4种常见的动态规划模型
动态规划

=MIN(3+12,4+10)=14
最短路线: A—— B2 ——C2——D2——E2——F 最优解: d1*(A)= B2,最短用时14
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
最优解: d2*(B1)= C1
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S2=B2,则下一步能取C2或C3,故
f2(B2)=MIN r(B2,C2)+ f3(C2)
r(B2,C3)+ f3(C3) =MIN(2+8,1+11)=10
最短路线: B2 ——C2——D2——E2——F
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S4=D3,则下一步只能取E2,故
数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。
在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。
本讲将介绍一些简单的优化模型。
一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。
其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。
线性规划模型指的是目标函数和约束条件都是线性的情况。
通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。
二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。
非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。
对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。
这些方法通过迭代的方式逐步靠近最优解。
三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。
整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。
整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。
针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。
四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。
动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。
动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。
五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。
模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。
各个模型的作用

时间序列模型1.时间序列模型是用于做预测的,其中包含多种预测模型:1)加法模型2)乘法模型3)混合模型2.移动平均法有简单移动平均法,加权移动平均法,趋势移动平均法(趋势移动平均法对于同时存在直线趋势与周期波动的序列,是一种既能反映趋势变)化,又可以有效地分离出来周期变动的方法。
2.指数平滑法:一次指数平滑法、二次指数平滑法和三次指数平滑法等(在第7页)一次指数平滑法虽然克服了移动平均法的缺点。
但当时间序列的变动出现直线趋势时,用一次指数平滑法进行预测,仍存在明显的滞后偏差。
因此,也必须加以修正。
修正的方法与趋势移动平均法相同,即再作二次指数平滑,利用滞后偏差的规律建立直线趋势模型。
这就是二次指数平滑法。
当时间序列的变动表现为二次曲线趋势时,则需要用三次指数平滑法3. 差分指数平滑法:一阶差分指数平滑法、二阶差分指数平滑模型(14)4.自适应滤波法:以时间序列的历史观测值进行某种加权平均来预测的,它要寻找一组“最佳”的权数,其办法是先用一组给定的权数来计算一个预测值,然后计算预测误差,再根据预测误差调整权数以减少误差5. 趋势外推预测方法,推测出事物未来状况的一种比较常用的预测方法。
