金属塑性成形工艺
金属材料的成型工艺

金属材料的成型工艺金属材料的成型工艺是指通过物理或化学方法将金属材料加工成所需形状的工艺过程。
成型工艺广泛应用于各个领域,如汽车、航空、船舶、建筑、制造业等。
它可以改变金属材料的形状、尺寸、性能和组织结构,使其适应不同的使用需求。
锻造是将金属材料加热至一定温度后,施加力并改变形状的工艺。
锻造可分为自由锻造、模锻和精锻。
自由锻造是直接对金属进行锻造,适用于简单形状的零部件。
模锻是使用模具对金属进行锤击或压制,适用于复杂形状和高精度要求的零部件。
精锻是在高温下对金属进行精密锻造,适用于高精度要求的零部件。
冲压是通过金属板材的拉伸、弯曲、切割和成形等工艺来制作零部件。
冲压工艺具有高效、节约材料、适用于大批量生产等优点,广泛应用于汽车制造、家电制造等领域。
铸造是通过将金属材料熔化后倒入模具中,使其凝固成型的工艺。
铸造可分为压力铸造和重力铸造。
压力铸造包括压铸、低压铸造和真空压力铸造。
压铸是将熔融金属注入压铸机模腔中,通过高压填充,并快速凝固成型。
低压铸造是将熔融金属通过压力填充式注射系统注入模具中,然后通过压力使其充满整个模腔,并凝固成型。
真空压力铸造是在真空环境中进行压铸,以提高铸件的质量和密度。
重力铸造是靠铸造机中的重力将熔融金属倒入模具中,凝固成型。
焊接是通过加热材料至熔化状态,通过外界压力和/或其他形式的能量传递,使金属材料连接起来的工艺。
常用的焊接方法包括电弧焊、气体保护焊、激光焊接等。
焊接工艺广泛应用于电子、汽车、船舶、航空航天等领域。
拉伸成型是将金属材料通过拉伸、挤压或者弯曲等方法成型的工艺。
拉伸成型可以提高材料的强度、硬度和耐磨性。
常见的拉伸成型工艺包括拉伸成型、锻造成型和爆炸成型等。
热成型是通过加热金属材料至塑性状态,然后在模具中进行变形的工艺。
热成型可以提高材料的塑性,使其更容易成形,并改变金属材料的结构和性能。
常用的热成型方法包括热压成型、热挤压、热拉伸等。
挤压成型是通过将金属材料放置在模具中,然后施加压力,使其通过模孔挤压成型的工艺。
金属旋压成形工艺

金属旋压成形工艺引言金属旋压成形是一种常见的金属成形工艺,通过将金属材料置于旋转的模具中,通过轴向压力和旋转运动对金属材料进行塑性变形,从而得到所需形状和尺寸的产品。
金属旋压成形工艺在制造行业中得到广泛应用,广泛用于制造各种金属产品,如罐体、汽车零部件、工业容器等。
本文将介绍金属旋压成形工艺的原理、应用领域和工艺参数等内容。
原理金属旋压成形的基本原理是通过旋转压力对金属材料进行塑性变形,从而得到所需形状和尺寸的产品。
其具体步骤如下: 1. 将金属材料置于旋转的模具中,并夹紧以防止材料滑动。
2. 施加轴向压力,使金属材料受到压力作用。
3. 同时进行模具的旋转运动,使金属材料在轴向压力和旋转力的作用下发生塑性变形。
4. 根据产品的形状和尺寸要求,逐渐调整模具的位置和形状,使金属材料逐步完成所需的变形。
应用领域金属旋压成形工艺广泛应用于以下领域: 1. 罐体制造:金属旋压成形工艺可用于制造各种罐体,如油罐、气罐、水罐等。
通过金属旋压成形,可以使罐体具有较高的密封性和强度。
2. 汽车零部件:金属旋压成形工艺可用于制造汽车零部件,如汽车油箱、排气管等。
通过金属旋压成形,可以使零部件具有较好的耐压性和密封性。
3. 工业容器:金属旋压成形工艺可用于制造各种工业容器,如储罐、压力容器等。
通过金属旋压成形,可以使容器具有较高的耐压性和耐腐蚀性。
4. 金属管材加工:金属旋压成形工艺可用于加工金属管材,改变其形状和尺寸。
通过金属旋压成形,可以使金属管材具有较好的韧性和强度。
工艺参数金属旋压成形的工艺参数对成形效果和产品质量起着重要的影响。
常见的工艺参数包括: 1. 旋转速度:旋转速度是指旋转模具的转速,通常以每分钟转数(RPM)来表示。
