多元线性回归中多重共线问题的解决方法综述
多元线性回归中多重共线性的处理

假定名称 正态性 对扰动项 的假定 零均值 同方差 互独立 非随机 对自变量 X 的假定 对 X 与 的假定 不相关 不相关
假定条件
N 0, 2 且
Cov i , j 0
i j
解释是确定型变量 解释变量间不存在 线性相关关系
姓 班 学
名: 级: 号:
指导老师:
liuwenying 2011/1/12
中南大学数学院统计系
目录
多元线性回归中多重共线性的处理 ................................................................................................... 3 1. 引言 ........................................................................................................................................... 3 2. 多元线性回归 ........................................................................................................................... 3 2.1 2.2 2.3 多元线性回归分析的基本假定 ........................................................................................ 4 回归参数的最小二乘估计及其性质 ................................................................................ 4 上海市全社会固定投资影响因素分析 ............................................................................ 4
多重共线性的诊断方法和解决方法综述-计量经济学论文-经济学论文

多重共线性的诊断方法和解决方法综述-计量经济学论文-经济学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:多元线性回归模型的经典假定之一是解释变量之间不存在线性关系。
但在实际应用中,多元线性回归模型中的解释变量之间往往存在近似的线性关系,如果仍然用最小二乘法估计模型,会造成分析结果不准确甚至严重偏离变量间本来的依存关系。
为此,首先总结了多重共线性的检验方法,然后探讨了多重共线性常用的修正方法,最后结合实例演绎了逐步回归法和主成分回归法的具体应用,为现实经济问题中多重共线性的检验与处理提供一定借鉴。
关键词:多重共线性; 诊断; 补救措施; 逐步回归法; 主成分回归;Abstract:There being no linear relationship among interpretation variables is one of the classical assumptions in multiple linear regression model.However,in the practical application,there is often an approximate linear relation.If we still use the method ofordinary least squares to estimate the model,the result may become incorrect and even far from the original relationship among the variables.Therefore,the paper first summarizes the test methods of Multicollinearity.And then,the paper summarizes the commom correction methods of multicollinearity.Finally,the application of stepwise regression and principal component regression is deduced by using an example.The research will provide some reference for the test and treatment of multicollinearity in real economic problems.Keyword:multicollinearity; diagnosis; remedial measures; stepwise regression; principal component regression;多重共线性是指模型中解释变量间存在相关关系。
