1.1.2 余弦定理第一课时

合集下载

1.1.2余弦定理(第1课时)

1.1.2余弦定理(第1课时)
ABC
9
中,当 C 为锐角时,
a 2 b2 c 2 ; 当C 为钝角时,a 2 b2 c 2 .
3.挑战题:三角形的三边为连续的自然数,且最大角 为钝角,则最小角的余弦值为多少?
七、归纳小结
活动6:说一说,结一结
1.我最大的三点收获是: 2.我最大的两点反思是: 3.我最大的一点困惑是:
10
11
问题3:联系三角形两边及其夹角的知识有哪些?
三、尝试理解
活动2:读一读,说一说
问题5:课本上用向量的方法证明余弦定理,主要用到什么 知识?
5
问题6:请你用其他的方法证明余弦定理?
三、尝试理解
活动2:读一读,说一说
问题7:尝试用多种语言描述余弦定理?
6
四、深度理解
活动3:辨一辨,思一思
问题8:根据问题情境2、课本例题3,思考如下变式问题。
1.掌握余弦定理,理解余弦定理与勾股定理之间的关系; —— 学会
3
2.能证明余弦定理;
——会学 3.体会余弦定理的美学价值,体验合作学习的快乐,增强 学习信心。 ——乐学
二、寻找联系
活动1:读一读,想一想
问题1:初中学习判断两个三角形全等判定定理有哪些?
4
问题2:正弦定理是从哪些判定定理来精确刻画边角之间 的数量关系?
7
变式:如图2,A、B两地之间隔着一个水塘,先选择另一点C,测得 CA 182m, CB 126m, ACB 63 , 求AB两地之间的距离(精确到1m)
五、交流分享
活动4:用一用,展一展
8
讨论余弦定理与勾股定理之间的联系与区别
六、实践反馈
活动5:练一练,查一查
1.必做题:完成课本第8页练习1; 2.选做题:用余弦定理证明:在

人教版高中数学余弦定理(说课)(共20张PPT)教育课件

人教版高中数学余弦定理(说课)(共20张PPT)教育课件
人教版A版高中数学必修5
1.1.2余弦定理
第一章《解三角形》第二节课
玉林高中 饶蔼
人教版A版高中数学必修5
一.教材分析 二.学情分析 三.教学方法 四.教学过程
量化
激发
产生
掌握
提高
思维 能力
知识与技能:
通过探究 学会 掌握 两种表示 运用
过程与方法:
培养 特殊到一般 提升 解决几何问题
情感态度价值观:
有些人经常做一些计划,有的计划几乎 不去做 或者做 了坚持 不了多 久。其 实成功 的关键 是做很 坚持。 上帝没 有在我 们出生 的时候 给我们 什么额 外的装 备,也 许你对 未来充 满迷惑 ,也许 你觉得 是在雾 里看花 ,但是 只要我 们不停 的去做 ,去实 践,总 是可以 走到一 个鲜花 盛开的 地方, 也许在 那个时 候,你 就能感 受到什 么叫柳 暗花明 。走向 成功的 过程就 好像你 的起点 是南极 ,而成 功路径 的重点 在北极 。那么 无论你 往哪个 方向走 ,只要 中途的 方向不 变,最 终都会 到达北 极,那 就在于 坚持。
知两边与夹角
例2:在△ABC中,已知a =134.6 cm,b=87.8 cm,c =161.7 cm,解三角形(角度精确到1°,边长精确到1 cm).
知三边
练习1:在△ABC中,已知b=12.9 cm,c=15.4 cm,A=42.3°, 解三角形(角度精确到1°,边长精确到1 cm)
练习2:在△ABC中,已知a=7 cm,b=10 cm, c=6 cm , 解三角形(角度精确到1°,边长精确到1 cm)
学习重要还是人脉重要?现在是一 个双赢 的社会 ,你的 价值可 能更多 的决定 了你的 人脉, 我们所 要做的 可能更 多的是 专心打 造自己 ,把自 己打造 成一个 优秀的 人、有 用的人 、有价 值的人 ,当你 真正成 为一个 优秀有 价值的 人的时 候,你 会惊喜 地发现 搞笑人 脉会破 门而入 。从如 下方 面改进 :1、专 心做可 以提升 自己的 事情; 2、学 习并拥 有更多 的技能 ;3、成 为一个 值得交 往的人 ;4学 会独善 其身, 尽量少 给周围 的人制 造麻烦 ,用你 的独立 赢得尊 重。 理财的时候需要做的一方面提高收入, 令一方 面是节 省开支 。这就 是所谓 的开源 节流。 时间管 理也是 如此, 一方面 要提高 效率, 另一方 面是要 节省时 间。主 要做法 有:1、 同时做 两件事 情(备 注:请 认真选 择哪些 事情可 以同时 做), 比如跑 步的时 候边听 有声书 ;2、 压缩休 息时间 提升睡 眠效率 ,比如 晚睡半 小时早 起半小 时(6~7个小 时即可 );3、 充分利 用零碎 时间学 习,比 如做公 交车、 等车、 上厕所 等。