旋转速度的选择要根据金属材料的性质和成形要求来确定,过高或过低的旋转速度都可能影响成形效果。
2. 压力:压力是指施加在金属材料上的轴向压力。
压力的选择要根据金属材料的硬度和成形要求来确定,过高或过低的压力都可能导致成形不良或产生内部应力。
wwei材料成形技术(塑性)1

二、金属塑性成形的基本生产方式 1、轧制:金属毛坯在两个轧辊之间受压变形而形成各 种产品的成形工艺,图6-1。 2、挤压:金属毛坯在挤压模内受压被挤出模孔而变形 的成形工艺,图6-3。 3、拉拔:将金属坯料拉过拉拔模的模孔而变形的成形 工艺,图6-5。 4、自由锻:金属毛坯在上下砥铁间受冲击或压力而变 形的成形工艺,图6-7(a)。 5、模锻:金属坯料在既有一定形状的锻模模膛内受击 力或压力而变形的成形工艺,图6-7(b) 。
塑性愈大、变形抗力愈小,材料的可锻性愈好
4、可锻性的影响因素
(1)化学成分 A、碳钢中碳和杂质元素的影响
C、H、P(冷脆)、S (热脆) B、合金元素的影响
塑性降低,变形抗力提高。
(2)内部组织
单相组织(纯金属或者固溶体)比多相组织塑性好。 细晶组织比粗晶组织好; 等轴晶比柱状晶好。 面心立方结构的可锻性最好,体心立方结构次之, 而密排六方结构可锻性最差。
冲击力和压力
锻压是锻造与冲压的总称。
★锻造:在加压设备及工(模)具作用下,使坯料、铸锭产生局 部或全部的塑性变形,以获得一定几何尺寸、形状和质量的锻件 的加工方法。锻造通常是在高温(再结晶温度以上)下成形的,
因此也称为金属热变形或热锻。
★锻造特点:1、压密或焊合铸态金属组 织中的缩孔、缩松、空隙、气泡和裂纹。 2、细化晶粒和破碎夹杂物,从而获得一 定的锻造流线组织。因此,与铸态金属 相比,其性能得到了极大的改善。 3、主要用于生产各种重要的、承受重载荷的机器零件或毛坯。 如机床的主轴和齿轮、内燃机的连杆、起重机的吊钩等。 4、高温下金属表面的氧化和冷却收缩等各方面的原因,锻件精度 不高、表面质量不好,加之锻件结构工艺性的制约。
2、晶粒和分布在晶界上的非金属夹杂物ห้องสมุดไป่ตู้沿变形方向被拉长, 但是拉长的晶粒可经再结晶又变成等轴细粒状,而这些夹杂物不能 改变,就以细长线条状保留下来,形成了所谓的纤维组织。 纤维组织的化学稳定性很高,只有经过锻压才能改变其分布方向, 用热处理是不能消除或改变纤维组织形态的。 纤维组织使金属的力学性能具有明显的方向性。
(完整word版)塑性成形方法

第五节其它塑性成形方法随着工业的不断发展,人们对金属塑性成形加工生产提出了越来越高的要求,不仅要求生产各种毛坯,而且要求能直接生产出更多的具有较高精度与质量的成品零件.其它塑性成形方法在生产实践中也得到了迅速发展和广泛的应用,例如挤压、拉拔、辊轧、精密模锻、精密冲裁等。
一、挤压挤压:指对挤压模具中的金属锭坯施加强大的压力作用,使其发生塑性变形从挤压模具的模口中流出,或充满凸、凹模型腔,而获得所需形状与尺寸制品的塑性成形方法.挤压法的特点:(1)三向压应力状态,能充分提高金属坯料的塑性,不仅有铜、铝等塑性好的非铁金属,而且碳钢、合金结构钢、不锈钢及工业纯铁等也可以采用挤压工艺成形。
在一定变形量下,某些高碳钢、轴承钢、甚至高速钢等也可以进行挤压成形。
对于要进行轧制或锻造的塑性较差的材料,如钨和钼等,为了改善其组织和性能,也可采用挤压法对锭坯进行开坯。
(2)挤压法可以生产出断面极其复杂的或具有深孔、薄壁以及变断面的零件。
(3)可以实现少、无屑加工,一般尺寸精度为IT8~IT9,表面粗糙度为Ra3。
2~0。
4μ m,从而(4)挤压变形后零件内部的纤维组织连续,基本沿零件外形分布而不被切断,从而提高了金属的力学性能.(5)材料利用率、生产率高;生产方便灵活,易于实现生产过程的自动化.挤压方法的分类:1.根据金属流动方向和凸模运动方向的不同可分为以下四种方式:(1)正挤压金属流动方向与凸模运动方向相同,如图2—69所示。