多元回归分析中的多重共线性及其解决方法

多元回归分析中的多重共线性及其解决方法在多元回归分析中,多重共线性是一个常见的问题,特别是在自变量之间存在高度相关性的情况下。
多重共线性指的是自变量之间存在线性相关性,这会造成回归模型的稳定性和可靠性下降,使得解释变量的效果难以准确估计。
本文将介绍多重共线性的原因及其解决方法。
一、多重共线性的原因多重共线性常常发生在自变量之间存在高度相关性的情况下,其主要原因有以下几点:1. 样本数据的问题:样本数据中可能存在过多的冗余信息,或者样本数据的分布不均匀,导致变量之间的相关性增加。
2. 选择自变量的问题:在构建回归模型时,选择了过多具有相似解释作用的自变量,这会增加自变量之间的相关性。
3. 数据采集的问题:数据采集过程中可能存在误差或者不完整数据,导致变量之间的相关性增加。
二、多重共线性的影响多重共线性会对多元回归模型的解释变量产生不良影响,主要表现在以下几个方面:1. 回归系数的不稳定性:多重共线性使得回归系数的估计不稳定,难以准确反映各个自变量对因变量的影响。
2. 系数估计值的无效性:多重共线性会导致回归系数估计偏离其真实值,使得对因变量的解释变得不可靠。
3. 预测的不准确性:多重共线性使得模型的解释能力下降,导致对未知数据的预测不准确。
三、多重共线性的解决方法针对多重共线性问题,我们可以采取以下几种方法来解决:1. 剔除相关变量:通过计算自变量之间的相关系数,发现高度相关的变量,选择其中一个作为代表,将其他相关变量剔除。
2. 主成分分析:主成分分析是一种降维技术,可以通过线性变换将原始自变量转化为一组互不相关的主成分,从而降低多重共线性造成的影响。
3. 岭回归:岭回归是一种改良的最小二乘法估计方法,通过在回归模型中加入一个惩罚项,使得回归系数的估计更加稳定。
4. 方差膨胀因子(VIF):VIF可以用来检测自变量之间的相关性程度,若某个自变量的VIF值大于10,则表明该自变量存在较高的共线性,需要进行处理。
回归分析中的多重共线性问题及解决方法(七)

回归分析是统计学中常用的一种方法,它用于研究自变量和因变量之间的关系。
然而,在实际应用中,经常会遇到多重共线性的问题,这给回归分析带来了一定的困难。
本文将讨论回归分析中的多重共线性问题及解决方法。
多重共线性是指独立自变量之间存在高度相关性的情况。
在回归分析中,当自变量之间存在多重共线性时,会导致回归系数估计不准确,标准误差增大,对因变量的预测能力降低,模型的解释能力受到影响。
因此,多重共线性是回归分析中需要重点关注和解决的问题之一。
解决多重共线性问题的方法有很多种,下面将介绍几种常用的方法。
一、增加样本量增加样本量是解决多重共线性问题的一种方法。
当样本量足够大时,即使自变量之间存在一定的相关性,也能够得到较为稳健的回归系数估计。
因此,可以通过增加样本量来减轻多重共线性对回归分析的影响。
二、使用主成分回归分析主成分回归分析是一种常用的处理多重共线性问题的方法。
主成分回归分析通过将原始自变量进行线性变换,得到一组新的主成分变量,这些主成分变量之间不存在相关性,从而避免了多重共线性问题。
然后,利用这些主成分变量进行回归分析,可以得到更为准确稳健的回归系数估计。
三、岭回归岭回归是一种经典的解决多重共线性问题的方法。
岭回归通过对回归系数施加惩罚项,从而减小回归系数的估计值,进而降低多重共线性对回归分析的影响。
岭回归的思想是在最小二乘估计的基础上加上一个惩罚项,通过调节惩罚项的系数来平衡拟合优度和模型的复杂度,从而得到更为稳健的回归系数估计。
四、逐步回归逐步回归是一种逐步选择自变量的方法,可以用来解决多重共线性问题。
逐步回归可以通过逐步引入或剔除自变量的方式,来得到一组最优的自变量组合,从而避免了多重共线性对回归系数估计的影响。
以上所述的方法都可以用来解决回归分析中的多重共线性问题。
在实际应用中,应该根据具体的情况选择合适的方法来处理多重共线性问题,从而得到准确可靠的回归分析结果。