#高中数学必修五:1.1.2-1《余弦定理》(人教A版必修5)

#高中数学必修五:1.1.2-1《余弦定理》(人教A版必修5)

∠B=120o,求 AC
A
B
120°
解:由余弦定理得
A 2 C A 2 B B 2 C 2 A B B cC B os C
3222232co1s2o0 19
AC 19
答:岛屿A与岛屿C的距离为 19 km.
例1、在△ABC中,已知a= 6 ,b=2,c= 3 ,1
解三角形。
cosA<0,A为钝角,△ABC为钝角三角形。 练习2:在锐角△ABC中,边长a=1,b=2,
求边长c的取值范围。
解:∵coCsa2b2c2 0
a2c2b2
coBs
0
2bc
2ac
3c 5

余弦定理:
推论:
a2b2c22bcco As
cos
b2 A
c2 a2 2bc
b2a2c22acco BscosBc2 a2 b2
例2、已知△ABC的三边为 7 、2、1,
求它的最大内角。
解:设三角形的三边分别为a= 7 ,b=2,c=1
则最大内角为∠A
由余弦定理得coAs b2 c2 a2
2bc
22 12
2
7
221
120
练习1:在△ABC中,已知a=12,b=8,c=6, 判断△ABC的形状。
a2b2c2

C a B ,C b A ,A c B
由向量减法的三角形法则得
c ab
c 2 cc (a b )(a b )

aa 2a b b2b22a ab bcoCs
a2b22ac bo C s
c2a2 b 22 acbo Cs
探 究: 若△ABC为任意三角形,已知角C,

【优化方案】2012高中数学 第1章1.1.2第一课时余弦定理课件 新人教B版必修5

【优化方案】2012高中数学 第1章1.1.2第一课时余弦定理课件 新人教B版必修5

【解】 在△AOB 中,由余弦定理得 |AB|2=|OA|2+|OB|2-2·|OA|·|OB|·cos 60° =32+12-2×3×1×cos 60°=7. × × × = ∴|AB|= 7 km. = 即起初两人相距 7 km. (2)设甲、乙两人 t 小时后的位置分别是 P、Q, 设甲、 设甲 、 , 则|AP|=4t,|BQ|=4t. = , =
余弦定理的实际应用
例4 如图,有两条相交在 °的直线 ′与 如图,有两条相交在60°的直线xx′
yy′,交点是O,甲、乙分别在 、Oy上A、 ′ 交点是 , 乙分别在Ox、 上 、 B处,起初甲离O点3 km,乙离 点1 km,后 处 起初甲离 点 ,乙离O点 , 来两人同时用每小时4 km的速度,甲沿 ′的 的速度, 来两人同时用每小时 的速度 甲沿xx′ 方向,乙沿 ′ 的方向步行 的方向步行. 方向,乙沿y′y的方向步行.
【 解 】 将 a= 1, b= 2 代入 a2 = b2 + c2 - = , = 2bccosA, , 整理得 c2-4ccosA+3=0, + = , 的方程有实数解, 因为关于 c 的方程有实数解, 所以 ∆=16cos2A-12≥0, = - ≥ , 3 3 解得 cosA≥ ,或 cosA≤- . ≥ ≤ 2 2 3 为锐角, 但由于 a<b,所以 A 为锐角,只有 cosA≥ , < , ≥ 2 π 的取值范围是(0, . 故 A 的取值范围是 , ]. 6
例3 在△ABC中,边a=1,b=2,求A的取值 中 = , = , 的取值
范围. 范围. 【分析】 分析】 根据题意可联想到运用余弦定理, 根据题意可联想到运用余弦定理,
将已知条件代入余弦定理得到关于第三边的一 元二次方程,令其判别式不小于 即可求解 即可求解. 元二次方程,令其判别式不小于0即可求解.