(2)反挤压金属流动方向与凸模运动方向相反,如图2—70所示.(3)复合挤压金属坯料的一部分流动方向与凸模运动方向相同,另一部分流动方向与凸模运动方向相反,如图2—71所示。
(4)径向挤压金属流动方向与凸模运动方向成90°角,如图2—72所示。
图2-69 正挤压图2—70 反挤压图2—71 复合挤压图2-72 径向挤压2.按照挤压时金属坯料所处的温度不同,可分为热挤压、温挤压和冷挤压三种方式:(1)热挤压变形温度高于金属材料的再结晶温度。
装备制造业之塑性成形技术

装备制造业之塑性成形技术随着现代工业的不断发展,各类装备制造业在实现高效生产和优质产品方面面临着日益严峻的挑战。
然而,塑性成形技术作为一种重要的制造工艺,正逐渐成为解决这些问题的关键。
本文将介绍塑性成形技术在装备制造业中的应用及其优势,并分析其未来发展趋势。
一、塑性成形技术在装备制造业中的应用1. 金属板材的压力成形金属板材压力成形技术是制造高强度、高精度零部件的重要手段。
通过将金属板材置于模具中,并施加压力,使金属板材发生弯曲、拉伸或冲裁等变形过程,从而得到所需形状的零部件。
该技术广泛应用于航空航天、汽车、电子等领域,并且可以生产出具有优良机械性能和表面质量的产品。
2. 金属管材的拉伸和冲压成形金属管材的拉伸和冲压成形技术主要用于制造管道、管接头和其他金属管材零部件。
通过控制拉伸和冲压力度,使金属管材在变形过程中逐渐改变截面形状,从而得到满足需求的产品。
该技术在石油化工设备、船舶制造等行业中得到广泛应用。
3. 塑性挤压技术塑性挤压技术是将金属坯料通过模具挤压成型,用于制造复杂截面的金属材料。
该技术具有高效率、节能和资源利用率高的特点,并且可以生产出优质的零部件。
在航空航天、铁路交通等领域,塑性挤压技术已成为制造高性能轻质构件的重要工艺。
二、塑性成形技术的优势1. 精度高塑性成形技术可以通过精确的模具设计和控制,实现对材料的精细加工,从而获得高度精密的零部件。
与传统加工工艺相比,塑性成形技术具有更低的工艺损失和变形量,可以提供更高的制造精度和表面质量。
2. 材料利用率高塑性成形技术将材料的变形过程与材料的剪切、挤压和拉伸等工艺相结合,可大幅提高材料的利用率。
与传统切削加工相比,塑性成形技术减少了材料废料的产生,并可在一次成形中得到复杂形状的零部件。
3. 生产效率高塑性成形技术具有高效率、批量生产的优势。
通过合理的设备配置和工艺优化,可以实现自动化、连续化生产,从而大幅提高生产效率。
此外,塑性成形技术还可以快速响应市场需求,缩短产品的开发周期。
塑性成形第14章塑性加工工艺(轧制挤压)

品表面光洁、板形平直、尺寸精度高和机械性能好。 工艺特点: (1)加工温度低,产生加工硬化,需要中间退火。 (2)采用工艺冷却和润滑 (3)张力轧制
管材轧制
(1)压下量
h h0 h1 h 2R(1 cos)
咬入角 entering angle
D R
O
(2)变形区长度
l2 R2 (R h )2 2
h0
a
A
C
B
l
h1
l Rh (h2 ) Rh 4
b1
b0
tg
R
Rh ( h)
h R
2
h 2R
(3)延伸系数 λ=L1/L0
(4)压下率Biblioteka 表面夹杂暴露在钢材表面上的非金属物质称为 (1)钢坯带来的表面非金属夹杂物。 表面夹杂,一 般呈点状、块状和条状 (2)在加热或轧制过程中,偶然有非金 分布,其颜色有暗红、淡黄、灰白等, 属夹杂韧(如加热炉的耐火材料及炉 机械的粘结在型钢表面上,夹杂脱落 渣等),炉附在钢坯表面上,轧制时 后出现一定深度的凹坑,其大小、形 被压入钢材,冷却经矫直后部分脱落 状无一定规律。
名。例工、槽、角钢的腿长、腿短、腰 (2)切深孔切人太深,造成腿长无法消除。 厚、腰薄及一腿长,一腿短。
斜轧穿孔生产管材
板带材轧制
特点:宽厚比(B/H)大 规格:中厚板(中板4~20mm,厚板20~60mm,