总之,多重共线性是回归分析中需要重点关注的问题,通过合适的方法来处理多重共线性问题,可以得到更为准确稳健的回归系数估计,从而提高回归分析的预测能力和解释能力。
多重共线性解决方法

多重共线性解决方法
多重共线性是指在回归模型中,自变量之间存在高度相关性的情况,这会导致模型的解释能力下降,系数估计不准确,模型的稳定性受到影响。
以下是一些解决多重共线性问题的方法:
1.增加样本量:通过增加样本量可以减少模型中的抽样误差,从而减轻多重共线性的影响。
2.删除冗余变量:通过剔除高度相关的自变量,可以降低共线性的程度。
可以使用相关性矩阵或者变量膨胀因子(VIF)来判断哪些自变量之间存在高相关性,并选择保留一个或几个相关性较为弱的变量。
3.主成分分析(PCA):主成分分析可以将高度相关的自变量转换成一组无关的主成分,从而降低共线性的影响。
可以选择保留其中的几个主成分作为新的自变量,代替原始的自变量。
4.岭回归(Ridge Regression):岭回归是在普通最小二乘法的基础上加入一个正则化项,通过缩小系数估计的幅度,减少共线性对系数估计的影响。
岭回归可以通过交叉验证选择合适的正则化参数。
5.套索回归(Lasso Regression):套索回归也是在普通最小二乘法的基础上加入一个正则化项,不同的是套索回归使用L1范数作为正则化项,可以将一些系
数估计缩减为零,从而实现变量选择的效果。
6.弹性网回归(Elastic Net Regression):弹性网回归是岭回归和套索回归的结合,同时使用L1和L2范数作为正则化项,可以在预测准确性和变量选择之间进行权衡。
以上方法可以根据具体问题的特点和需求选择合适的方法来解决多重共线性问题。
回归模型中多重共线性的情形及其处理

丫= 1+ 8人-4人+ 3为=1 + 8人-(3X2+ 2)+ 3为=7+ 8人-9%(1.5)在(1.4)中,X2的系数为12,表示丫与为成正比例关系,即正相关;而在(1.5)中,X2的系数为-9,表示丫与X?成负比例关系,即负相关。
如此看来,同一个方程丫= 1+ 4片+ 3X2变换出的两个等价方程,由于不同的因式分解和替换,导致两个方程两种表面上矛盾的结果。
实际上,根据X1 = 3为+ 2式中的X1与为的共线性,X1约相当于3X2, 在(1.4)减少了3人,即需要用9个X2来补偿;而在(1.5)增加了4人, 需要用12个X2来抵消,以便保证两个方程的等价性,这样一来使得(1.5)中为的系数变为了负数。
从上述分析看来,由于X i与勺的共线性,使得同一个方程有不同的表达形式,从而使得丫与为间的关系难以用系数解释。
2•对多重线性关系的初步估计与识别如果在实际应用中产生了如下情况之一,则可能是由于多重共线性的存在而造成的,需作进一步的分析诊断。
①增加(或减去)一个变量或增加(或剔除)一个观察值,回归系数发生了较大变化。
②实际经验中认为重要的自变量的回归系数检验不显著。
③回归系数的正负号与理论研究或经验相反。
④在相关矩阵中,自变量的相关系数较大。
⑤自变量回归系数可信区间范围较广等。
3•对多重共线性本质的认识多重共线性可分为完全多重共线性和近似多重共线性(或称高度相关性),现在我们集中讨论多重共线性的本质问题。
多重共线性普遍被认为是数据问题或者说是一种样本现象。
我们认为,这种普遍认识不够全面,对多重共线性本质的认识,至少可从以下几方面解解。
(3)检验解释变量相互之间的样本相关系数。
假设我们有三个解释变量X i、X2、X3,分别以「12、「13、「23 来表示X i 与X2、X i 与X3、X2与X3之间的两两相关系数。
假设r i2 = 0.90,表明X i与X2之间高度共线性,现在我们来看相关系数「12,3,这样一个系数我们定义为偏相关系数,它是在变量X3为常数的情况下,X i与X2之间的相关系数。
多重共线性的处理

14
主成分数学模型以及几何意义
假设我们所讨论的实际问题中,有p个指标,我们把这p个指 标看作p个随机变量,记为X1,X2,…,Xp,主成分分析就 是要把这p个指标的问题,转变为讨论p个指标的线性组合的 问题,而这些新的指标F1,F2,…,Fk(k≤p),按照保留 主要信息量的原则充分反映原指标的信息,并且相互独立。
这样反复进行,直到再无新变量可以引入,旧变量无法提出 位置。最终建立回归方程
在变量引入后,如果有的变量不显著,则说明新引入的变量 与其他变量存在多重共线性。此时我们将最显著程度达不到 标准的变量剔除。在这个过程中,我们达到了消除多重共线 性的效果。
