 i 1,2, , k i
1 n k 4. k 阶原点矩:Vk n X i i 1
1 n k U ( X X ) i k 阶中心矩: k n i 1
2016/4/20
5
二、分布函数的近似求法
得
1、整理资料: 把样本值 x1,x2,„,xn 进行分组,先将它们依大小次序排列,
* * * * * x1 x2 xn [ x1 , xn ] 的区间[a,b]内插入一些等分点: .在包含 ' ' a x1' x 2 xn b, 注意要使每一个区间 ( xi' , xi' 1 ] (i=1,2,„,n-1)
2016/4/20 16
假设检验的一般步骤是:
1.根据实际问题提出原假设 H0 与备择假设 H1,即说明需要检验 的假设的具体内容; 2.选择适当的统计量,并在原假设 H0 成立的条件下确定该统计量 的分布; ,并根据统计量 3.按问题的具体要求,选取适当的显著性水平 的分布查表,确定对应于 的临界值.一般 取 0.05,0.01 或 0.10 4.根据样本观测值计算统计量的观测值,并与临界值进行比较,从 而在检验水平 条件下对拒绝或接受原假设 H0 作出判断.
i 为总体 X 参数
的点估计量 .
2016/4/20
11
一、点估计的求法
(一)矩估计法
假设总体分布中共含有 k 个参数,它们往往是一些原 点矩或一些原点矩的函数,例如,数学期望是一阶原点矩, 方差是二阶原点矩与一阶原点矩平方之差等.因此,要想估计 i (i=1,2,„k) 总体的某些参数 ,由于 k 个参数一定可以 表为不超过 k 阶原点矩的函数,很自然就会想到用样本的 r 阶原点矩去估计总体相应的 r 阶原点矩,用样本的一些原点 矩的函数去估计总体的相应的一些原点矩的函数,再将 k 个 参数反解出来,从而求出各个参数的估计值.这就是矩估计法, 它是最简单的一种参数估计法.
极大似然法的想法是: 若抽样的结果得到样本观测值 x1,x2,„,xn, 则我们应当这样选取参数 i 的 值 , 使 这 组 样 本 观 测 值 出 现 的 可 能 性 最 大 . 即 构 造 似 然 函 数 :
ˆ
n
p ( x i , 1 , k )
i 使 L ( 1 , , k ) 达到最大,从而得到参数
7
2、 分布 (n) 若随机变量 X1,X2,„ Xn 相互独 立,都服从标准正态分布 N(0,1) ,则随机 变量
2 2 2 2 服从自由度为 n 的 分布,记为 Y~ (n).
2 2 2 X X X 1 2 n Y=
Y 的均值为 n,方差为 2n.
0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0
0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -6
-4
-2
0
2
4
6
2016/4/20
9
4.
F 分布 F(n1 ,n2 ) 2 2 若 X~ (n1 ) ,Y~ (n2 ) ,且相互独立,则随机变量
X n1 F Y n2
服从自由度为(n1 ,n2 )的 F 分布,记作 F~ F(n1 ,n2 ). 由 F 分布的定义可以得到 F 分布 的一个重要性质:
s
统计量 t
X m0 s n
n
Ⅰ Ⅱ Ⅲ
在显著水平
下拒绝 H0,若
m m0
m m0
m m0 m m0 m m0
z u
1
2
t t
1
2
( n 1)
z u1 z u1
t t1 ( n 1) t t1 ( n 1)
19
i ( 1. 点估计:构造(X1,X2,„,Xn)的函数
作为参数
ˆ
i
i1 ( i2 ( 2. 区间估计:构造两个函数 X1,X2,„,Xn)和 X1,X2,„, i1 , i 2 i
Xn)做成区间,把这 ( )作为参数 的区间估计 .
i 的点估计量,称统计量
ˆ
X1,X2,„,Xn)
2016/4/20
18
1、总体方差s 已知
2
用 u 检验,检验的拒绝域为
W {z u
1
}
2
即 W {z u
2.总体方差s 未知
用样本方差s 代替总体方差s
2
2 2
1
2
或z u
1
2
}
,这种检验叫 t 检验 .
