参比电极电位判断
电位分析法

2.特点 (1)仪器设备简单,操作方便,适合现场 仪器设备简单,操作方便, 操作; 操作; 选择性好,测定简便快速; (2)选择性好,测定简便快速; 试样用量少; (3)试样用量少; 自动化程度高; (4)自动化程度高; 精密度较差。 (5)精密度较差。
ϕ玻璃
ϕ甘汞
2.303RT E = K′ + pH F 25 °C: E = K′ + 0.059pH
比较法确定待测溶液pH 比较法确定待测溶液pH
pH已知的标准缓冲溶液 和 pH待测的试液 。 测定 已知的标准缓冲溶液s和 待测的试液 待测的试液x。 已知的标准缓冲溶液 各自的电动势为 的电动势为: 各自的电动势为:
测定待测溶液的电位值, 测定待测溶液的电位值, 通过标准曲线求出其浓度。 通过标准曲线求出其浓度。
Ex
lgcx lg c i
总离子强度调节缓冲溶液( TISAB )的作用 保持较大且相对稳定的离子强度,使活度系数恒定; ①保持较大且相对稳定的离子强度,使活度系数恒定; 范围内, ②维持溶液在适宜pH范围内,满足离子电极的要求; 维持溶液在适宜 范围内 满足离子电极的要求; ③掩蔽干扰离子。 掩蔽干扰离子。 测 F- 过 程 所 使 用 的 TISAB 典 型 组 成 : 1mol/L 的 NaCl,使溶液保持较大稳定的离子强度 ; 0.25mol/L的 , 使溶液保持较大稳定的离子强度; 的 HAc 和 0.75mol/L 的 NaAc, 使 溶 液 pH 在 5 左 右 ; 0.001mol/L的柠檬酸钠 掩蔽 3+、Al3+等干扰离子。 的柠檬酸钠, 掩蔽Fe 等干扰离子。 的柠檬酸钠
常用参比电极注意事项

常用参比电极注意事项参比电极是电化学分析中常用的电极之一,它通常用于测量待测溶液中的电势,用来确定待测溶液中的物种浓度或其他电化学性质。
在使用参比电极时,需要注意以下事项:1.选择合适的参比电极:根据具体的实验需求,选择适合的参比电极。
常见的参比电极有银/氯化银电极、氯化银/银电极、甘汞电极等。
不同的参比电极适用于不同的实验条件和待测物种,所以选择合适的参比电极非常重要。
2.参比电极的存储:参比电极在使用之前需要进行储存。
一般情况下,参比电极需要静置在内部填充液中,以保持内部填充液的浓度和性质稳定。
如果长时间不使用,可以将参比电极放置在填充液中,并定期检查填充液的浓度和PH值。
3.参比电极的连接:参比电极与待测电极之间的连接必须是可靠的,以确保准确的电位测量。
要保证连接处没有漏电或电阻现象,可以使用导线夹紧连接处,并将其固定在电位计上。
4.参比电极的清洁:参比电极在使用之前,应该进行清洗和校正,以确保准确的测量结果。
可以用去离子水轻轻清洗参比电极,并在清洗后使用标准溶液进行校正。
5.参比电极的使用时间:参比电极的使用时间是有限的。
一般情况下,参比电极在使用一段时间后会逐渐失效,无法提供准确的参比电势。
因此,在实验中需要定期检查参比电极的工作状态,并在需要时更换新的参比电极。
6.参比电极的温度修正:由于参比电极的电位与温度有关,所以在进行电位测量时,需要进行温度修正。
一般情况下,可以使用温度传感器来测量溶液的温度,并根据温度修正公式进行修正。
7.参比电极的维护:参比电极在使用过程中,需要定期维护。
可以定期检查参比电极的外观是否正常,并清洁电极表面的杂质。
同时,还需要根据实际情况,定期更换填充液,以保证参比电极的准确性和稳定性。
总之,参比电极是电化学分析中不可或缺的重要工具,正确使用和维护参比电极,可以确保准确的电位测量结果。
在实验中,需要注意选择合适的参比电极、正确连接电极、储存参比电极、清洗和校正参比电极、定期检查和更换参比电极等方面的问题,以保证实验结果的准确性和可靠性。
分析化学(书后习题参考答案)第八章 电位分析法

(b)pH=4.00 +
(c) pH= 4.00 +
3. 用标准甘汞电极作正极,氢电极作负极与待测的 HCl 溶液组成电池。在 25℃时, 测 得 E=0.342V。当待测液为 NaOH 溶液时,测得 E=1.050V。取此 NaOH 溶液 20.0ml,用上 述 HCl 溶液中和完全,需用 HCl 溶液多少毫升? 解:1.050 = 0.2828 — 0.059lgKw/[OH-] 0.342 =0.2828 — 0.059lg[H+] 需用 HCl 溶液 20.0ml 。 4. 25℃时,下列电池的电动势为 0.518V(忽略液接电位) : Pt H2(100kPa),HA(0.01mol·L-1)A-(0.01mol·L-1 )‖SCE 计算弱酸 HA 的 Ka 值。 解:0.518 = 0.2438— 0.059 lg Ka 0.01/0.01 Ka = 2.29×10-5 5. 已知电池:Pt H2(100kPa),HA(0.200mol·L-1)A-(0.300mol·L-1 )‖SCE 测得 E=0.672V。计算弱酸 HA 的离解常数(忽略液接电位) 。 解:0.672 = 0.2438-0.059lgKa 0.200/0.300 [OH- ]=0.100mol·L-1 [H+]=0.100mol·L-1
AgCl 开始沉淀时:[Ag+] = 1.56 × 10-10 / C mol·L-1,
mol·L-1, 相对误差=1.5×10-16C / 1.56×10-10/C = 0.0001%,这也说明 AgCl 开始沉淀时 AgI 已沉淀完全。 14. 在下列各电位滴定中,应选择何种指示电极和参比电极? 答:NaOH 滴定 HA(Ka C =10-8 ):甘汞电极作参比电极,玻璃电极作指示电极。 K2Cr2O7 滴定 Fe2+:甘汞电极作参比电极,铂电极作指示电极。 EDTA 滴定 Ca2+:甘汞电极作参比电极,钙离子选择性电极作指示电极。 AgNO3 滴定 NaCl:甘汞电极作参比电极,银电极作指示电极。
参比电极与指示电极

(4).甘汞电极在使用时,应注意勿使气泡进入盛饱和KCl的
细管中,以免造成断路。
()
练习答案
1. 略 2. C D 3. 0.6219V,
8.7X10-6mol/l 4.全对
这种电极可以使用电化学氧化的方式在盐酸 中制作:比如将两根银线插入盐酸中,然后在两 根线之间施加一至二伏电压,阳极就会被氯化银 覆盖(阳极反应:2Ag + 2HCl -→ 2AgCl + 2H+ + 2e−,阴极反应:2H+ + 2e− -→ H2,总反应: 2Ag + 2HCl -→ 2AgCl + H2)。使用这个方式可 以确保氯化银只在电极有电的情况下产生。
二、参比电极与指示电极
电位分析中使用的参比电极和指示电极有很多种。应 当指出,某一电极是指示电极还是参比电极不是绝对 的,在一种情况下可用作参比电极,在另一种情况下, 又可用作指示电极。
1、参比电极
参比电极是测量电池电动势,计算电极电位的基准, 因此要求它的电极电位已知而且恒定,在测量过程中, 即使有微小电流通过,仍能保持不变;电极与测试溶 液之间的液体接界电位很小,可以忽略不计;并且容 易制作,使用寿命长。
25℃时,不同浓度KCl溶液的银-氯化银电极的电极电位值如 表所列。
时银-氯化银电极的电极电位(对NHE)
银-氯化银电极的使用:
银-氯化银电极电势稳定,在高达275°C左右的温度下 仍能使用,重现性很好,是常用的参比电极。它的标 准电极电势+0.2224V(25℃)。
优点是在升温的情况下比甘汞电极稳定。通常有 0.1mol/LKCl,1mol/L KCl和饱和KCl三种类型。该电极 用于含氯离子的溶液时,在酸性溶液中会受痕量氧的 干扰,在精确工作中可通氮气保护。当溶液中有HNO3 或外B,r-还,可I-,用N作H某4+,些C电N极-等(如离玻子璃存电在极时、,离则子不选能择应性用电。极此) 的内参比电极。
参比电极之间的电位差测量步骤