第二种方法:主成分分析法
主成分分析法是利用降维的思想,在保留原始变量尽可能多 的信息的前提下把多个指标转化为几个综合指标的方法。 通常把转化生成的综合指标称为主成分,每一个主成分都是 原始变量的线性组合,但是各个主成分之间没有相关性,这 就解决的多重共线性的问题。
如果第一主成分不足以代替原来的几个变量的信息,再考虑 选取第二个主成分F2。为了消除多重共线性,要求协方差 cov(F1,F2)=0 以此类推可以选取第三主成分,第四主成分…这些主成分之 间不仅互不相关,而且它们的方差依次递减。 一般来说,选取多少个主成分能够反映原始变量方差的85% 时的个数就足够了。
满足如下的条件:
主成分之间相互独立,即无重叠的信息。即
Cov(Fi,Fj) 0,i j,i,j 1, 2, ,p
主成分的方差依次递减,重要性依次递减,即
Var(F1) Var ( F2 ) Var ( Fp )
10
平移、旋转坐标轴
x2 F2 F1
•• • • • • • • • • • • •• • •• • 成分分析的几何解释 •• • • • •• • • • • •• • • • • • •
多元线性回归模型常见问题及解决方法

特点
03
04
05
适用于多个自变量对因 变量的影响研究;
适用于线性关系假设下 的数据;
可通过参数估计和模型 检验来评估模型的可靠 性和预测能力。
多元线性回归模型的应用场景
经济预测
用于预测股票价格、GDP等经济指标;
市场营销
用于分析消费者行为、预测销售额等;
医学研究
用于分析疾病风险因素、预测疾病发 病率等;
自相关问题
残差序列之间存在相关性,违 反了线性回归模型的独立性假 设。
异常值和离群点问题
异常值和离群点对回归模型的 拟合和预测精度产生影响。
解决方法的总结与评价
01
02
03
04
05
多重共线性的解 决方法
异方差性的解决 方法
自相关问题的解 决方法
解释变量的选择 异常值和离群点
方法
处理方法
如逐步回归、主成分回归 、岭回归和套索回归等。 这些方法在处理多重共线 性问题时各有优缺点,需 要根据具体问题和数据特 点选择合适的方法。
2. 稳健标准误
使用稳健标准误来纠正异方差性 对模型估计的影响。
总结词
异方差性是指模型残差在不同观 测点上的方差不相等,导致模型 估计失真。
3. 模型诊断检验
使用如White检验、BP检验等异 方差性检验方法来诊断异方差性 问题。
自相关问题
01
02
03
04
05
总结词
详细描述
1. 差分法
2. 广义最小二乘 3. 自相关图和偏
详细描述
例如,在时间序列数据中,如果一个观测值的残差 与前一个观测值的残差正相关,则会导致模型的预 测精度降低。
解决方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元线性回归中多重共线问题的解决方法综述摘 要在回归分析中,当自变量之间出现多重共线性现象时,常会严重影响到参数估计,扩大模型误差,并破坏模型的稳健性,因此消除多重共线性成为回归分析中参数估计的一个重要环节。
现在常用的解决多元线性回归中多重共线性的回归模型有岭回归(Ridge Regression )、主成分回归(Principal Component Regression 简记为PCR)和偏最小二乘回归(Partial Least Square Regression 简记为PLS)。
关键词:多重共线性;岭回归;主成分回归;偏最小二乘回归引言在多元线性回归分析中,变量的多重相关性会严重影响到参数估计,增大模型误差,并破坏模型的稳健性 由于多重共线性问题在实际应用中普遍存在,并且危害严重,因此设法消除多重性的不良影响无疑具有巨大的价值常用的解决多元线性回归中多重共线问题的回归模型主要有主成分回归岭回归以及偏最小二乘回归。
1、 多元线性回归模型1.1 回归模型的建立设Y 是一个可观测的随机变量,它受m 个非随机因素X 1,X 2,…,X p-1和随机因素ε的影响, 若有如下线性关系我们对变量进行了n 次观察,得到n 组观察数据(如下),对回归系数 进行估计一般要求n>P 。