总体方差s 未知
2
总体方差s 已知
2
H0
H1
统计量 z=
X m0
内都有样本观测值 xi (i=1,2,„,n-1)落入其中.
( xi , xi 1 ] 中出 2、求出各组的频数和频率:统计出样本观测值在每个区间
现的次数ni ,它就是这区间或这组的频数.计算频率 f i
' '
'
'
ni . n
'
x1 , x 2 , , x n 各点,分别以 3、作频率直方图:在直角坐标系的横轴上,标出 ( xi' , xi' 1 ] 为底边,作高为
我们总是需要去估计某些未知参数或数字特征,这就是参数估计问题
ˆ( 参数估计就是从样本 (X1,X2,„,Xn)出发,构造一些统计量 i
.即 X1 ,
X2,„,Xn) (i=1 ,2,„,k)去估计总体 X 中的某些参数 (或数字特 征) i (i=1 ,2,„,k).这样的统计量称为 估计量.
2016/4/20
12
(二)极大似然估计法
L ( 1 , 2 , , k ) P ( X 1 x1 , X 2 x 2 , , X n x n ) P ( X 1 x1 ) P ( X 2 x 2 ) P ( X n x n )
p ( x1 , 1 , k ) p ( x 2 , 1 , , k ) p ( x n , 1 , k )
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2
1 若 F~ F(n1 ,n2 ) ,则 ~ F ( n 2 , n1 ) F
F分布F(10,50)的密度函数曲线
0.1 0 0 0.5 1 1.5 2 2.5 3
2016/4/20
返回
10
1 , 2 , , k )的类型已知或未知, 无论总体 X 的分布函数 F(x;
H0 H1
m 均值 未知 统计量
2
2
1
2 s0
(X
i 1
n
2 i
m)
2
1
2 s0
(X
i 1
n
2 i
X )2
在显著水平
2 s 2 s0
下拒绝 H0,若
2 2 ( n 1) 或 2 2 1
s
1
2
n
1
,X u
s
s
1
2
n
2
].
s n ].
下的置信区间为 [ X t EX 在置信水平 1-
2. 未知方差DX,求EX的置信区间
2
n
,X t
1
(二)方差的区间估计
2 2 ( n 1 ) s ( n 1 ) s 下的置信区间为[ , ]. DX 在置信水平 12 2
1
2
2
返回
2016/4/20 15
对总体X的分布律或分布参数作某种假设,根据 抽取的样本观察值,运用数理统计的分析方法,检 验这种假设是否正确,从而决定接受假设或拒绝假 设. 1.参数检验:如果观测的分布函数类型已知,这时构造出的 统计量依赖于总体的分布函数,这种检验称为参数检验. 参数检验的目的往往是对总体的参数及其有关性质作出明 确的判断. 2.非参数检验:如果所检验的假设并非是对某个参数作出明 确的判断,因而必须要求构造出的检验统计量的分布函数 不依赖于观测值的分布函数类型,这种检验叫非参数检验. 如要求判断总体分布类型的检验就是非参数检验.
数学建模与数学实验
数据的统计描述和分析
后勤工程学院数学教研室
2016/4/20 1
实验目的
1、直观了解统计基本内容。
2、掌握用数学软件包求解统计问题。
实验内容
1、统计的基本理论。 2、用数学软件包求解统计问题。
3、实验作业。
数 据 的 统 计 描 述 和 分 析
2016/4/20
统计的基本概念
参数估计
0
5
10
15
20
2016/4/20
8
3、 t 分布 t(n) 若 X~N (0 , 1 ) ,Y~ ( n ) ,且 Y n
服从自由度为 n 的 t 分布,记为 T~t(n). t 分布 t(20)的密度函数曲线和 N(0,1)的 曲线形状相似.理论上 n 时,T~t(n) N(0,1).
m m0
2016/4/20
(二)单个正态总体方差检验
2 设 X1,X2,„,Xn 是来自正态总体 N ( m , s ) 的样本,欲检验假设: