树型动态规划(C++版)
文件目录结构的树形显示(数据结构课程设计,树、队列,C语言描述)

⽂件⽬录结构的树形显⽰(数据结构课程设计,树、队列,C语⾔描述)⼀、要解决的问题给出某⼀个操作系统下⽬录和⽂件信息,输⼊的数据第⼀⾏为根⽬录节点。
若是⽬录节点,那么它的孩⼦节点将在第⼆⾏中被列出,同时⽤⼀对圆括号“()”界定。
同样,如果这些孩⼦节点中某⼀个也是⽬录的话,那么这个⽬录所包含的内容将在随后的⼀⾏中列出,由⼀对圆括号“()”界定。
⽬录的输⼊输⼊格式为:*name size,⽂件的输⼊输⼊格式为:name size。
Name为⼀串不超过10个字符组成,并且字符串中不能有‘(’,‘)’,‘[‘,’]’和’*’。
Size是该⽂件/⽬录的⼤⼩,⽂件的size输⼊值为该⽂件的⼤⼩,⽬录的size输⼊值都为1。
树结构最多10层,每⼀层最多2个⽂件/⽬录。
要求编程实现将其排列成⼀棵有⼀定缩进的树,输出要求:第d层的⽂件/⽬录名前⾯需要缩进8*d个空格,兄弟节点要在同⼀列上。
并计算每⼀个⽬录⼤⼩,⽬录⼤⼩为所包含的所有⼦⽬录和⽂件⼤⼩以及⾃⾝⼤⼩的总和。
例如输⼊:*/usr 1(*mark 1 *alex 1)(hw.c 3 *course 1) (hw.c 5)(aa.txt 12)输出|_*/usr[24]|_*mark[17]| |_hw.c[3]| |_*course[13]| |_aa.txt[12]|_*alex[6]|_hw.c[3]⼆、算法基本思想描述:采⽤孩⼦兄弟双亲链表的数据存储结构建⽴⼆叉树,再先序遍历该⼆叉树输出所有节点。
输出时,通过parent节点的第⼀个孩⼦是否有兄弟节点控制缩进输出” | ”或” ”;⽬录的⼤⼩为该⽬录左⼦树(以其第⼀个孩⼦为根的树)所有节点的size和加上它本⾝⼤⼩。
三、设计1. 数据结构的设计和说明在⼀开始设计要采⽤的数据结构时,虽然课题只要求“树结构最多10层(树的深度),每⼀层最多2个⽂件/⽬录”,考虑到问题的实际意义,我决定把它优化消除这⼀限制,于是采⽤孩⼦兄弟的数据结构,后来由于缩进输出的需要⼜增加了parent域。
数据结构(c语言版).

严蔚敏 清华大学 谭浩强 清华大学 徐孝凯 电子工业 张基温 电子工业 庞丽萍 华中科技大学
数据库基础与应用 王 利 中央电大
ISBN 7-5084-1648-1 / TP. 706 网页制作实例教程 齐建玲 中国水利水电 …
…
…
… 返回
【例1-2】磁盘目录结构和文件管理系统
root bin math ds sw lib user zhao jiang shao li etc
四类数据基本结构的示意图:
(a)集合结构
(b)线性结构
(c)树型结构
(d)图形结构
由以上例子可见,描述这类非数值计算问题的数学模型和
方法不再是数学方程,而是诸如线性表、树和图之类的数据
结构。
数据结构示例 【例1-1】图书目录表
由于表中每条记录(表示每一本书)的登录号各不相同,
所以可用登录号来唯一地标识每条记录(一本图书)。在计
5.什么是存储结构?主要有哪些主要的存储结构?
数据的存储结构:数据的存储方式.反映数据在计算 机内部的存储形式,是逻辑结构在计算机中的实现 方法. 数据既可以顺序存储在内存中如数组存储,也可以 离散存储在内存中(动态内存分配,指针管理). 如线性结构举例. 数据的常用存储结构:顺序存储结构和链式存储结 构. 以及散列、索引结构.
数据结构:非数值计算的程序设计问题中数据元素 以及它们之间的关系和操作的总称. 程序设计中数据是必须的,但是否应用数据结构则 并不是必需的.
4.数据结构的抽象和一般对象的抽象其主要不同 点是什么?
对象的抽象:与需求密切相关. 如:身份证管理侧重于人的籍贯,出生年月和 身份证号和住址. 而学籍管理关心的学生 的学号,姓名和成绩单. 数据结构的抽象:与需求一般是无关的.只是与管 理和访问数据的方式有关.任意类型的数据都可 以采用统一的接口来操作.
动态规划状态转移方程

1.资源问题1-----机器分配问题F[I,j]:=max(f[i-1,k]+w[i,j-k])2.资源问题2------01背包问题F[I,j]:=max(f[i-1,j-v[i]]+w[i],f[i-1,j]);3.线性动态规划1-----朴素最长非降子序列F[i]:=max{f[j]+1}4.剖分问题1-----石子合并F[i,j]:=min(f[i,k]+f[k+1,j]+sum[i,j]);5.剖分问题2-----多边形剖分F[I,j]:=min(f[i,k]+f[k,j]+a[k]*a[j]*a[i]);6.剖分问题3------乘积最大f[i,j]:=max(f[k,j-1]*mult[k,i]);7.资源问题3-----系统可靠性(完全背包)F[i,j]:=max{f[i-1,j-c[i]*k]*P[I,x]}8.贪心的动态规划1-----快餐问题F[i,j,k]:=max{f[i-1,j',k']+(T[i]-(j-j')*p1-(k-k')*p2) div p3}9.贪心的动态规划2-----过河f[i]=min{{f(i-k)} (not stone[i]){f(i-k)}+1} (stone[i]); +贪心压缩状态10.剖分问题4-----多边形-讨论的动态规划F[i,j]:=max{正正 f[I,k]*f[k+1,j];负负 g[I,k]*f[k+1,j];正负 g[I,k]*f[k+1,j];负正 f[I,k]*g[k+1,j];} g为min11.树型动态规划1-----加分二叉树 (从两侧到根结点模型)F[I,j]:=max{f[I,k-1]*f[k+1,j]+c[k]}12.树型动态规划2-----选课 (多叉树转二叉树,自顶向下模型)F[I,j]表示以i为根节点选j门功课得到的最大学分f[i,j]:=max{f[t[i].l,k]+f[t[i].r,j-k-1]+c[i]}13.计数问题1-----砝码称重f[f[0]+1]=f[j]+k*w[j];(1<=i<=n; 1<=j<=f[0]; 1<=k<=a[i];)14.递推天地1------核电站问题f[-1]:=1; f[0]:=1;f[i]:=2*f[i-1]-f[i-1-m]15.递推天地2------数的划分f[i,j]:=f[i-j,j]+f[i-1,j-1];16.最大子矩阵1-----一最大01子矩阵f[i,j]:=min(f[i-1,j],v[i,j-1],v[i-1,j-1])+1;ans:=maxvalue(f);17.判定性问题1-----能否被4整除g[1,0]:=true; g[1,1]:=false; g[1,2]:=false; g[1,3]:=false; g[i,j]:=g[i-1,k] and ((k+a[i,p]) mod 4 = j)18.判定性问题2-----能否被k整除f[I,j±n[i] mod k]:=f[i-1,j]; -k<=j<=k; 1<=i<=n20.线型动态规划2-----方块消除游戏f[i,i-1,0]:=0f[i,j,k]:=max{f[i,j-1,0]+sqr(len(j)+k),f[i,p,k+len[j]]+f[p+1,j-1,0]}ans:=f[1,m,0]21.线型动态规划3-----最长公共子串,LCS问题f[i,j]={0(i=0)&(j=0);f[i-1,j-1]+1(i>0,j>0,x[i]=y[j]);max{f[i,j-1]+f[i-1,j]}} (i>0,j>0,x[i]<>y[j]);22.最大子矩阵2-----最大带权01子矩阵O(n^2*m)枚举行的起始,压缩进数列,求最大字段和,遇0则清零23. 资源问题4-----装箱问题(判定性01背包)f[j]:=(f[j] or f[j-v[i]]);24.数字三角形1-----朴素の数字三角形f[i,j]:=max(f[i+1,j]+a[I,j],f[i+1,j+1]+a[i,j]);25.数字三角形2-----晴天小猪历险记之Hill同一阶段上暴力动态规划if[i,j]:=min(f[i,j-1],f[I,j+1],f[i-1,j],f[i-1,j-1])+a[i,j]26.双向动态规划1数字三角形3-----小胖办证f[i,j]:=max(f[i-1,j]+a[i,j],f[i,j-1]+a[i,j],f[i,j+1]+a[i,j])27. 数字三角形4-----过河卒//边界初始化f[i,j]:=f[i-1,j]+f[i,j-1];28.数字三角形5-----朴素的打砖块f[i,j,k]:=max(f[i-1,j-k,p]+sum[i,k],f[i,j,k]);29.数字三角形6-----优化的打砖块f[I,j,k]:=max{g[i-1,j-k,k-1]+sum[I,k]}30.线性动态规划3-----打鼹鼠’f[i]:=f[j]+1;(abs(x[i]-x[j])+abs(y[i]-y[j])<=t[i]-t[j])31.树形动态规划3-----贪吃的九头龙⎭⎬⎫⎩⎨⎧======⎭⎬⎫⎩⎨⎧+-++--+=0))2()0(&)0(())1(&)1((1],[]][,[*]0,[],',[]0,',[]][,[*]1,[],1',[]1,',[min ],,[m and j i or j i j i d i p i w k d k j j r f j l f i p i w k d k j j r f j l f k j i f32.状态压缩动态规划1-----炮兵阵地Max(f[Q*(r+1)+k],g[j]+num[k])If (map[i] and plan[k]=0) and((plan[P] or plan[q]) and plan[k]=0)33.递推天地3-----情书抄写员f[i]:=f[i-1]+k*f[i-2]34.递推天地4-----错位排列f[i]:=(i-1)(f[i-2]+f[i-1]);f[n]:=n*f[n-1]+(-1)^(n-2);35.递推天地5-----直线分平面最大区域数f[n]:=f[n-1]+n:=n*(n+1) div 2 + 1;36.递推天地6-----折线分平面最大区域数f[n]:=(n-1)(2*n-1)+2*n;37.递推天地7-----封闭曲线分平面最大区域数f[n]:=f[n-1]+2*(n-1):=sqr(n)-n+2;38递推天地8-----凸多边形分三角形方法数f[n]:=C(2*n-2,n-1) div n;对于k 边形f[k]:=C(2*k-4,k-2) div (k-1); //(k>=3)39递推天地9-----Catalan 数列一般形式1,1,2,5,14,42,132f[n]:=C(2k,k) div (k+1);40递推天地10-----彩灯布置排列组合中的环形染色问题f[n]:=f[n-1]*(m-2)+f[n-2]*(m-1); (f[1]:=m; f[2]:=m(m-1);41线性动态规划4-----找数线性扫描sum:=f[i]+g[j];(if sum=Aim then getout; if sum<Aim then inc(i) else inc(j);)42线性动态规划5-----隐形的翅膀min:=min{abs(w[i]/w[j]-gold)};if w[i]/w[j]<gold then inc(i) else inc(j);43剖分问题5-----最大奖励f[i]:=max(f[i],f[j]+(sum[j]-sum[i])*i-t44最短路1-----Floydf[i,j]:=max(f[i,j],f[i,k]+f[k,j]);ans[q[i,j,k]]:=ans[q[i,j,k]]+s[i,q[i,j,k]]*s[q[i,j,k],j]/s[i,j];45 剖分问题6-----小H 的小屋F[l,m,n]:=f[l-x,m-1,n-k]+S(x,k);46 计数问题2-----陨石的秘密(排列组合中的计数问题)Ans[l1,l2,l3,D]:=f[l1+1,l2,l3,D+1]-f[l1+1,l2,l3,D];F[l1,l2,l3,D]:=Sigma(f[o,p,q,d-1]*f[l1-o,l2-p,l3-q,d]);47 线性动态规划------合唱队形两次F[i]:=max{f[j]+1}+枚举中央结点48 资源问题------明明的预算方案:加花的动态规划f[i,j]:=max(f[i,j],f[l,j-v[i]-v[fb[i]]-v[fa[i]]]+v[i]*p[i]+v[fb[i]]*p[fb[i]]+v[fa[i]]*p[fa[i]]);49 资源问题-----化工场装箱员[,[1,],[1,]][,,]:min [,[1,],[1,]]1[10,[1,10],[1,10]f n i getA n n i j getB n n i f n i j f n j i getA n n j getB n n j f n i j i getA n n i j j getB n n i j ++++++⎧⎫⎪⎪=+++++++⎨⎬⎪⎪+--+++--+++--⎩⎭-----聚会的快乐f[i,2]:=max(f[i,0],f[i,1]);f[i,1]:=sigma(f[t[i]^.son,0]);f[i,0]:=sigma(f[t[i]^.son,3]);51树形动态规划-----皇宫看守f[i,2]:=max(f[i,0],f[i,1]);f[i,1]:=sigma(f[t[i]^.son,0]);f[i,0]:=sigma(f[t[i]^.son,3]);52递推天地-----盒子与球f[i,1]:=1;f[i,j]:=j*(f[i-1,j-1]+f[i-1,j]);53双重动态规划-----有限的基因序列f[i]:=min{f[j]+1}g[c,i,j]:=(g[a,i,j] and g[b,i,j]) or (g[c,i,j])54最大子矩阵问题-----居住空间f[i,j,k]:=min(min(min(f[i-1,j,k],f[i,j-1,k]),min(f[i,j,k-1],f[i-1,j-1,k])),min(min(f[i-1,j,k-1],f[i,j-1,k-1]),f[i-1,j-1,k-1]))+1;55线性动态规划------日程安排f[i]:=max{f[j]}+P[I]; (e[j]<s[i])56递推天地------组合数C[I,j]:=C[i-1,j]+C[I-1,j-1]C[I,0]:=157树形动态规划-----有向树k中值问题F[I,r,k]:=max{max{f[l[i],I,j]+f[r[i],I,k-j-1]},f[f[l[i],r,j]+f[r[i],r,k-j]+w[I,r]]}58树形动态规划-----CTSC 2001选课F[I,j]:=w[i](if i∈P)+f[l[i],k]+f[r[i],m-k](0≤k≤m)(if l[i]<>0)-----多重历史f[i,j]:=sigma{f[i-k,j-1]}(if checked)60背包问题(+-1背包问题+回溯)-----CEOI1998 Substractf[i,j]:=f[i-1,j-a[i]] or f[i-1,j+a[i]]61线性动态规划(字符串)-----NOI 2000 古城之谜f[i,1,1]:=min{f[i+length(s),2,1],f[i+length(s),1,1]+1}f[i,1,2]:=min{f[i+length(s),1,2]+words[s],f[i+length(s),1,2]+words[s]}62线性动态规划-----最少单词个数f[i,j]:=max{f[I,j],f[u-1,j-1]+l}63线型动态规划-----APIO2007 数据备份状态压缩+剪掉每个阶段j前j*2个状态和j*2+200后的状态贪心动态规划f[i]:=min(g[i-2]+s[i],f[i-1]);64树形动态规划-----APIO2007 风铃f[i]:=f[l]+f[r]+{1 (if c[l]<c[r])}g[i]:=1(d[l]<>d[r]) 0(d[l]=d[r])g[l]=g[r]=1 then Halt;65地图动态规划-----NOI 2005 adv19910F[t,i,j]:=max{f[t-1,i-dx[d[[t]],j-dy[d[k]]]+1],f[t-1,i,j];66地图动态规划-----优化的NOI 2005 adv19910F[k,i,j]:=max{f[k-1,i,p]+1} j-b[k]<=p<=j;67目标动态规划-----CEOI98 subtraF[I,j]:=f[I-1,j+a[i]] or f[i-1,j-a[i]]68目标动态规划----- Vijos 1037搭建双塔问题F[value,delta]:=g[value+a[i],delta+a[i]] or g[value,delta-a[i]]69树形动态规划-----有线电视网f[i,p]:=max(f[i,p],f[i,p-q]+f[j,q]-map[i,j])leaves[i]>=p>=l, 1<=q<=p;70地图动态规划-----vijos某题F[I,j]:=min(f[i-1,j-1],f[I,j-1],f[i-1,j]);71最大子矩阵问题-----最大字段和问题f[i]:=max(f[i-1]+b[i],b[i]); f[1]:=b[1]72最大子矩阵问题-----最大子立方体问题枚举一组边i的起始,压缩进矩阵 B[I,j]+=a[x,I,j]枚举另外一组边的其实,做最大子矩阵73括号序列-----线型动态规划f[I,j]:=min(f[I,j],f[i+1,j-1](s[i]s[j]=”()”or(”[]”)),f[I+1,j+1]+1 (s[j]=”(”or”[” ] , f[I,j-1]+1(s[j]=”)”or”]” )74棋盘切割-----线型动态规划f[k,x1,y1,x2,y2]=min{min{f[k-1,x1,y1,a,y2]+s[a+1,y1,x2,y2],f[k-1,a+1,y1,x2,y2]+s[x1,y1,a,y2]min{}}75概率动态规划-----聪聪和可可(NOI2005)x:=p[p[i,j],j]f[I,j]:=(f[x,b[j,k]]+f[x,j])/(l[j]+1)+1f[I,i]=0f[x,j]=176概率动态规划-----血缘关系F[A, B]=(f[A0, B]+P[A1, B])/2f[I,i]=1f[I,j]=0(I,j无相同基因)77线性动态规划-----决斗F[I,j]=(f[I,j] and f[k,j]) and (e[I,k] or e[j,k]),i<k<j78线性动态规划-----舞蹈家F[x,y,k]=min(f[a[k],y,k+1]+w[x,a[k]],f[x,a[k],k+1]+w[y,a[k]])79线性动态规划-----积木游戏F[I,a,b,k]=max(f[I,a+1,b,k],f[i+1,a+1,a+1,k’],f[I,a+1,a+1,k’])80树形动态规划(双次记录)-----NOI2003 逃学的小孩朴素的话枚举节点i和离其最远的两个节点 j,k O(n^2)每个节点记录最大的两个值,并记录这最大值分别是从哪个相邻节点传过来的。
poj刷题专题训练3

(一):用的比较多的初期:一.基本算法:(1)枚举. (poj1753,poj2965)(2)贪心(poj1328,poj2109,poj2586)(3)递归和分治法.(4)递推.(5)构造法.(poj3295)(6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:(1)图的深度优先遍历和广度优先遍历.(2)最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)(3)最小生成树算法(prim,kruskal)(poj1789,poj2485,poj1258,poj3026)(4)拓扑排序(poj1094)(5)二分图的最大匹配(匈牙利算法) (poj3041,poj3020)(6)最大流的增广路算法(KM算法). (poj1459,poj3436)三.数据结构.(1)串(poj1035,poj3080,poj1936)(2)排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)(3)简单并查集的应用.(4)哈希表和二分查找等高效查找法(数的Hash,串的Hash)(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)(5)哈夫曼树(poj3253)(6)堆(7)trie树(静态建树、动态建树) (poj2513)四.简单搜索(1)深度优先搜索(poj2488,poj3083,poj3009,poj1321,poj2251)(2)广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)(3)简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)五.动态规划(1)背包问题. (poj1837,poj1276)(2)型如下表的简单DP(可参考lrj的书page149):1.E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列) (poj3176,poj1080,poj1159)3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)六.数学(1)组合数学:1.加法原理和乘法原理.2.排列组合.3.递推关系.(POJ3252,poj1850,poj1019,poj1942)(2)数论.1.素数与整除问题2.进制位.3.同余模运算.(poj2635, poj3292,poj1845,poj2115)(3)计算方法.1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)七.计算几何学.(1)几何公式.(2)叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)(3)多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交) (poj1408,poj1584)(4)凸包. (poj2187,poj1113)中级:一.基本算法:(1)C++的标准模版库的应用. (poj3096,poj3007)(2)较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)二.图算法:(1)差分约束系统的建立和求解. (poj1201,poj2983)(2)最小费用最大流(poj2516,poj2516,poj2195)(3)双连通分量(poj2942)(4)强连通分支及其缩点.(poj2186)(5)图的割边和割点(poj3352)(6)最小割模型、网络流规约(poj3308, )三.数据结构.(1)线段树. (poj2528,poj2828,poj2777,poj2886,poj2750)(2)静态二叉检索树. (poj2482,poj2352)(3)树状树组(poj1195,poj3321)(4)RMQ. (poj3264,poj3368)(5)并查集的高级应用. (poj1703,2492)(6)KMP算法. (poj1961,poj2406)四.搜索(1)最优化剪枝和可行性剪枝(2)搜索的技巧和优化(poj3411,poj1724)(3)记忆化搜索(poj3373,poj1691)五.动态规划(1)较为复杂的动态规划(如动态规划解特别的施行商问题等)(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)(2)记录状态的动态规划. (POJ3254,poj2411,poj1185)(3)树型动态规划(poj2057,poj1947,poj2486,poj3140)六.数学(1)组合数学:1.容斥原理.2.抽屉原理.3.置换群与Polya定理(poj1286,poj2409,poj3270,poj1026).4.递推关系和母函数.(2)数学.1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)2.概率问题. (poj3071,poj3440)3.GCD、扩展的欧几里德(中国剩余定理) (poj3101)(3)计算方法.1.0/1分数规划. (poj2976)2.三分法求解单峰(单谷)的极值.3.矩阵法(poj3150,poj3422,poj3070)4.迭代逼近(poj3301)(4)随机化算法(poj3318,poj2454)(5)杂题.(poj1870,poj3296,poj3286,poj1095)七.计算几何学.(1)坐标离散化.(2)扫描线算法(例如求矩形的面积和周长并,常和线段树或堆一起使用).(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)(3)多边形的内核(半平面交)(poj3130,poj3335)(4)几何工具的综合应用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)高级:一.基本算法要求:(1)代码快速写成,精简但不失风格(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)(2)保证正确性和高效性. poj3434二.图算法:(1)度限制最小生成树和第K最短路. (poj1639)(2)最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解)(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446(3)最优比率生成树. (poj2728)(4)最小树形图(poj3164)(5)次小生成树.(6)无向图、有向图的最小环三.数据结构.(1)trie图的建立和应用. (poj2778)(2)LCA和RMQ问题(LCA(最近公共祖先问题) 有离线算法(并查集+dfs) 和在线算法(RMQ+dfs)).(poj1330)(3)双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移的目的). (poj2823)(4)左偏树(可合并堆).(5)后缀树(非常有用的数据结构,也是赛区考题的热点).(poj3415,poj3294)四.搜索(1)较麻烦的搜索题目训练(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)(2)广搜的状态优化:利用M进制数存储状态、转化为串用hash表判重、按位压缩存储状态、双向广搜、A*算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)(3)深搜的优化:尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大、可以考虑双向搜索或者是轮换搜索、IDA*算法. (poj3131,poj2870,poj2286)五.动态规划(1)需要用数据结构优化的动态规划.(poj2754,poj3378,poj3017)(2)四边形不等式理论.(3)较难的状态DP(poj3133)六.数学(1)组合数学.1.MoBius反演(poj2888,poj2154)2.偏序关系理论.(2)博奕论.1.极大极小过程(poj3317,poj1085)2.Nim问题.七.计算几何学.(1)半平面求交(poj3384,poj2540)(2)可视图的建立(poj2966)(3)点集最小圆覆盖.(4)对踵点(poj2079)八.综合题.(poj3109,poj1478,poj1462,poj2729,poj2048,poj3336,poj3315,poj2148,poj1263)----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------以及补充Dp状态设计与方程总结1.不完全状态记录<1>青蛙过河问题<2>利用区间dp2.背包类问题<1> 0-1背包,经典问题<2>无限背包,经典问题<3>判定性背包问题<4>带附属关系的背包问题<5> + -1背包问题<6>双背包求最优值<7>构造三角形问题<8>带上下界限制的背包问题(012背包)3.线性的动态规划问题<1>积木游戏问题<2>决斗(判定性问题)<3>圆的最大多边形问题<4>统计单词个数问题<5>棋盘分割<6>日程安排问题<7>最小逼近问题(求出两数之比最接近某数/两数之和等于某数等等)<8>方块消除游戏(某区间可以连续消去求最大效益)<9>资源分配问题<10>数字三角形问题<11>漂亮的打印<12>邮局问题与构造答案<13>最高积木问题<14>两段连续和最大<15>2次幂和问题<16>N个数的最大M段子段和<17>交叉最大数问题4.