于是回归关系可写为采用矩阵形式来表示0112211p p Y X X X ββββε--=+++++n i X X X Y p i i i i ,,1,,,,)1(2,1⋅⋅⋅=⋅⋅⋅-1011121211(1)12012122212(1)2011221(1)p p p p n n n p n p n Y X X X Y X X X Y X X X ββββεββββεββββε------=+++++⎧⎪=+++++⎪⎨⎪⎪=+++++⎩11121,(1)121222,(1)212,(1)111, 1 p p n n n n p n n pX X X Y X X X Y Y X Y X X X ---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦)1(10,,,p -⋅⋅⋅βββY 称为观测向量,X 称为设计矩阵,ε称为误差向量,β称为回归参数。
则误差的平方和求参数β的估计使得用最小二乘法估计得正规方程:由于X 为列满秩,所以 X TX 可逆,由此解得1.2 多重共线性的产生当 时,表明在数据矩阵X中,至少有一个列向量可以用其余的列向量线性表示,则说明存在完全的多重共线性。
即()10-=X X X X T T ,不存在,而Y X X X T T 1ˆ-=)(β导致β无法估计。
1.3多重共线性的产生的原因(1)经济变量之间往往存在同方向的变化趋势。
当他们被引入同一个模型成为解释变量时,会出现多重共线性。
(2)模型中包含滞后变量,变量各期值之间有可能高度相关。
(3)利用截面数据建立模型也可能出现多重共线性。
(4)经济变量之间往往存在着密切的内在关联度,要素之间互相制约,互相依存。
(5)样本数据自身的原因,数据收集的范围过窄,造成某些解释变量之间似乎有相同或相反变化趋势的假象。
(6)在建模过程中由于解释变量选择不当,引起变量之间的多重共线性。
2 处理多重共线性的方法2. 1处理多重共线性的经验式方法0112111, p n n p βεβεβεβε-⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦βββββββεβX T X T X T Y Y T X T Y T Y X Y T X Y X Y s +--=--=-==)()(2)(2)ˆ,,ˆ,ˆ(ˆ)1(10p -⋅⋅⋅=ββββ)(min )ˆ(ββS S =02)2()2()]()[()(=+-=+-∂∂=+-∂∂=--∂∂=∂∂ββββββββββββββX X X Y X X X Y X X X Y Y Y X Y X Y T T T T T T T T T T sYX X X T T =β)(Y X X X T T 1)(ˆ-=βP X Rank <)(2. 1.1 删除不重要的共线性变量最常见的一种思路是设法去掉不太重要的共线性变量。
有些应用人员认为,可以采用多元回归分析中的向前选择变量、向后删除变量法或逐步回归法来进行变量的筛选。
然而,在理论上,这些变量筛选方法都是针对无共线性的数据而言的。
在多重共线性十分严重的情况下,结论的可靠性都要受到一定的影响。
由于变量间多重共线性的形式十分复杂,而且还缺乏十分可靠的检验方法,所以,删除部分多重共线性变量的做法常导致增大模型的解释误差,将本应保留的系统信息舍弃,使得接受一个错误结论的可能和做出错误决策的风险都不断增大。
另外,在一些模型中,从理论上要求一些重要的解释变量必须被包括在模型中,而这些变量又存在多重共线性。
这时采用删除部分共线性变量的做法就不符合实际工作的要求。
2.1.2 增加样本容量增加样本的容量在某种程度上会减轻多重共线性对模型估计的影响,而且对某些样本数据来说,变量间的多重共线性可能正是由于样本容量过小而造成的。
然而,在实际工作中,由于时间、经费以及客观条件的限制,增大样本容量的方法常常是不可行的。
2.1.3 变量转换的方式在少数情况下,当基于理论背景认为所有的变量都极其重要,但相互之间存在严重的多重共线性时,对方程的变量进行变换有时至少能在一定程度上消除共线性。
两种最常用的变换方法为:(1) 构造一个多重共线性变量的组合。
此方法就是构造一个新的变量,这一新变量是多重共线性变量的函数,进而以这一新变量来替代回归方程中的具有多重共线性的那些旧变量。
但要注意的是,只有当新变量本身有意义时,才可以考虑采用组合变量这一方法。
(2) 把方程的函数形式转换为一阶差分形式。
若把一个方程(或一个方程中的几个变量)从它的常规设定形式转换为一阶差分的设定形式,就很有可能会大大降低多重共线性的程度。
由于一阶差分方法损失了一个观测值(即样本数据少了一个),这在小样本的情况下是极不可取的。
2.2岭回归根据高斯-马尔科夫定理,在线性回归模型的基本假设满足时,用最小二乘法得到的回归系数估计量是无偏的且具有最小方差。
可以证明,即使在高度多重相关的情况下,最小二乘法的回归系数估计量依然是线性无偏的,且具有最小方差。