参比电极之间的电位差测量步骤参比电极之间的电位差测量步骤1在一个塑料的或玻璃的小容器中加入大约2.5cm深的自来水;2将两个参比电极置于水中;3测量它们之间的电位差。
如果这两个参比电极之间的电位差不是很令人满意的话,那么应对两个参比电极进行校正,这种校正可以用以下手段进行:清洗塑料体内侧,用蒸馏水冲洗,换上一个新的塞子,清洁参比电极里的铜棒,更换新的溶液,净化饱和硫酸铜溶液。
如果一次清洗达不到要求的话,可以重复上述步骤。
铜棒不允许用纱布或其他带有金属磨料的砂布进行清洗。
参比电极之间的电位差测量步骤1在一个塑料的或玻璃的小容器中加入大约2.5cm深的自来水;2将两个参比电极置于水中;3测量它们之间的电位差。
如果这两个参比电极之间的电位差不是很令人满意的话,那么应对两个参比电极进行校正,这种校正可以用以下手段进行:清洗塑料体内侧,用蒸馏水冲洗,换上一个新的塞子,清洁参比电极里的铜棒,更换新的溶液,净化饱和硫酸铜溶液。
如果一次清洗达不到要求的话,可以重复上述步骤。
铜棒不允许用纱布或其他带有金属磨料的砂布进行清洗。
参比电极之间的电位差测量步骤1在一个塑料的或玻璃的小容器中加入大约2.5cm深的自来水;2将两个参比电极置于水中;3测量它们之间的电位差。
如果这两个参比电极之间的电位差不是很令人满意的话,那么应对两个参比电极进行校正,这种校正可以用以下手段进行:清洗塑料体内侧,用蒸馏水冲洗,换上一个新的塞子,清洁参比电极里的铜棒,更换新的溶液,净化饱和硫酸铜溶液。
如果一次清洗达不到要求的话,可以重复上述步骤。
铜棒不允许用纱布或其他带有金属磨料的砂布进行清洗。
参比电极之间的电位差测量步骤1在一个塑料的或玻璃的小容器中加入大约2.5cm深的自来水;2将两个参比电极置于水中;3测量它们之间的电位差。
如果这两个参比电极之间的电位差不是很令人满意的话,那么应对两个参比电极进行校正,这种校正可以用以下手段进行:清洗塑料体内侧,用蒸馏水冲洗,换上一个新的塞子,清洁参比电极里的铜棒,更换新的溶液,净化饱和硫酸铜溶液。
第八章 电位分析法

第八章 电位分析法思 考 题1. 参比电极和指示电极有哪些类型?它们的主要作用是什么?答:参比电极包括标准氢电极(SHE ),标准氢电极是最精确的参比电极,是参比电极的一级标准。
实际工作中常用的参比电极是甘汞电极和银-氯化银电极。
参比电极电位恒定,其主要作用是测量电池电动势,计算电极电位的基准。
指示电极包括金属-金属离子电极,金属-金属难溶盐电极,汞电极,惰性金属电极,离子选择性电极。
指示电极能快速而灵敏的对溶液中参与半反应的离子活度或不同氧化态的离子的活度比,产生能斯特响应,主要作用是测定溶液中参与半反应的离子活度。
2. 直接电位法的依据是什么?为什么用此法测定溶液pH 时,必须使用标准pH 缓冲溶液?答:直接电位法是通过测量电池电动势来确定待测离子活度的方法,其主要依据是E=Φ参比— ΦMn+/M = Φ参比—ΦθMn+/M—nFRTln αMn+式中Φ参比和ΦθMn+/M在温度一定时,都是常数。
由此式可知,待测离子的活度的对数与电池电动势成直线关系,只要测出电池电动势E ,就可求得αMn+。
测定溶液的pH 时是依据:E = ΦHg 2Cl 2/Hg — ΦAgCl/Ag — K + 0.059 pH 试 + ΦL , 式 中ΦHg 2Cl 2/Hg , ΦAgCl/Ag ,K ,ΦL 在一定的条件下都是常数,将其合并为K ˊ,而K ˊ中包括难以测量和计算的不对称电位和液接电位。
所以在实际测量中使用标准缓冲溶液作为基准,并比较包含待测溶液和包含标准缓冲溶液的两个工作电池的电动势来确定待测溶液的pH 值,即:25℃时Es = Ks ˊ+ 0.059pHs, Ex = Kx ˊ+ 0.059pHx,若测量Es 和Ex 时的条件保持不变,则Ks ˊ= Kx ˊ,pHx =pHs+(Ex -Es)/0.059 ,由此可知,其中标准缓冲溶液的作用是确定K ˊ。
3. 简述pH 玻璃电极的作用原理。
答:玻璃电极的主要部分是 一 个玻璃泡,泡的下半部是对H +有选择性响应的玻璃薄膜,泡内装有pH 一定的0.1mol ·L -1的HCl 内参比溶液,其中插入一支Ag-AgCl 电极作为内参比电极,这样就构成了玻璃电极。
一般参比电极电位和标准氢电极电位转换关系