判定性问题的dp(如判定整除、判定可达性等)<1>模K问题的dp<2>特殊的模K问题,求最大(最小)模K的数<3>变换数问题5.单调性优化的动态规划<1>1-SUM问题<2>2-SUM问题<3>序列划分问题(单调队列优化)6.剖分问题(多边形剖分/石子合并/圆的剖分/乘积最大)<1>凸多边形的三角剖分问题<2>乘积最大问题<3>多边形游戏(多边形边上是操作符,顶点有权值)<4>石子合并(N^3/N^2/NLogN各种优化)7.贪心的动态规划<1>最优装载问题<2>部分背包问题<3>乘船问题<4>贪心策略<5>双机调度问题Johnson算法8.状态dp<1>牛仔射击问题(博弈类)<2>哈密顿路径的状态dp<3>两支点天平平衡问题<4>一个有向图的最接近二部图9.树型dp<1>完美服务器问题(每个节点有3种状态)<2>小胖守皇宫问题<3>网络收费问题<4>树中漫游问题<5>树上的博弈<6>树的最大独立集问题<7>树的最大平衡值问题<8>构造树的最小环(二):麻烦题:1697, 1712, 1713, 1720, 1729, 1765, 1772, 1858, 1872, 1960, 1963, 2050, 2122, 2162, 22 19, 2237,简单题目:1000, 1003, 1004, 1005, 1007, 1046, 1207, 1226, 1401, 1504, 1552, 1607, 1657, 1658, 16 74, 1799, 1862, 1906, 1922, 1929, 1931, 1969, 1976, 2000, 2005, 2017, 2027, 2070, 2101, 2105, 2109, 2116, 2136, 2160, 2190, 2232, 2234, 2275, 2301, 2350, 2363, 2389, 2393, 2 413, 2419,推荐:1063, 1064, 1131, 1140, 1715, 2163,杂题:1014, 1218, 1316, 1455, 1517, 1547, 1580, 1604, 1663, 1678, 1749, 1804, 2013, 2014, 20 56, 2059, 2100, 2188, 2189, 2218, 2229, 2249, 2290, 2302, 2304, 2309, 2313, 2316, 2323, 2326, 2368, 2369, 2371, 2402, 2405, 2407,推荐:1146, 1147, 1148, 1171, 1389, 1433, 1468, 1519, 1631, 1646, 1672, 1681, 1700, 1701, 17 05, 1728, 1735, 1736, 1752, 1754, 1755, 1769, 1781, 1787, 1796, 1797, 1833, 1844, 1882, 1933, 1941, 1978, 2128, 2166, 2328, 2383, 2420,高精度:1001, 1220, 1405, 1503,排序:1002, 1318, 1877, 1928, 1971, 1974, 1990, 2001, 2002, 2092, 2379, 2388, 2418,推荐:1423, 1694, 1723, 1727, 1763, 1788, 1828, 1838, 1840, 2201, 2376, 2377, 2380,搜索1676,1376,@3009,容易:1128, 1166, @1176, 1231, 1256, @1270, 1321, @1543, 1606, @1664, 1731, 1742, @174 5, 1847, 1915, 1950, 2038, 2157, 2182, 2183, 2381, 2386, 2426,不易:1024, 1054, 1117, 1167, 1708, 1746, 1775, 1878, 1903, 1966, 2046, 2197, 2349,推荐:1011, 1190, 1191, 1416, 1579, 1632, 1639, 1659, 1680, 1683, 1691, 1709, 1714, 1753, 17 71, 1826, 1855, 1856, 1890, 1924, 1935, 1948, 1979, 1980, 2170, 2288, 2331, 2339, 2340,数据结构容易:1182, 1656, 2021, 2023, 2051, 2153, 2227, 2236, 2247, 2352, 2395,不易:1145, 1177, 1195, 1227, 1661, 1834,推荐:1330, @1338, 1451, 1470, 1634, 1689, 1693, @1703, 1724, 1988, 2004, 2010(堆), 2119, 2274,动态规划容易:1018, 1050, 1083, 1088, 1125, 1143(博弈树), 1157, @1163, 1178, 1179, @1189, 1208, 1276, 1322, 1414, 1456, 1458, 1609, 1644, 1664, 1690, 1699, 1740, 1742, 1887, 1926, 19 36, 1952, 1953, 1958, 1959, 1962, 1975, 1989, 2018, 2029, 2033, 2063, 2081, 2082, 2181, 2184, 2192, 2231, 2279, 2329, 2336, 2346, 2353, 2355, 2356, 2385, 2392, 2424,不易:1019, 1037, 1080, 1112, 1141, 1170, 1192, 1239, 1655, 1695, 1707, 1733, 1737, 1837, 18 50, 1920, 1934, 1937, 1964, 2039, 2138, 2151, 2161, 2178,推荐:1015, 1635, 1636, 1671, 1682, 1692, 1704, 1717, 1722, 1726, 1732, 1770, 1821, 1853, 19 49, 2019, 2127, 2176, 2228, 2287, 2342, 2374, 2378, 2384, 2411,字符串:1488, ⊙1598, 1686, *1706, 1747, 1748, 1750, 1760, 1782, 1790, 1866, 1888, 1896, 1951, 2003, 2121, 2141, 2145, 2159, 2337, 2359, 2372, 2406, 2408,贪心:1042, 1065, 1230, 1323, 1477, 1716, 1784,图论容易:1161, 1164, 1258, 1175, 1308, 1364, 1776, 1789, 1861, 1939, 1940, 1943, 2075, 2139, 23 87, 2394, 2421,不易:1041, 1062, 1158, 1172, 1201, 1275, 1718, 1734, 1751, 1904, 1932, 2173, 2175, 2296,网络流:1087, 1273, 1698, 1815, 2195,匹配:1274, 1422, 1469, 1719, 2060, 2239,Euler:1237, 1637, 1394, 2230,推荐:2049, 2186,计算几何容易:@1319, @1654, @1673, @1675, 1836, 2074, 2137, 2318,不易:1685, 1687, 1696, 1873, 1901, 2172, 2333,凸包:1113, 1228, 1794, 2007, 2187,模拟容易:1006, 1008, 1013, 1016, 1017, 1169, 1298, 1326, 1350, 1363, 1676, 1786, 1791, 1835, 19 70, 2317, 2325, 2390,不易:1012, 1082, 1099, 1114, 1642, 1677, 1684, 1886,数学容易:@1061, @1091, @1142, 1289, @1305, @1306, 1320, @1565, @1665, 1666, @1730, @18 94, @1914, 2006, @2042, @2142, 2158, 2174, @2262, @2305, @2321, @2348,不易:@1067, @1183, 1430, 1759, 1868, 1942, 2167, 2171, 2327,推荐:@1423, 1450, 1640, @1702, 1710, 1721, 1761, 1830, @1930, @2140,(三):1、排序1423, 1694, 1723, 1727, 1763, 1788, 1828, 1838, 1840, 2201, 2376, 2377, 2380, 1318, 18 77, 1928, 1971, 1974, 1990, 2001, 2002, 2092, 2379, 1002(需要字符处理,排序用快排即可)1007(稳定的排序)2159(题意较难懂)2231 2371(简单排序)2388(顺序统计算法)2418(二叉排序树)2、搜索、回溯、遍历1022 1111 1118 1129 1190 1562 1564 1573 1655 2184 2225 2243 2312 2362 2378 2386 1010,1011,1018,1020,1054,1062,1256,1321,1363,1501,1650,1659,1664,1753,2078,2083,2303,2 310,2329简单:1128, 1166, 1176, 1231, 1256, 1270, 1321, 1543, 1606, 1664, 1731, 1742, 1745, 18 47, 1915, 1950, 2038, 2157, 2182, 2183, 2381, 2386, 2426,不易:1024, 1054, 1117, 1167, 1708, 1746, 1775, 1878, 1903, 1966, 2046, 2197, 2349,推荐:1011, 1190, 1191, 1416, 1579, 1632, 1639, 1659, 1680, 1683, 1691, 1709, 1714, 17 53, 1771, 1826, 1855, 1856, 1890, 1924, 1935, 1948, 1979, 1980, 2170, 2288, 2331, 2339, 2340,1979(和迷宫类似)1980(对剪枝要求较高)3、历法1008 2080 (这种题要小心)4、枚举1012,1046,1387,1411,2245,2326,2363,2381,1054(剪枝要求较高),165 0 (小数的精度问题)5、数据结构的典型算法容易:1182, 1656, 2021, 2023, 2051, 2153, 2227, 2236, 2247, 2352, 2395,不易:1145, 1177, 1195, 1227, 1661, 1834,推荐:1330, 1338, 1451, 1470, 1634, 1689, 1693, 1703, 1724, 1988, 2004, 2010, 2119, 22 74,1125(弗洛伊德算法) ,2421(图的最小生成树)6、动态规划1037、1050、1088、1125、1141、1159、1160、1163、1458、1579 、1887 、1953 、2386 7、贪心1042, 1065, 1230, 1323, 1477, 1716, 1784,1328 1755(或用单纯形方法),2054,1017,1328,1862,1922 ,2209,2313,2325,2370。
状态转移方程大全

1. 资源问题1-----机器分配问题总公司拥有高效生产设备M台,准备分给下属的N个公司。
各分公司若获得这些设备,可以为国家提供一定的盈利。
问:如何分配这M台设备才能使国家得到的盈利最大?求出最大盈利值。
其中M<=15,N<=10。
分配原则:每个公司有权获得任意数目的设备,但总台数不得超过总设备数M。
数据文件格式为:第一行保存两个数,第一个数是设备台数M,第二个数是分公司数N。
接下来是一个M*N的矩阵,表明了第I个公司分配J台机器的盈利。
用机器数来做状态,数组F[I,J]表示前I个公司分配J台机器的最大盈利。
则状态转移方程为:F[I,j]:=max(f[i-1,k]+w[i,j-k])2. 资源问题2------01背包问题有N件物品和一个容量为V的背包。
第i件物品的费用是c,价值是w。
求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
F[I,j]:=max(f[i-1,j-v[i]]+w[i],f[i-1,j]);3. 线性动态规划1-----朴素最长非降子序列设有由n个不相同的整数组成的数列,记为:a(1),a(2),……,a(n)且a(i)<>a(j) (i<>j)例如3,18,7,14,10,12,23,41,16,24。
若存在i1且有a(i1)则称为长度为e的不下降序列。
如上例中3,18,23,24就是一个长度为4的不下降序列,同时也有3,7,10,12,16,24长度为6的不下降序列。
程序要求,当原数列给出之后,求出最长的不下降序列。
F[i]:=max{f[j]+1}4. 剖分问题1-----石子合并在一个园形操场的四周摆放N堆石子(N≤100),现要将石子有次序地合并成一堆。
规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
编一程序,由文件读入堆数N及每堆的石子数(≤20)。
F[i,j]:=min(f[i,k]+f[k+1,j]+sum[i,j]);5. 剖分问题2-----多边形剖分多边形三角剖分是计算几何的一个几何基元.它可以简化问题规模,在计算机图形学、模式识别和地理数据库方面有重要应用.F[I,j]:=min(f[j,k]+f[k,j]+a[k]*a[j]*a[i]);6. 剖分问题3------乘积最大今年是国际数学联盟确定的“2000——世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰90周年。
ACMer需要掌握的算法讲解

ACM主要算法介绍初期篇一、基本算法(1)枚举(poj1753, poj2965)(2)贪心(poj1328, poj2109, poj2586)(3)递归和分治法(4)递推(5)构造法(poj3295)(6)模拟法(poj1068, poj2632, poj1573, poj2993, poj2996)二、图算法(1)图的深度优先遍历和广度优先遍历(2)最短路径算法(dijkstra, bellman-ford, floyd, heap+dijkstra)(poj1860, poj3259, poj1062, poj2253, poj1125, poj2240)(3)最小生成树算法(prim, kruskal)(poj1789, poj2485, poj1258, poj3026)(4)拓扑排序(poj1094)(5)二分图的最大匹配(匈牙利算法)(poj3041, poj3020)(6)最大流的增广路算法(KM算法)(poj1459, poj3436)三、数据结构(1)串(poj1035, poj3080, poj1936)(2)排序(快排、归并排(与逆序数有关)、堆排)(poj2388, poj2299)(3)简单并查集的应用(4)哈希表和二分查找等高效查找法(数的Hash, 串的Hash)(poj3349, poj3274, POJ2151, poj1840, poj2002, poj2503)(5)哈夫曼树(poj3253)(6)堆(7)trie树(静态建树、动态建树)(poj2513)四、简单搜索(1)深度优先搜索(poj2488, poj3083, poj3009, poj1321, poj2251)(2)广度优先搜索(poj3278, poj1426, poj3126, poj3087, poj3414)(3)简单搜索技巧和剪枝(poj2531, poj1416, poj2676, 1129)五、动态规划(1)背包问题(poj1837, poj1276)(2)型如下表的简单DP(可参考lrj的书page149):1.E[j]=opt{D+w(i,j)} (poj3267, poj1836, poj1260, poj2533)2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列)(poj3176, poj1080, poj1159)3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]} (最优二分检索树问题)六、数学(1)组合数学1.加法原理和乘法原理2.排列组合3.递推关系(poj3252, poj1850, poj1019, poj1942)(2)数论1.素数与整除问题2.进制位3.同余模运算(poj2635, poj3292, poj1845, poj2115)(3)计算方法1.二分法求解单调函数相关知识(poj3273, poj3258, poj1905, poj3122)七、计算几何学(1)几何公式(2)叉积和点积的运用(如线段相交的判定,点到线段的距离等)(poj2031, poj1039)(3)多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)(poj1408, poj1584)(4)凸包(poj2187, poj1113)中级篇一、基本算法(1)C++的标准模版库的应用(poj3096, poj3007)(2)较为复杂的模拟题的训练(poj3393, poj1472, poj3371, poj1027,poj2706)二、图算法(1)差分约束系统的建立和求解(poj1201, poj2983)(2)最小费用最大流(poj2516, poj2195)(3)双连通分量(poj2942)(4)强连通分支及其缩点(poj2186)(5)图的割边和割点(poj3352)(6)最小割模型、网络流规约(poj3308)三、数据结构(1)线段树(poj2528, poj2828, poj2777, poj2886, poj2750)(2)静态二叉检索树(poj2482, poj2352)(3)树状树组(poj1195, poj3321)(4)RMQ(poj3264, poj3368)(5)并查集的高级应用(poj1703, 2492)(6)KMP算法(poj1961, poj2406)四、搜索(1)最优化剪枝和可行性剪枝(2)搜索的技巧和优化(poj3411, poj1724)(3)记忆化搜索(poj3373, poj1691)五、动态规划(1)较为复杂的动态规划(如动态规划解特别的施行商问题等)(poj1191, poj1054, poj3280, poj2029, poj2948, poj1925, poj3034)(2)记录状态的动态规划(poj3254, poj2411, poj1185)(3)树型动态规划(poj2057, poj1947, poj2486, poj3140)六、数学(1)组合数学1.容斥原理2.抽屉原理3.置换群与Polya定理(poj1286, poj2409, poj3270, poj1026)4.递推关系和母函数(2)数学1.高斯消元法(poj2947, poj1487, poj2065, poj1166, poj1222)2.概率问题(poj3071, poj3440)3.GCD、扩展的欧几里德(中国剩余定理)(poj3101)(3)计算方法1.0/1分数规划(poj2976)2.三分法求解单峰(单谷)的极值3.矩阵法(poj3150, poj3422, poj3070)4.迭代逼近(poj3301)(4)随机化算法(poj3318, poj2454)(5)杂题(poj1870, poj3296, poj3286, poj1095)七、计算几何学(1)坐标离散化(2)扫描线算法(例如求矩形的面积和周长,并常和线段树或堆一起使用)(poj1765, poj1177, poj1151, poj3277, poj2280, poj3004)(3)多边形的内核(半平面交)(poj3130, poj3335)(4)几何工具的综合应用(poj1819, poj1066, poj2043, poj3227, poj2165, poj3429)高级篇一、基本算法要求(1)代码快速写成,精简但不失风格(poj2525, poj1684, poj1421,poj1048, poj2050, poj3306)(2)保证正确性和高效性(poj3434)二、图算法(1)度限制最小生成树和第K最短路(poj1639)(2)最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解)(poj3155, poj2112, poj1966, poj3281, poj1087, poj2289, poj3216, poj2446)(3)最优比率生成树(poj2728)(4)最小树形图(poj3164)(5)次小生成树(6)无向图、有向图的最小环三、数据结构(1)trie图的建立和应用(poj2778)(2)LCA和RMQ问题(LCA(最近公共祖先问题),有离线算法(并查集+dfs)和在线算法(RMQ+dfs))(poj1330)(3)双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移的目的)(poj2823)(4)左偏树(可合并堆)(5)后缀树(非常有用的数据结构,也是赛区考题的热点)(poj3415,poj3294)四、搜索(1)较麻烦的搜索题目训练(poj1069, poj3322, poj1475, poj1924,poj2049, poj3426)(2)广搜的状态优化:利用M进制数存储状态、转化为串用hash表判重、按位压缩存储状态、双向广搜、A*算法(poj1768, poj1184, poj1872, poj1324, poj2046, poj1482)(3)深搜的优化:尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大、可以考虑双向搜索或者是轮换搜索、IDA*算法(poj3131, poj2870, poj2286)五、动态规划(1)需要用数据结构优化的动态规划(poj2754, poj3378, poj3017)(2)四边形不等式理论(3)较难的状态DP(poj3133)六、数学(1)组合数学1.MoBius反演(poj2888, poj2154)2.偏序关系理论(2)博奕论1.极大极小过程(poj3317, poj1085)2.Nim问题七、计算几何学(1)半平面求交(poj3384, poj2540)(2)可视图的建立(poj2966)(3)点集最小圆覆盖(4)对踵点(poj2079)八、综合题(poj3109, poj1478, poj1462, poj2729, poj2048, poj3336, poj3315, poj2148, poj1263)附录:POJ是“北京大学程序在线评测系统”(Peking University Online Judge)的缩写,是个提供编程题目的网站,兼容Pascal、C、C++、Java、Fortran等多种语言。
计算机学习 算法

第一阶段:练经典常用算法,下面的每个算法给我打上十到二十遍,同时自己精简代码,因为太常用,所以要练到写时不用想,10-15分钟内打完,甚至关掉显示器都可以把程序打出来.1.最短路(Floyd、Dijstra,BellmanFord)2.最小生成树(先写个prim,kruscal要用并查集,不好写)3.大数(高精度)加减乘除4.二分查找. (代码可在五行以内)5.叉乘、判线段相交、然后写个凸包.6.BFS、DFS,同时熟练hash表(要熟,要灵活,代码要简)7.数学上的有:辗转相除(两行内),线段交点、多角形面积公式.8. 调用系统的qsort, 技巧很多,慢慢掌握.9. 任意进制间的转换第二阶段:练习复杂一点,但也较常用的算法。
如:1. 二分图匹配(匈牙利),最小路径覆盖2. 网络流,最小费用流。
3. 线段树.4. 并查集。
5. 熟悉动态规划的各个典型:LCS、最长递增子串、三角剖分、记忆化dp6.博弈类算法。
博弈树,二进制法等。
7.最大团,最大独立集。
8.判断点在多边形内。
9. 差分约束系统.10. 双向广度搜索、A*算法,最小耗散优先.相关的知识图论路径问题0/1边权最短路径BFS非负边权最短路径(Dijkstra)可以用Dijkstra解决问题的特征负边权最短路径Bellman-FordBellman-Ford的Y en-氏优化差分约束系统Floyd广义路径问题传递闭包极小极大距离/ 极大极小距离Euler Path / Tour圈套圈算法混合图的Euler Path / TourHamilton Path / Tour特殊图的Hamilton Path / Tour 构造生成树问题最小生成树第k小生成树最优比率生成树0/1分数规划度限制生成树连通性问题强大的DFS算法无向图连通性割点割边二连通分支有向图连通性强连通分支2-SA T最小点基有向无环图拓扑排序有向无环图与动态规划的关系二分图匹配问题一般图问题与二分图问题的转换思路最大匹配有向图的最小路径覆盖0 / 1矩阵的最小覆盖完备匹配最优匹配稳定婚姻网络流问题网络流模型的简单特征和与线性规划的关系最大流最小割定理最大流问题有上下界的最大流问题循环流最小费用最大流/ 最大费用最大流弦图的性质和判定组合数学解决组合数学问题时常用的思想逼近递推/ 动态规划概率问题Polya定理计算几何/ 解析几何计算几何的核心:叉积/ 面积解析几何的主力:复数基本形点直线,线段多边形凸多边形/ 凸包凸包算法的引进,卷包裹法Graham扫描法水平序的引进,共线凸包的补丁完美凸包算法相关判定两直线相交两线段相交点在任意多边形内的判定点在凸多边形内的判定经典问题最小外接圆近似O(n)的最小外接圆算法点集直径旋转卡壳,对踵点多边形的三角剖分数学/ 数论最大公约数Euclid算法扩展的Euclid算法同余方程/ 二元一次不定方程同余方程组线性方程组高斯消元法解mod 2域上的线性方程组整系数方程组的精确解法矩阵行列式的计算利用矩阵乘法快速计算递推关系分数分数树连分数逼近数论计算求N的约数个数求phi(N)求约数和快速数论变换……素数问题概率判素算法概率因子分解数据结构组织结构二叉堆左偏树二项树胜者树跳跃表样式图标斜堆reap统计结构树状数组虚二叉树线段树矩形面积并圆形面积并关系结构Hash表并查集路径压缩思想的应用STL中的数据结构vectordequeset / map动态规划/ 记忆化搜索动态规划和记忆化搜索在思考方式上的区别最长子序列系列问题最长不下降子序列最长公共子序列最长公共不下降子序列一类NP问题的动态规划解法树型动态规划背包问题动态规划的优化四边形不等式函数的凸凹性状态设计规划方向线性规划常用思想二分最小表示法串KMP Trie结构后缀树/后缀数组LCA/RMQ有限状态自动机理论排序选择/冒泡快速排序堆排序归并排序基数排序拓扑排序排序网络中级:一.基本算法:(1)C++的标准模版库的应用. (poj3096,poj3007)(2)较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)二.图算法:(1)差分约束系统的建立和求解. (poj1201,poj2983)(2)最小费用最大流(poj2516,poj2516,poj2195)(3)双连通分量(poj2942)(4)强连通分支及其缩点.(poj2186)(5)图的割边和割点(poj3352)(6)最小割模型、网络流规约(poj3308, )三.数据结构.(1)线段树. (poj2528,poj2828,poj2777,poj2886,poj2750)(2)静态二叉检索树. (poj2482,poj2352)(3)树状树组(poj1195,poj3321)(4)RMQ. (poj3264,poj3368)(5)并查集的高级应用. (poj1703,2492)(6)KMP算法. (poj1961,poj2406)四.搜索(1)最优化剪枝和可行性剪枝(2)搜索的技巧和优化(poj3411,poj1724)(3)记忆化搜索(poj3373,poj1691)五.动态规划(1)较为复杂的动态规划(如动态规划解特别的施行商问题等)(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)(2)记录状态的动态规划. (POJ3254,poj2411,poj1185)(3)树型动态规划(poj2057,poj1947,poj2486,poj3140)六.