余弦定理(第一课时)

余弦定理(第一课时)

余弦定理(第一课时)课例:浙江省宁波市北仑中学 史芝佐点评:浙江省宁波市北仑中学 安凤吉一、课例与分评(一)教学目标1.使学生掌握余弦定理,并会初步运用余弦定理解斜三角形;2.使学生理解用坐标法证明余弦定理的过程,逐步学会用坐标法解决具体问题;3.通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力;4.通过发现教学法,培养学生学习数学的兴趣和热爱科学、献身科学、勇于创新的精神。

[ 点评:知识目标分级详细、适当,能力目标和德育目标具体,并且有很强的针对性,这是上好一节课的前提条件 ](二)教学重点、难点重点:余弦定理及其发现和证明。

难点:余弦定理的证明。

关键:建立适当的直角坐标系。

(三)教具三角板,投影仪,投影片1、2[ 点评:重点、难点、关键抓得准,才能在教学过程中采取有效的措施,突出重点、突破难点,从而实现教学目标 ](四)教学过程1.复习提问T (师,下同):叙述任意角的三角函数的定义。

(在黑板上作图1)S (生,下同):, , sec , , , cos , sin yr cse r y y x ctg x y tg r x r y =====αααααα 它们分别叫做角 的正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数,统称为三角函数。

2.发现T :请同学们考虑并回答下面的问题:在直角三角形中,已知两个锐角和三边共五个元素中的几个怎样的元素,可求其余元素?S :两个元素。

T :是否有不同的意见和补充?S 1:其中至少有一边。

T :好!在这样的条件下,其余元素均可求,这时直角三角形是确定的,那么,在斜三角形中三个角和三边共六个元素,已知几个怎样的元素可确定这个三角形?[ 点评:由于现在学生还不会求斜三角形的其余元素,因而说确定这个三角形是恰当的,可见,教者对于教学语言是进行了仔细斟酌的,这对于一名青年教师来说是难能可贵的。

]S 2:三个,其中至少有一边。

人教A版数学必修5-1.1.2 余弦定理(第一课时) 教学设计

人教A版数学必修5-1.1.2 余弦定理(第一课时) 教学设计

编写时间:2021年月日2021-2022学年第一学期编写人:形体系,确定边角边和边边边是两类可解的解三角形问题,使学生产生进一步探索解决问题的动机. (二) 分析问题,确定方案探究一:已知两边及其夹角解三角形问题:怎样确定解决问题的方案?设置意图:通过学生的独立思考,畅所欲言,确定思路,让更多的学生有的放矢,明确解决问题的方向.学生活动:小组合作,相互讨论,展示结果.过程说明:通过确定方案,放手让学生自己探究发现证明余弦定理.必要时加以引导如:第三边可以放在直角三角形中求解吗?涉及边长和夹角,三角形是三条线段首尾相接所组成的封闭图形,可以用向量的等式来表示吗?两点之间的距离,能用坐标法求解吗?设置意图:将原有的知识与现有的推理相联系,从多个角度联想去发现和解决问题,自主探究获得定理的证明.使其在探究中对问题本质的思考逐步深入,思维水平不断提高. (三) 发现定理,分析内涵不同方法探索并证明余弦定理之后,通过观察余弦定理结构特征,层层深入,去分析余弦定理的内涵.思考:观察C ab b a c cos 2222-+=的结构特征,谈一谈你对等式的理解.设置意图:分析等式的外延和内涵,自然的得到余弦定理及其推论. (四) 解决问题,理解定理得到了余弦定理,继续完成已知边角边求解角的过程,和已知三边解三角形的过程.探究二:已知三边解三角形设置意图:通过解三角形的过程,不但发现余弦定理,还能在求解中进一步理解和应用余弦定理. (五) 例题展示,巩固定理例:在ABC ∆中,已知,30,3,32︒===A b c 解三角形.设置意图:巩固熟悉余弦定理,从例题的思考,展示,交流,点评中使学生对正余弦定理解三角形有进一步的体验. (六) 课堂小结,提炼过程思考:余弦定理及其推论发现和证明的过程是怎样的?在这个过程中你有 什么体会?设置意图:小结环节设置了两个问题:谈过程,谈体会.目的是不但让学生经历整个探究学习过程,还能在此基础上对本节课有整体的认识,说出整个过程的环节,感受以及发现证明定理运用的方法等. (七) 布置作业,课后探究(1) 课本10P A 组3,4题(2) 拓展思考:相等和不等是一对辩证的关系,请根据角的范围讨论余弦定理中所蕴含的相等和不等关系.设置意图:作业一是巩固熟悉利用余弦定理解三角形,作业二的目的是进一步挖掘余弦定理的内涵.。