利用趋势外推法进行预测,主要包括六个阶段:(a)选择应预测的参数;(b)收集必要的数据;(c)利用数据拟合曲线;(d)趋势外推;(e)预测说明;(f)研究预测结果在进行决策中应用的可能性。
趋势外推法常用的典型数学模型有:指数曲线、修正指数曲线、生长曲线、包络曲线等。
(22)6. 平稳时间序列模型:自回归模型(Auto Regressive Model)简称AR 模型,移动平均模型(MovingAverage Model)简称MA 模型,自回归移动平均模型(Auto Regressive Moving AverageModel)简称ARMA 模型(23)1.插值1、可用于预测问题,观察相应散点的变化,预测被插值点的函数值2、主要方法有:一维插值法,二维网格插值和散点插值(contour)3、要求所求通过所有给定的点拟合1、线性拟合:一般都先画出散点图,用plot命令,然后再进行观察拟合,polyfit得系数,polyval在相关点的值。
运筹学模型的类型

运筹学模型的类型运筹学模型是指通过数学方法来描述和解决复杂问题的一种工具。
根据问题的性质和要求,运筹学模型可以分为以下几种类型:1. 线性规划模型(Linear Programming Model,简称LP):线性规划是一种优化问题,它的目标是在满足一些约束条件下,使某个线性函数取得最大或最小值。
线性规划模型广泛应用于生产调度、资源分配、物流运输等领域。
2. 整数规划模型(Integer Programming Model,简称IP):整数规划是线性规划的扩展,它要求决策变量只能取整数值。
整数规划模型常用于生产调度、排产计划、网络设计等问题。
3. 非线性规划模型(Nonlinear Programming Model,简称NLP):非线性规划是一种优化问题,它的目标函数和约束条件都可以是非线性的。
非线性规划模型广泛应用于经济学、金融学、工程学等领域。
4. 动态规划模型(Dynamic Programming Model,简称DP):动态规划是一种优化方法,它将一个复杂问题分解为若干个子问题,并逐步求解这些子问题。
动态规划模型常用于生产调度、资源分配、投资决策等问题。
5. 排队论模型(Queuing Theory Model,简称QT):排队论是一种研究等待线性的数学理论,它可以用来描述和分析顾客到达、服务时间、系统容量等因素对系统性能的影响。
排队论模型广泛应用于交通运输、通信网络、医疗卫生等领域。
6. 决策树模型(Decision Tree Model,简称DT):决策树是一种分类和回归的方法,它可以将一个问题分解为若干个子问题,并逐步求解这些子问题。
决策树模型常用于金融风险评估、医学诊断、市场营销等领域。
总之,不同类型的运筹学模型适用于不同的问题领域和求解目标,选择合适的模型可以帮助我们更好地解决实际问题。
常见数学建模模型

常见数学建模模型一、线性规划模型线性规划是一种常用的数学建模方法,它通过建立线性函数和约束条件,寻找最优解。
线性规划可以应用于各种实际问题,如生产调度、资源分配、运输问题等。
通过确定决策变量、目标函数和约束条件,可以建立数学模型,并利用线性规划算法求解最优解。
二、整数规划模型整数规划是线性规划的一种扩展形式,它要求决策变量为整数。
整数规划模型常用于一些离散决策问题,如旅行商问题、装箱问题等。
通过引入整数变量和相应的约束条件,可以将问题转化为整数规划模型,并利用整数规划算法求解最优解。
三、非线性规划模型非线性规划是一类目标函数或约束条件中存在非线性项的优化问题。
非线性规划模型常见于工程设计、经济优化等领域。
通过建立非线性函数和约束条件,可以将问题转化为非线性规划模型,并利用非线性规划算法求解最优解。
四、动态规划模型动态规划是一种通过将问题分解为子问题并以递归方式求解的数学建模方法。
动态规划常用于求解具有最优子结构性质的问题,如背包问题、最短路径问题等。
通过定义状态变量、状态转移方程和边界条件,可以建立动态规划模型,并利用动态规划算法求解最优解。
五、排队论模型排队论是一种研究队列系统的数学理论,可以用于描述和优化各种排队系统,如交通流、生产线、客户服务等。
排队论模型通常包括到达过程、服务过程、队列长度等要素,并通过概率和统计方法分析系统性能,如平均等待时间、系统利用率等。