数学(1)组合数学:1.容斥原理.2.抽屉原理.3.置换群与Polya定理(poj1286,poj2409,poj3270,poj1026).4.递推关系和母函数.(2)数学.1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)2.概率问题. (poj3071,poj3440)3.GCD、扩展的欧几里德(中国剩余定理) (poj3101)(3)计算方法.1.0/1分数规划. (poj2976)2.三分法求解单峰(单谷)的极值.3.矩阵法(poj3150,poj3422,poj3070)4.迭代逼近(poj3301)(4)随机化算法(poj3318,poj2454)(5)杂题.(poj1870,poj3296,poj3286,poj1095)七.计算几何学.(1)坐标离散化.(2)扫描线算法(例如求矩形的面积和周长并,常和线段树或堆一起使用).(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)(3)多边形的内核(半平面交)(poj3130,poj3335)(4)几何工具的综合应用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)高级:一.基本算法要求:(1)代码快速写成,精简但不失风格(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)(2)保证正确性和高效性. poj3434二.图算法:(1)度限制最小生成树和第K最短路. (poj1639)(2)最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解)(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446(3)最优比率生成树. (poj2728)(4)最小树形图(poj3164)(5)次小生成树.(6)无向图、有向图的最小环三.数据结构.(1)trie图的建立和应用. (poj2778)(2)LCA和RMQ问题(LCA(最近公共祖先问题) 有离线算法(并查集+dfs) 和在线算法(RMQ+dfs)).(poj1330)(3)双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移的目的). (poj2823)(4)左偏树(可合并堆).(5)后缀树(非常有用的数据结构,也是赛区考题的热点).(poj3415,poj3294)四.搜索(1)较麻烦的搜索题目训练(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)(2)广搜的状态优化:利用M进制数存储状态、转化为串用hash表判重、按位压缩存储状态、双向广搜、A*算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)(3)深搜的优化:尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大、可以考虑双向搜索或者是轮换搜索、IDA*算法. (poj3131,poj2870,poj2286)五.动态规划(1)需要用数据结构优化的动态规划.(poj2754,poj3378,poj3017)(2)四边形不等式理论.(3)较难的状态DP(poj3133)六.数学(1)组合数学.1.MoBius反演(poj2888,poj2154)2.偏序关系理论.(2)博奕论.1.极大极小过程(poj3317,poj1085)2.Nim问题.七.计算几何学.(1)半平面求交(poj3384,poj2540)(2)可视图的建立(poj2966)(3)点集最小圆覆盖.(4)对踵点(poj2079)八.综合题.(poj3109,poj1478,poj1462,poj2729,poj2048,poj3336,poj3315,poj2148,poj1263)初期:一.基本算法:(1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586)(3)递归和分治法. (4)递推.(5)构造法.(poj3295) (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:(1)图的深度优先遍历和广度优先遍历.(2)最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)(3)最小生成树算法(prim,kruskal)(poj1789,poj2485,poj1258,poj3026)(4)拓扑排序(poj1094)(5)二分图的最大匹配(匈牙利算法) (poj3041,poj3020)(6)最大流的增广路算法(KM算法). (poj1459,poj3436)三.数据结构.(1)串(poj1035,poj3080,poj1936)(2)排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)(3)简单并查集的应用.(4)哈希表和二分查找等高效查找法(数的Hash,串的Hash)(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)(5)哈夫曼树(poj3253)(6)堆(7)trie树(静态建树、动态建树) (poj2513)四.简单搜索(1)深度优先搜索(poj2488,poj3083,poj3009,poj1321,poj2251)(2)广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)(3)简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)五.动态规划(1)背包问题. (poj1837,poj1276)(2)型如下表的简单DP(可参考lrj的书page149):1.E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列)(poj3176,poj1080,poj1159)3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)六.数学(1)组合数学:1.加法原理和乘法原理.2.排列组合.3.递推关系.(POJ3252,poj1850,poj1019,poj1942)(2)数论.1.素数与整除问题2.进制位.3.同余模运算.(poj2635, poj3292,poj1845,poj2115)(3)计算方法.1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)七.计算几何学.(1)几何公式.(2)叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)(3)多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)(poj1408,poj1584) (4)凸包. (poj2187,poj1113)。
树型数据网格环境下副本放置算法研究

目受到节点存储能力等因素的限制 , 副本放置成为副本管理 中一 个值得研 究的 问题 。文 中针 对网络带宽受到限制
的树 型数 据 网格 , 考 虑 负载 均衡 的基 础 上 , 出了一 种 利 用 动 态 规 划 方 法 求 解 最优 最 小 可 行 副 本 集 , 后 在 此 基 在 提 然 础 上 利 用折 半 查 找 进行 k个 副 本放 置 的算 法 , 时 间复 杂度 小 于 0 nl n 。仿 真 实验 结 果 表 明 , 种 副 本 放 置 算 其 (2 g ) o 这 法 能 够获 得 较 好 的 负载 均衡 , 效地 提 高数 据 访 问性 能 。 有
FU o Xi ng. ANG W Ru— hu n c a
( oeeo o ue , nigU i rt o ot adT lcmm nctn , aj g2 04 C ia C lg f mptrNaj nv sy f s n e 0 u i i sN ni 10 6,hn ) l C n e i P s e ao n
第3 1卷 第 3期 2 1 年 6月 0 1
南 京 邮 电 大 学 学 报来自( 自 然 科 学 版
)
Vo. No. 1 3l 3
Junl f aj gU i ri f ot adT l o u i tn ( aua Si c) ora o N n n n esyo s n e cmm nc i s N tr ce e i v t P s e ao l n
ma a e n fd t rd. o r e b s d d t rd wi t r n wi t ・ o sr ie c n i e n o d n g me to a ag i F ra te — a e aa g t newo k ba d d h c n tan d, o sd r g la i h i b l n e o a h s r e t e lc t i a e r p s d ak-e lc lc me tag rt m a e n d n mi aa c fe c e v rwi r p ia,h sp p rp o o e r p ia p a e n l o i h h b sdo y a c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