人教A版高中数学必修5《一章 解三角形 1.1 正弦定理和余弦定理 1.1.2 余弦定理》优质课教案_2

人教A版高中数学必修5《一章 解三角形  1.1 正弦定理和余弦定理  1.1.2 余弦定理》优质课教案_2

§1.1.2余弦定理一、教学内容分析本节内容选自普通高中课程标准实验教科书人教A版《数学》必修5第一章《解三角形》第一节正弦定理和余弦定理。

第一节约4课时,2课时通过探究证明正弦定理,应用正弦定理解三角形;2课时通过探究证明余弦定理,应用余弦定理解三角形。

本节课是余弦定理的第一课时,属于定理教学课。

正余弦定理是定量研究三角形边角关系的基础,它们为解三角形提供了基本方法,为后续解决测量等实际问题提供了理论基础和操作工具。

余弦定理是继正弦定理之后的解三角形又一有力工具,完善了解三角形体系,为解决三角形的边角关系提供了新的方法;是对任意三角形“边、角、边”和“边、边、边”问题进行量化分析的结果,将两种判定三角形全等的定性定理转化为可计算的公式。

纵观余弦定理的发展史,它的雏形出现公元前3世纪。

在欧几里得《几何原本》卷二对钝角三角形和锐角三角形三边关系的阐述中,利用勾股定理将余弦定理的几何形式进行了证明。

1593年,法国数学家韦达首次将欧几里得的几何命题写成了我们今天熟悉的余弦定理的三角形式,直到20世纪,三角形式的余弦定理才一统天下。

“余弦定理是作为勾股定理的推广而诞生的,以几何定理的身份出现,直到1951年,美国数学家荷尔莫斯在其《三角学》中才真正采用解析几何的方法证明了余弦定理,至于向量方法的出现,更是晚近的事了。

”从新旧教材的内容设计对比来看,无论是问题的提出,定理的证明,简单应用都呈现出变化。

旧教材数学第二册(下)中,余弦定理被安排在第五章《平面向量》的第二节解斜三角形中。

基于特殊到一般的数学思想,从直角三角形切入,提出问题后,直接用向量的方法推导定理。

新教材将余弦定理安排在独立章节《解三角形》中,首先给出探究:如果已知一个三角形的两边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形,从量化的角度研究这个问题,也为余弦定理解三角形的类型做了铺垫。

在定理的推导过程中,同样用了向量方法,但在推导前提出思考:联系已经学过的知识,我们从什么途径来解决这个问题?新教材还结合余弦定理和余弦函数的性质,分别对三种形状的三角形进行了量化分析,旧教材没有涉及此内容。

人教版数学必修五1.1.2 余弦定理 课件 (共17张PPT)

人教版数学必修五1.1.2 余弦定理 课件 (共17张PPT)