特厚板60mm以上) 薄板和带材(0.2~4mm) 极薄带材和箔材(0.001~0.2mm) 技术要求: 尺寸精度、板形、表面光洁度、性能
《塑性成形工艺基础》课件

模具的构成
模具由上模、下模和导向部件等组成,用于实现金属材料的塑性成形。
模具的工艺要求
模具设计需要考虑材料选择、温度控制、表面处理等多个方面的要求。
模具设计的方法
模具设计需要考虑产品形状、材料流动和成型工艺等因素,采用综合方法进行设计。
塑性成形加工工艺
塑性成形加工的流程 塑性成形加工的工艺参数与选择 塑性成形加工的质量控制
应用范围
塑性成形工艺广泛应用于汽车、航空航天、家电等领域,是现代工业的重要组成部分。
塑性变形的基本原理
1 金属的结构和性质
金属材料由多个晶格组 成,塑性变形是晶格滑 移和晶格形变的结果。
2 冷变形与热变形
冷变形在室温下进行, 热变形在高温下进行, 两者具有不同的变形特 点。
3 塑性变形的分类
塑性变形可分为压力加 工、拉伸加工、弯曲加 工和精密成型等多种类 型。
《塑性成形工艺基础》 PPT课件
本课程将介绍塑性成形工艺的基本原理、过程和模具设计,以及该工艺的发 展趋势。让我们一起探索这个令人着迷的领域!
背景介绍
塑性成形工艺的定义
塑性成形是通过施加压力,使金属材料在保持连续性的情况下发生塑性变形的一种制造工艺。
发展历程
塑性成形工艺自古已有,经历了手工操作、机械压力成形到现代数控技术的发展。
塑性成形的基本过程
1
拉伸加工
2
通过拉伸使金属材料变薄或变长,常
见的工艺有拉延、拉具的精细控制实现复杂零件的 成形,如注塑、挤压等。
压力加工
通过施加压力使金属在模具中变形, 包括冲压、锻造等工艺。
弯曲加工
通过施加力使金属材料弯曲或折弯, 常见的工艺有折弯、卷弯等。
塑性成形模具设计
材料的塑性成形工艺

材料的塑性成形工艺引言塑性成形是一种常见的材料加工工艺,通过施加力量使材料发生形变,以获得所需的形状和尺寸。
塑性成形工艺包括冷拔、冷加工、锻造、挤压、拉伸等多种方法。
本文将介绍几种常见的材料塑性成形工艺及其特点。
一、冷拔1.1 工艺流程冷拔是一种拉伸加工的方法,主要用于金属材料。
其工艺流程包括以下几个步骤:1.选材:选择合适的原材料进行冷拔加工。
2.加热:将材料加热至适当的温度,以提高其塑性。
3.均质化处理:通过变形和退火等处理方法,使材料组织更加均匀。
4.拉拔:将材料拉伸至所需的形状和尺寸。
5.精整:通过切割、修整等方法,使成品达到要求的尺寸。
1.2 特点冷拔工艺具有以下特点:•成品尺寸精度高,表面质量好。
•可加工各种材料,包括金属和非金属材料。
•可以提高材料的强度和硬度。
二、冷加工2.1 工艺流程冷加工是一种在常温下进行的成形加工方法,常用于金属材料。
其工艺流程包括以下几个步骤:1.选材:选择合适的原材料进行冷加工。
2.切削:通过刀具对材料进行切削加工。
3.成型:通过冷加工设备对材料进行压制、弯曲、卷曲等成型操作。
4.精整:通过修整、研磨等方法,使成品达到要求的尺寸和表面质量。
2.2 特点冷加工具有以下特点:•成品尺寸精度高,表面质量好。
•可以加工多种材料,包括金属和非金属材料。
•部件形状复杂度高,适用于精密加工要求较高的产品。
三、锻造3.1 工艺流程锻造是一种通过施加压力将材料压制成所需形状的工艺方法。
其工艺流程包括以下几个步骤:1.选材:选择合适的原材料进行锻造。
2.加热:将材料加热至适当的温度,以提高其塑性。
3.锻造:通过锻造设备施加压力,将材料压制成所需形状。
4.精整:通过修整、热处理等方法,使成品达到要求的尺寸和性能。
3.2 特点锻造具有以下特点:•可以加工各种金属材料,包括高温合金和非金属材料。
•成品强度高,韧性好。
•高生产效率,适用于大批量生产。