六、图论模型图论是一种研究图结构和图算法的数学理论,可以用于描述和优化各种实际问题,如网络优化、路径规划、社交网络等。
图论模型通过定义节点、边和权重,以及相应的约束条件,可以建立图论模型,并利用图算法求解最优解。
七、随机模型随机模型是一种考虑不确定性因素的数学建模方法,常用于风险评估、金融建模等领域。
随机模型通过引入随机变量和概率分布,描述不确定性因素,并利用概率和统计方法分析系统行为和性能。
八、模糊模型模糊模型是一种用于处理模糊信息的数学建模方法,常用于模糊推理、模糊控制等领域。
常见数学建模模型

常见数学建模模型一、线性规划模型线性规划是一种常见的数学优化方法,广泛应用于工程、经济、管理等领域。
线性规划模型的目标是在给定的约束条件下,求解一个线性目标函数的最优解。
其中,约束条件通常是线性等式或不等式,而目标函数是一个线性函数。
在实际应用中,线性规划模型可以用于生产计划、资源分配、运输问题等。
例如,一个工厂的生产计划中需要确定每种产品的产量,以最大化利润为目标,并且需要满足一定的生产能力和市场需求的约束条件。
二、整数规划模型整数规划是线性规划的一种扩展形式,其目标函数和约束条件仍然是线性的,但变量需要取整数值。
整数规划模型常用于离散决策问题,如项目选择、设备配置等。
例如,一个公司需要决定购买哪些设备以满足生产需求,设备的数量必须是整数,且需要考虑成本和产能的约束。
三、动态规划模型动态规划是一种求解多阶段决策问题的数学方法。
该模型通常包含一个阶段决策序列和一个状态转移方程,通过递推求解最优解。
动态规划模型被广泛应用于资源分配、路径规划、项目管理等领域。
例如,一个工程项目需要确定每个阶段的最佳决策,以最小化总成本或最大化总效益。
在每个阶段,决策的结果会影响到下一个阶段的状态和决策空间,因此需要使用动态规划模型进行求解。
四、图论模型图论是研究图和网络的数学理论。
图论模型常用于解决网络优化、路径规划、最短路径等问题。
例如,一个物流公司需要确定最佳的送货路径,以最小化运输成本或最短时间。
可以将各个地点看作图中的节点,道路或路径看作边,利用图论模型求解最优路径。
五、回归分析模型回归分析是研究变量之间关系的一种统计方法。
回归分析模型通常用于预测和建立变量之间的数学关系。
例如,一个销售公司需要预测未来销售额与广告投入、市场份额等因素的关系。
可以通过回归分析模型建立销售额与这些因素之间的数学关系,并进行预测和决策。
六、排队论模型排队论是研究排队系统的数学理论。
排队论模型常用于优化服务质量、降低排队成本等问题。
运筹学模型的分类和类型

运筹学模型的分类和类型运筹学是一门应用于决策制定和问题解决的学科,它通过数学模型和分析方法来优化资源的利用。
运筹学模型是在特定情境中描述问题和优化目标的数学表示。
根据问题的性质和优化目标的类型,运筹学模型可以被分类为多种类型。
在本文中,我将介绍一些常见的运筹学模型分类。
一、线性规划模型:线性规划模型是最基本的运筹学模型之一。
它的特点是目标函数和约束条件均为线性的。
线性规划模型常用于求解资源分配、生产计划、物流运输等问题。
通过线性规划模型,我们可以找到使资源利用最优化的决策方案。
某公司需要确定每种产品的生产数量,以最大化总利润,且需满足各种资源约束条件,这时可以使用线性规划模型进行求解。
二、整数规划模型:整数规划模型是在线性规划模型的基础上引入整数变量的扩展。
在某些情况下,问题的决策变量只能取整数值,这时就需要使用整数规划模型进行求解。
某物流公司需要确定车辆的调度方案,每辆车的装载量可以是整数,这时可以使用整数规划模型来求解最佳调度方案。
三、动态规划模型:动态规划模型是一种考虑时间因素的决策模型。
它通常用于求解多阶段决策问题。
动态规划模型通过将问题划分为多个阶段,并建立各阶段之间的转移方程,来寻找最优决策序列。
在项目管理中,我们需要确定每个阶段的最佳决策,以最小化总工期和成本,这时可以使用动态规划模型进行求解。
四、网络流模型:网络流模型是一种描述网络中资源分配和流量传输的模型。
它通常用于求解网络优化问题,如最小费用流问题、最大流问题等。
网络流模型中,节点表示资源或流量的源点、汇点和中间节点,边表示资源或流量的传输通道。
通过建立网络流模型,我们可以确定资源的最优分配方案,以及网络中的最大流量或最小成本。
在供应链管理中,我们需要确定货物从生产商到消费者的最佳流向,以最小化总运输成本,这时可以使用网络流模型进行求解。
五、排队论模型:排队论模型是一种描述排队系统的模型。