也就是说,多重共线性并不影响最小二乘估计量的无偏性和最小方差性。
因此在所有的线性无偏估计中,最小二乘估计仍具有比较小的方差,这并不意味着最小二乘估计量的方差一定是最小的,因为,虽然它在所有的线性无偏估计量中是方差较小,但是这个方差却不一定小。
于是就启发我们,是否可以找到某一个有偏估计,这个有偏估计虽然有微小的偏差,但它的精度却能够大大高于无偏的估计量。
在许多情况下,我们更愿意选用这个估计量,因为它接近真实参数值的可能性更大。
岭回归就是一种基于放弃回归系数一般最小二乘估计的无偏估计性要求的方法。
基本思想:当出现多重共线性时,0≈X X T,从而使参数的 Y X X X TT1)(-=β很不稳定,出现不符合含义的估计值,给X X T加上一个正常数矩阵0)>(K I K ,则 I+K X X T等于0的可能性就比X X T 的可能性要小得多,再用Y X X X T T 1ˆ-=)(β来估计, 比用普通最小二乘估计的要稳定得多。
2.3主成分回归基本思想:如果观察了n 个样本点,得到因变量y 和p 个自变量x1,x2, …,xp 为后续分析方便起见,并且不失一般性,可假设它们都是标准化变量(均值为零方差为1)自变量x 0=(x 1,x 2,… ,x p )间的相关数矩阵记为R 。
用主成分回归方法的第1步,是完全撇开因变量y ,单独考虑对自变量集合做主成分提取。
其过程是:(1)求R 的前m 个非零特征值0m 21>>⋅⋅⋅>>λλλ ,以及相应的特征向量u 1,u 2,… ,u m 。
(2)求m 个主成分:F h =X 0u h h=1,2, … ,m 。
可以证明,这m 个主成分有如下性质: ①均值为零:E(F h )=0,h=1,2, … ,m ; ②若方差算子用var(⋅)表示,var(F h )=hλ h=1,2,…,m 所以有) var(F )var(F )var(F m21≥⋅⋅⋅≥≥。
从这个性质可知,F1之所以被称为第1主成分,是由于它携带了原自变量系统中最多的变异信息也就是说,如果要以一个综合变量来概括原来所有的自变量,并希望数据变异信息损失最小,则第1主成分是最好的选择它对原变异信息的反映精度为PX Q P j j111)var(λλ==∑=③第1主成分与所有原变量的相关度可达到最大。
即最优化问题:∑=∈pj jx u x r PRu 12),(max 其中r (⋅ ,⋅)为相关系数算子 它的解是1*u u =,而x 0u 1=F 1。
因此,若要寻找一个综合变量,它能和原来所有的自变量最相关,这个变量就是第1主成分F1。
④主成分F 1,F 2, … ,F m 是彼此无关的变量,即协方差为cov(F j ,F k )=0 j ≠k 。
由于主成分之间不再存在自相关现象,这就对解决多重相关性下的回归建模问题给出了某种希望。
这种成分提取的思路是十分可取的 问题在于,在上述成分提取过程中,完全没有考虑与因变量y 的联系。
这样所得到的第1 (或前几个)主成分可能会对自变量系统有很强的概括能力,而对y 的解释能力却变得十分微弱。
2.4偏最小二乘回归基本思想:(1)若记t 1=X 0w 1,则上述的数学原则可表达成优化问题:∑=⋅∈pj W X W X y r PRu 12)var(),(max (2)分别施行X 0和y 在t 1上的回归:X 0=t 1p 1'+X 1 其中p 1为回归系数,p 1=;'2110t t X X 1是残差矩阵。
而y=r 1t 1+y 1,其中r1=211't t y ;y 1是残差向量 (3)以残差矩阵X 1和y 1替代X 0和y ,采用类似于提取t 1的方法,可以进行第2个综合变量t2的提取,然后施以回归:X 1=t 2p 2'+x 2,y 1=r 2t 2+y 2如此循环往复,直到提取了A 个综合变量t 1,t 2, … ,t A (阶数A 的确定目前流行采用“交差有效性”)。
做y 对成分t 1,t 2, ,t A 的普通多元线性回归,得到*++⋅⋅⋅++=A A A y t t t y ααα2211而由于每一个t h 均为x 1,x 2, ,x p 的线性组合(X 0=x 1,x 2, … ,x p ),因此可以最终写出PLS1回归模型:A P P y X X X y ++⋅⋅⋅++=βββ2211从PLSR 回归的工作过程看,它采取的是一种循环式的信息分解与提取方法它在多变量集合中逐次提取成分t 1,t 2, ,t A ,它们对y 的解释能力最强,同时又最能概括X 0中的信息而同时,对y 没有解释意义的信息则自动地被排除掉了。