四、挤压4.1 工艺流程挤压是一种将材料挤压成所需截面形状的塑性成形工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有色金属塑性加工趋势
冶金
金属塑性成形工艺有着悠久的历史,4000多年前(青铜器时代),金属的塑性加工与金属的熔炼与铸造同时出现,可加工铜、铁、银、金、铅、锌、锡等,所采用的工艺包括热锻、冷锻、板材加工、旋压、箔材和丝材拉拨。
近代第一次技术革命开始于18世纪中叶,以蒸汽机的发明和广泛使用为标志,从而实现了手工工具到机械工具的转变。
塑性加工也从手工自由锻向机械压力机(蒸汽锤、自由锻锤及蒸汽轧钢机)进步。
近代第二次技术革命以电力技术为主导,电磁理论的建立,为电力取代蒸汽动力的革命奠定了基础。
金属塑性加工设备以蒸汽向电力驱动进步。
机械制造业的进一步发展,提高了塑性加工设备的制造水平,出现了轧钢机、挤压机、锻造机、拉拨机和压力机。
现代科技革命开始于上世纪40年代,其主要标志为电子技术的发展,电控和电子计算机的应用,塑性加工设备和技术向全流程自动化进步。
现在可以做到配料、熔炼、铸造、轧制及随后处理全线自动化。
目前,金属材料在日常生活和高科技中占有相当大的比例,其加工技术是其它加工的基础。
材料加工成形工艺通常有液态金属成形、塑性成形、连接成形等。
塑性成形主要是利用金属在塑性状态下的体积转移因而材料的利用率高流线分布合理高了制品的强度, 可以达到较高的精度, 具有较高的生产率. 坯料在热变形过程中可能发生了再结晶或部分再结晶,粗大的树枝晶组织被打破,疏松和孔隙被压实、焊合,内部组织和性能得到了较大的改善和提高。
有色金属塑性加工的基本方法:轧制、挤压、拉拔、锻造、冲压等。
近年来,随着科学技术整体的飞速进步,金属塑性加工技术也取得了迅速发展。
人们充分认识到随着科学技术整体的飞速进步,金属塑性加工技术也取得了迅速发展。
人们充分认识到最终决定材料及产品结构和控制性能的关键是合成与加工。
因此,材料科学与材料工程学紧密结合成为开发新材料和提高传统材料性能的必然途径。
有色金属材料加工技术向高精度、高性能、低消耗、低成本、优化生产过程和自动化方向发展。
最终决定材料及产品结构和控制性能的关键是合成与加工。
因此,材料科学与材料工程学紧密结合成为开发新材料和提高传统材料性能的必然途径。
有色金属材料加工技术向高精度、高性能、低消耗、低成本、优化生产过程和自动化方向发展。
目前金属塑性加工技术现状与总的发展趋势是主要体现在以下一些方面:(1)生产方法、工艺技术向着节能降耗、综合连续、优化精简、高速高效的方向发展。
如实行冶炼、铸造与加工的综合一体化,采用连铸连轧,连续铸轧、连续铸挤,半固态加工等新工艺技术;尽量生产最终和接近最终形状产品;利用余热变形、热变形与温变形配合,冷加工与热加工变形量之间的优化匹配,变形与热处理的配合,省略或减少加热与中间退火次数等。
(2)工艺装备更新换代加快,设备更趋大型、精密、成套、连续,自动化水平更加提高。
生产线更趋大型化、专业化。
产品单重大大增加。
(3)产品向多品种、高质量、高精度发展,产品结构不断调整,新材料新产品不断被开发。
轻型薄壁材料、复合材料、镀层涂层材料等不断发展,产品注重深度加工,有色材料的产品综合性能和使用效能大大提高。
(4)工模具结构、材质,加工工艺、热处理工艺和表面处理工艺不断改进和完善。
模具的质量和使用效果、寿命得到极大的提高。
(5)在加工辅助工序和其他环节,开发新型辅助设备,采取先进技术和多种
工艺措施,提高产品质量与生产率。
(6)金属的再生技术、废料回收与综合利用得到高度重视,生产企业向环保型、节约型、可持续发展型方向发展。
(7)十分注重信息的全面采集与开发,生产运行体制和机制不断调整优化,管理全面实现现代化和科学化。
(8)加强塑性加工技术的理论研究和实验研究,探索合金成分、加工工艺、组织性能的变化规律和最佳组配,以优化工艺,提高产品质量,开发新技术、新工艺。