它通常用于评估系统性能指标,如平均等待时间、平均逗留时间等。
数学建模常用算法模型

数学建模常用算法模型数学建模是将实际问题抽象为数学模型,并利用数学方法求解问题的过程。
在数学建模中,算法模型是解决问题的关键。
下面介绍一些常用的数学建模算法模型。
1.线性规划模型:线性规划是一种用于求解线性约束下的最优化问题的数学方法。
线性规划模型的目标函数和约束条件均为线性函数。
线性规划广泛应用于供需平衡、生产调度、资源配置等领域。
2.非线性规划模型:非线性规划是一种用于求解非线性目标函数和约束条件的最优化问题的方法。
非线性规划模型在能源优化调度、金融风险管理、工程设计等方面有广泛应用。
3.整数规划模型:整数规划是一种在决策变量取离散值时求解最优化问题的方法。
整数规划模型在网络设计、物流调度、制造安排等领域有广泛应用。
4.动态规划模型:动态规划是一种通过将问题分解为多个阶段来求解最优化问题的方法。
动态规划模型在资源分配、投资决策、路径规划等方面有广泛应用。
5.随机规划模型:随机规划是一种在目标函数和约束条件存在不确定性时求解最优化问题的方法。
随机规划模型在风险管理、投资决策、资源调度等方面有广泛应用。
6.进化算法模型:进化算法是一种通过模拟生物进化过程来求解最优化问题的方法。
进化算法模型包括遗传算法、粒子群算法、蚁群算法等,被广泛应用于参数优化、数据挖掘、机器学习等领域。
7.神经网络模型:神经网络是一种模仿人脑神经元连接和传递信息过程的数学模型。
神经网络模型在模式识别、数据分类、信号处理等领域有广泛应用。
8.模糊数学模型:模糊数学是一种用于处理不确定性和模糊信息的数学模型。
模糊数学模型在风险评估、决策分析、控制系统等方面有广泛应用。
除了以上常用的数学建模算法模型,还有许多其他的算法模型,如图论模型、动力系统模型、马尔科夫链模型等。
不同的问题需要选择合适的算法模型进行建模和求解。
数学建模算法模型的选择和应用需要根据具体的问题和要求进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例谈四种常见的动态规划模型动态规划是解决多阶段决策最优化问题的一种思想方法,本文主要结合一些例题,把一些常见的动态规划模型,进行归纳总结。
(一)、背包模型可用动态规划解决的背包问题,主要有01背包和完全背包。
对于背包的类型,这边就做个简单的描述:n个物品要放到一个背包里,背包有个总容量m,每个物品都有一个体积w[i]和价值v[i],问如何装这些物品,使得背包里放的物品价值最大。
这类型的题目,状态表示为:f[j]表示背包容量不超过j时能够装的最大价值,则状态转移方程为:f[j]:=max{f[j-w[i]]+v[i]},边界:f[0]:=0;简单的程序框架为:beginreadln(m,n);for i:=1to n do readln(w[i],v[i]);f[0]:=0;for i:=1to m dofor j:=1to n dobeginif i>=w[j]then t:=f[i-w[j]]+v[j];if t>f[i]then f[i]:=t;end;writeln(f[m]);end.这类型的题目应用挺广的(noip1996提高组第4题,noip2001普及组装箱问题,noip2005普及组采药等),下面一个例子,也是背包模型的简单转化。
货币系统(money)【问题描述】母牛们不但创建了他们自己的政府而且选择了建立了自己的货币系统。
他们对货币的数值感到好奇。
传统地,一个货币系统是由1,5,10,20或25,50,100的单位面值组成的。
母牛想知道用货币系统中的货币来构造一个确定的面值,有多少种不同的方法。
使用一个货币系统{1,2,5,10,..}产生18单位面值的一些可能的方法是:18×1,9×2,8×2+2×1,3×5+2+1等等其它。
写一个程序来计算有多少种方法用给定的货币系统来构造一个确定的面值。
【输入格式】货币系统中货币的种类数目是v(1≤v≤25);要构造的面值是n(1≤n≤10,000);第1行:二个整数,v和n;第2..v+1行:可用的货币v个整数(每行一个)。
【输出格式】单独的一行包含那个可能的构造的方案数。
【输入样例】310125【输出样例】10[分析]:此题是个背包模型,只是问题的解是构造方案数,设w[j]为第j种币值,状态f[i]:构造面值为i时可能的方案数,则状态转移方程为:f[i]:=∑f[i-w[j]],i>=w[j],边界:f[0]:=1;f[n]即为问题的解。