2tanα 1-tan2α
06:37:52
创设情境 兴趣导入
引例 2009年10月,内蒙古交通设计研究院有限责任公司在设
计丹锡高速赤峰二道井子段(K166+280~K166+570)时,为保护
夏家店文化文物,需要挖掘隧道,勘测人员将隧道口A和B定位在 山的两侧(如图),在平地上选择适合测量的点C ,如果∠C=60°,
可以证明,上述结论对于任意三角形都成立.于是得到余弦 定理.
06:37:52
动脑思考 探索新知
余弦定理 三角形任何一边的平方等于其它两边的平方和 减去这两边的长与它们的夹角的余弦乘积的2倍. 即 2 2 2 a b c 2bc cos A
b a c 2ac cos B
c a b 2ab cos C
第一章
三角公式及应用
1.2.1 余弦定理
授课班级:14普教 授课教师:郭清山 2016年11月6日
06:37:52
知识积累 复习巩固
1、正弦二倍角公式 sin2α= 2sinαcosα
2、余弦二倍角公式 cos2α-sin2α cos2α= 2cos2α-1 1-2sin2α 3、正切二倍角公式 tan2α=
约为12.12m.
D B
A
06:37:52
归纳总结 理论升华
余弦定理的内容是什么?
a 2 b2 c 2 2bc cos A b2 a 2 c 2 2ac cos B c 2 a 2 b2 2ab cos C
夜半偶句
余弦定理考夹角,两边平方和求好; 减去倍乘抠塞角,三边平方见分晓。
分析 这是已知三角形 ∠A=44°25′, 的三边,求其它元 素的问题,可以直 ∠B=101°32′, 接应用余弦定理变 ∠C=180°-∠A-∠B=34°3′. 形公式1.22. 查表或计算器可得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
a 2 + b2 - c2 cos C= 2a b
例2 在ABC中 a=3,b=5,c=7,解这个三角 形(角度精确到1′).
解:cos C=
a2+b2-c2 2ab
3 +5 -7 1 - , 2 3 5 2
2 2 2
所以C =120°.
b2+c2-a2 ≈0.9286, cos A= 2bc
° ° °
结合正弦定理和余弦定理,已知三 角形任意3个元素,都可以很好的解决三 角形问题,进而也可以解决与三角形有 关的问题.
2 2 2 2 2
a + b - 2ab cos C.
2 2
所以c a + b - 2ab cos C.
2 2 2
同理也可以证明: a2=b2+c2-2bccos A
b2= a2+c2-2accos B
所以可以得出以下定理:
余弦定理:三角形中任何一边的平方等 于其他两边的平方的和减去这两边与它 们夹角的余弦的积的两倍.
A
B
Q AB AC + CB,
\ AB AB ( AC + CB) ( AC + CB) AC + 2 AC CB + CB
2
C
2
2
2
AC + 2 AC CB cos(180° - C ) + CB
b 2 - 2ab cos C + a 2
2 2 2 + - 2ab cos C. c a b 即
所以 AB2=AD2+BD2=(4sin 60°)2+(3- 4 cos60°)2 =42+32-2×3×4cos 60°.
C
所以 AB= 3 . 猜想:AB ² =AC ² +BC ² -2AC×BC×cos C对任意三 角形是否成立?
证明:(法一)在△ABC中,AB,BC,CA的 长分别为c,a,b.
所以A≈21°47′.
所以B=180°-(A+C)=38°13′.
可以看出:余弦定理及其推论把用“边、 角、边”和“边、边、边”判定三角形全等的 方法从数量化的角度进行了刻画,使其变成了 可以计算的公式.
勾股定理指出了直角三角形中三边平方和 之间的关系,而余弦定理指出了任意三角形三 边平方和之间的关系,如何看待这两个定理之 间的联系呢? 由a2=b2+c2-2bccos A可得 若A为直角,则a² =b ² +c² 若A为锐角,则a² <b ² +c²
若A为钝角,则a² >b ² +c²
因此,余弦定理可以看做是勾股定理的 推广,勾股定理是余弦定理的特殊情况.
练习:
(1)在△ABC中,已知b 4 3,c 2 3, A 120°,求a. (2)在△ABC中,已知a 2 6,b 2 2, c 6 + 2,求三角形的三个角.
答案: 1.a 2 21. 2. A 60 ,B 45 ,C 75 .
2 2 2
64 + 9 - 2 8 3cos 60° 49, 所以a 7.
余弦定理指出了三角形三条边与其中一个 角之间的关系,应用余弦定理我们可以解决已 知三角形的三边来确定三角形的角的问题吗? 余弦定理的推论:
cos A=
cos B=
b a
2
2
+c -a 2b c 2 2 +c -b 2a c
a2=b2+c2-2bccos A
b2= a2+c2-2accos B
c2 =a2+b2-2ab夹 角计算出三角形的第三条边.即已知两边和它 们的夹角,求第三边和其它两个角. 例1 已知b=8,c=3,A=60°,求a的值.
解:因为a b + c - 2bc cos A
(法二)以CB所在的直线为x 轴,过C点垂直于CB的直线为y 轴,建立如图所示的坐标系,则 A,B,C三点的坐标分别为:
A(b cos C,b sin C ),B(a,, 0) C (0, 0).
所以AB 2 (b cos C - a) 2 + (b sin C - 0) 2 b cos C - 2ab cos C + a + b sin C
1.1.2余弦定理
第1课时
复习回顾:
a b c 2R 正弦定理: sin A sin B sin C
a 2 R sin A,b 2 R sin B,c 2 R sin C 变型:
a : b : c sin A : sin B : sin C
正弦定理可以解决哪两类有关三角形的问题? (1)已知两角和任一边; (2)已知两边和一边的对角.
如果已知三角形的两边及其夹角, 那么这个三角形的大小,形状就完全确 定了. 那么如何求这个三角形另外一边和 另外两个角呢?
例 已知∠C=60°,AC=4,BC=3,求AB的长. 解: 过A作BC边上的高AD,则
A D B
AD=4sin 60°,CD=4cos 60°,
BD=3-4cos 60°,
相关文档
最新文档