树型动态规划补充二叉树的遍历的相关知识:在二叉树的应用中,常常要求在树中查找具有某种特征的结点,或者对全部结点逐一进行某种处理。
这就是二叉树的遍历问题。
所谓二叉树的遍历是指按一定的规律和次序访问树中的各个结点,而且每个结点仅被访问一次。
“访问”的含义很广,可以是对结点作各种处理,如输出结点的信息等。
遍历一般按照从左到右的顺序,共有3 种遍历方法,先(根)序遍历,中(根)序遍历,后(根)序遍历。
先序遍历的操作定义如下:若二叉树为空,则空操作,否则①访问根结点②先序遍历左子树③先序遍历右子树先序遍历右图结果为:124753689中序遍历的操作定义如下:若二叉树为空,则空操作,否则①中序遍历左子树②访问根结点③中序遍历右子树中序遍历右图结果为:742513869后序遍历的操作定义如下:若二叉树为空,则空操作,否则①后序遍历左子树②后序遍历右子树③访问根结点后序遍历右图结果为:745289631满二叉树:一棵深度为h且有 2^h-1个结点的二叉树。
满二叉树一定为完全二叉树,但是完全二叉树不一定为满二叉树。
若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。
满二叉树有如下性质:如果一颗树深度为h,最大层数为k,且深度与最大层数相同,即k=h;1、它的叶子数是:2^(h-1)2、第k层的结点数是:2^(k-1)3、总结点数是:2^k-1 (2的k次方减一)4、总节点数一定是奇数。
若设二叉树的深度为h,除第h 层外,其它各层(1~h-1) 的结点数都达到最大个数,第h 层所有的结点都连续集中在最左边,这就是完全二叉树。
1、二叉树的序遍历题目描述Description求一棵二叉树的前序遍历,中序遍历和后序遍历输入描述Input Description第一行一个整数n,表示这棵树的节点个数。
接下来n行每行2个整数L和R。
第i行的两个整数Li和Ri代表编号为i的节点的左儿子编号和右儿子编号。
输出描述Output Description输出一共三行,分别为前序遍历,中序遍历和后序遍历。
编号之间用空格隔开。
样例输入Sample Input52 34 50 00 00 0样例输出Sample Output1 2 4 5 34 25 1 34 5 2 3 1#include<iostream>#include<cstdio>using namespace std;struct node{int l;int r;};int i,n,r,l;node tree[1000];printf("%d ",x);if (tree[x].l!=0) work1(tree[x].l);if (tree[x].r!=0) work1(tree[x].r);}void work2(int x){if (tree[x].l!=0) work2(tree[x].l);printf("%d ",x);if (tree[x].r!=0) work2(tree[x].r);}void work3(int x){if (tree[x].l!=0) work3(tree[x].l);if (tree[x].r!=0) work3(tree[x].r);printf("%d ",x);}int main(){scanf("%d",&n);for(i=1;i<=n;i++) scanf("%d%d",&tree[i].l,&tree[i].r);work1(1);printf("\n");work2(1);printf("\n");work3(1);printf("\n");return 0;}2、二叉树最大宽度和高度(codevs1501)题目描述Description给出一个二叉树,输出它的最大宽度和高度。
输入描述Input Description第一行一个整数n。
下面n行每行有两个数,对于第i行的两个数,代表编号为i的节点所连接的两个左右儿子的编号。
如果没有某个儿子为空,则为0。
输出描述Output Description输出共一行,输出二叉树的最大宽度和高度,用一个空格隔开。
样例输入Sample Input52 34 50 00 00 0#include<iostream>#include<cstdio>#include<cstring>using namespace std;int a[1000][3],s[1000],i,n,x,ans;void dfs(int i, int k){int t,t1,t2;t=i;s[k]+=1;if (ans<s[k]) ans=s[k];if (k>x) x=k;t1=a[t][1];if (a[t][1]!=0) dfs(t1,k+1);t2=a[t][2];if (a[t][2]!=0) dfs(t2,k+1);}int main(){int n;memset(a, 0, sizeof(a));memset(s, 0, sizeof(s));scanf("%d", &n);for(int i = 1; i <= n; i++) scanf("%d%d", &a[i][1], &a[i][2]);x=0;ans=0;dfs(1, 1);printf("%d %d\n", ans,x);return 0;}3、愚蠢的矿工(RQNOJ30)题目:背景Stupid 家族得知在HYC家的后花园里的中央花坛处,向北走3步,向西走3步,再向北走3步,向东走3步,再向北走6步,向东走3步,向南走12步,再向西走2步( - -||)就能找到宝藏的入口,而且宝藏都是藏在山里的,必须挖出来,于是Stupid家族派狗狗带领矿工队去挖宝藏.(HYC家的宝藏被狗狗挖走后有什么感想?)描述这个宝藏的制造者为了掩盖世人耳目,他做的宝藏是没有出口,只有入口,不少建造宝藏的人都死在里面.现在知道宝藏总共有N个分岔口,在分岔口处是有财宝的,每个宝藏点都有一个财富值.狗狗只带了M个人来,而且为了安全起见,在每个分岔口,必须至少留一个人下来,这个留下来的人可以挖宝藏(每个人只能挖一个地方的宝藏),这样才能保证不会迷路,而且这个迷宫有个特点,任意两点间有且只有一条路可通(这一句是关键,由此我们可以判断用二叉树来做).狗狗为了让他的00开心,决定要尽可能地多挖些宝藏回去.现在狗狗的圈叉电脑不在身旁,只能求救于你了,你要知道,狗狗的终身幸福就在你手上了..(狗狗ps:00,你不能就这样抛弃偶……)输入——第1行:两个正整数N,M .N表示宝藏点的个数,M表示狗狗带去的人数(那是一条懒狗,他自己可不做事)。
(n<=1000,m<=100)第2行:N个整数,第i个整数表示第i个宝藏的财富值.(保证|wi|<maxint)第N+2行:两个非负整数A和B,表示A通向B,当A=0,表示A是入口.(保证A,B<=n)输出——输出狗狗能带回去的宝藏的价值。
样例:输入14 35 6 2 41 20 12 33 4输出113输入27 44 7 15 10 12 8 30 11 21 31 42 52 64 7输出2:38做法:这道题是一道树形dp,dp倒不是很难,只不过这里他的数据是一个多叉树,需要把多叉树变成二叉树,所以我悲剧地不会了,只好学习了......我先把多叉树转二叉树的示意图弄上来吧注:树形动态规划。
对于多叉树,我们一般采用多叉树转化为二叉树来简化问题即左儿子右兄弟,这也是dfs过程中为什么必须进行f[x,k]=f[r[x],k]。
f[x,y]=max(f[ 所有x结点的子树,分配i-1个人]+当前节点的宝藏财富值+f[ 剩余所有x结点的兄弟,分配y-i个人]);即方将f[x,y]:=f[tree[x].r,y-i] +tree[x].k+f[tree[x].l,i-1];参考程序:#include<cstdio>#define maxn 1010using namespace std;struct node{int l;int r;int k;}tree[maxn];int n,m,i,j,k,v[maxn],f[maxn][100];void dp(int x,int y){int i,tmp;if (f[x][y]!=-1) return;dp(tree[x].r,y);f[x][y]=f[tree[x].r][y];for(i=1;i<=y;i++){dp(tree[x].r,y);dp(tree[x].l,i-1);f[x][y]=max(f[x][y],f[tree[x].r][y-i]+f[tree[x].l][i-1]+tree[x].k);}}int main(){scanf("%d%d",&n,&m);for(i=1;i<=n;i++){tree[i].l=0;tree[i].r=0;}for(i=1;i<=n;i++) scanf("%d",&tree[i].k);for(i=1;i<=n;i++){scanf("%d%d",&j,&k);if(v[j]==0) tree[j].l=k;else tree[v[j]].r=k;v[j]=k;}for(i=1;i<=n;i++)for(j=1;j<=m;j++)f[i][j]=-1;dp(tree[0].l,m);printf("%d",f[tree[0].l][m]);return 0;5、购物问题(RQNOJ188)题目描述由于换季,商场推出优惠活动,以超低价格出售若干种商品。
但是商场为避免过分亏本,规定某些商品不能同时购买,而且每种超低价商品只能买一件。
身为顾客的你想获得最大的实惠,也就是争取节省最多的钱。
经过仔细研究,我们发现商场出售的超低价商品中,不存在以下这种情况:n(n>=3)种商品C1,C2,C3,……,Cn,其中Ci和Ci+1是不能同时购买的(i=1,2,……,n-1),而且C1和Cn也不能同时购买。