一般氢电极, 标准氢电极和可逆氢电极辨析武汉科思特仪器股份有限公司氢标准电极是电化学中的一级标准电极,其电势已成为任何电化学氧化还原半反应电势的零电位基准。
目前,三种氢电极,即一般氢电极(Normal Hydrogen Electrode, NHE),标准氢电极(Standard Hydrogen Electrode, SHE)和可逆氢电极(Reversible Hydrogen Electrode, RHE)经常于各类文献中被用于表示电极电势,并在不少场合出现了随意使用的趋势。
然而三者却有着本质的不同。
一、一般氢电极,NHE一般氢电极的定义为“铂电极浸在浓度为1当量浓度*(Normal Concentration, N)的一元强酸中并放出压力约一个标准大气压的氢气”。
因其较标准氢电极易于制备,故为旧时电化学常用标准电极。
但由于这样的电极并不严格可逆,故电压并不稳定,现在已经被弃用。
* 注:对于氢离子而言,1当量浓度=1摩尔浓度,即1 N = 1 M二、标准氢电极,SHE标准氢电极的定义为“铂电极在氢离子活度为1 M的理想溶液中,并与100 kPa压力下的氢气平衡共存时所构成的电极”。
此种电极即当前电化学所规定的一级标准电极,其标准电极电势被人为规定为零(其绝对电势在25 ℃下为4.44±0.02 V)。
此电极反应完全可逆,但“氢离子活度为1 M的理想溶液”实际中并不存在,故而该电极只是一个理想模型。
当列举其他参比电极的电势时,如无特别说明,应该都是相对于标准氢电极的电势,标注应为“vs. SHE”。
三、可逆氢电极,RHE可逆氢电极为标准氢电极的一种。
其与标准氢电极在定义上的唯一区别便是可逆氢电极并没有氢离子活度的要求,所以可逆氢电极的电势和pH有关。
利用能斯特方程(Nernst Equation)可以很容易地推导出可逆氢电极电势的具体表达式:E=-0.059pH (@25 ℃)vs.SHE综上,标准电极电位和饱和甘汞参比电极电位转换为:E RHE=E SCE+0.0591pH+E SCE0,E NHE=E SCE+E SCE0,E SHE=E SCE0。
第十四章 电位分析法1

入,发生化学反应,待测离子或
与之有关的离子浓度发生变化, 指示电极的电极电位也随之发生
变化,在化学计量点附近,电位
发生突跃,由此确定滴定终点。 电位滴定法与一般滴定分析法的 根本不同是确定终点的方法不同。
每滴加一次滴定剂,平衡后测量电动势。
关键: 确定化学计量点所消耗的滴定剂体积。
快速滴定寻找化学计量点所在的大致范围。 突跃范围内每次滴加体积控制在0.1 mL。 记录每次滴定时的滴定剂用量(V)和相应 的电动势数值(E),作图得到滴定曲线。 (2) 电位滴定终点确定方法
常数K´包括:
外参比电极电位
内参比电极电位 不对称电位(E膜 = E外-E内) 液接电位
(2) 晶体膜电极(氟电极)
● 构 造 敏感膜:氟化镧单晶, 掺有EuF2
的LaF3单晶切片。 内参比电极:Ag-AgCl电极(管内)。 内参比液:0.1 mol/L的NaCl和 0.001 mol/L的NaF混合溶液。
3. 电位选择性系数
● 定义:ISE并没有绝对的专一性,即离子选择性电极除对特 定待测离子有响应外,共存(干扰)离子亦会响应。
电极对各种离子的选择性,用电位选择性系数表示。
若测定离子为i,电荷为zi;干扰离子为j,电荷为zj。考虑到
共存离子产生的电位,则膜电位的一般式可写成为:
E膜
zi RT z K l nai K ij (a j ) j nF
E膜 = K - 0.059 lgaF-
氟电极受OH-的干扰,LaF3 + 3OH- = La(OH)3 + 3F另一方面, F- + H+ = HF HF + F- = H2F∴ 氟电极适用的PH范围为PH 5~6。 测量电池
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扫CV,和标准峰对比,位置还有是不是有杂峰...
一般扫铁氰化钾,看它的氧化还原峰位置是不是正常:铁氰化钾-亚铁氰化钾电对被广泛用于评价电极表面电子活性能力(by 伏安法,阻抗法等),主要是这个Fe3+ 和 Fe2+之间的单电子反应动力学是人们研究得最成熟的,使用起来也最简便的缘故。
其可逆性非常好,
如果是理想状态下,理论峰电位差值应该是56mV。
且随着扫描速度增加峰电位不移动。
但实际上由于电极反应速度、溶液扩散速度、电极表面吸附杂质等因素,峰电位差值通常大于56mV 扫描速度增大峰电位差值也会逐渐增大一般来说金电极玻碳电极等电位差应该小于80mV 碳电极等至少应该小于100mV 才能说明电极上阻碍电子传递阻碍电极反应的影响较小。
可以使用
电极在鉄氰化钾溶液中CV EIS:CV峰电流越大,对应的EIS电阻越小,也就是半圆的直径越小
当电极表面被致密的膜覆盖时,电子探针(Fe3+/Fe2+)不容易穿过这层膜接触到电极表面发生氧化还原反应,即使活性探针穿过了这层膜,如果金属表面的大部分被占据(比如,硫醇自组装膜在Au表面),探针与金属接触的机会(面积)也大大降低,从而导致电子交换反应动力学变慢(阻力变大),这表现在CV图上就是峰值电位差变大,以及电流峰值变小。
这种现象在电化学阻抗谱上表
现得更明显。