注意:由于此题的数据规模比较大,所以要用到高精度加法,估计最大的数据可以达到73位,为节约程序时间和空间效率,还采用了万进制的高精度加法。
参考程序如下:varf:array[0..10000,1..20]of integer;long:array[0..10000]of integer;//存储位数w:array[0..25]of integer;n,m,i,j,k:integer;procedure add(r,t:integer);//万进制高精度加var i,k:integer;beginif long[t]<long[r]then long[t]:=long[r];k:=0;for i:=1to long[t]dobeginf[t,i]:=(f[t,i]+f[r,i]+k);k:=f[t,i]div10000;//每一个存4位,万进制,这样省时省空间f[t,i]:=f[t,i]mod10000;end;while k>0do//进位处理begininc(long[t]);f[t,long[t]]:=k mod10000;k:=k div10000;end;end;procedure main;var i,j:integer;beginf[0,1]:=1;long[0]:=1;for i:=1to m dofor j:=w[i]to n do add(j-w[i],j);write(f[n,long[n]]);//输出答案,由于每个存4位,所以有时需要补零for i:=long[n]-1downto1dobeginif f[n,i]<10then write('000')else if f[n,i]<100then write('00')else if f[n,i]<1000then write('0');write(f[n,i]);end;end;beginassign(input,'money.in');reset(input);assign(output,'money.out');rewrite(output);readln(m,n);for i:=1to m do readln(w[i]);main;close(input);close(output);end.(二)、资源分配模型资源分配模型的动态规划,这类型的题目一般是:给定m 个资源,分配给n 个部门,第i 个部门获得j 个资源有个盈利值,问如何分配这m 个资源能使获得的盈利最大,求最大盈利。
这类型的题目一般用资源数做状态,数组f[i,j]表示前个i 个部门分配j 个资源的最大盈利,则状态转移方程为:f[i,j]:=max{f[i-1,k]+value[i,j-k]}(0<=k<=j)程序框架如下:var i,j,k:longint;beginfor i:=1to n dofor j:=0to m dofor k:=0to j doif f[i-1,k]+value[i,j-k]>f[i,j]then f[i,j]:=f[i-1,k]+value[i,j-k];writeln(f[n,m]);end;资源分配类型典型应用是花店橱窗(flower.pas)设置,没做过的同学可以自己去练习一下,下面的一个例题,也是此类型的转换。
[问题描述]农夫ion 放完马以后,需要把马儿关回马厩。
为了做好这件事,ion 让马排成一行跟着他入马厩。
他想出了一个就近入厩的办法:让前p 1匹马进入第一个马厩,然后的p 2匹马进入第二个马厩,如此类推。
而且,他不想让任何一个马厩(共k 个)留空,还有所有的马都进入马厩。
已知ion 只有黑色和白色两种颜色的马,然而并不是所有的马都能相处融洽。
假如有i 匹黑马和j 匹白马同在一个马厩,那么它们之间的不愉快系数为i*j。
马厩总的不愉快系数等于k 个马厩的不愉快系数之和。
请帮忙把n 匹马按顺序放入k 个马厩中(即求一种p 1,p 2…的安排方案),使得总的不愉快系数最小。
[输入格式]输入第一行为一个n 和k;(n<=100,k<=n);输入第二行为n 个数0和1,0表示白马,1表示黑马[输出格式]一行,最小的不愉快系数。
样例输入32101样例输出1分析:设f[i,j]:表示将前i匹马放入前j个马厩,得到的最小不愉快系数。
w[i,j]:表示将第i至第j匹马放入同一个马厩所得到的不愉快系数。
状态转移方程为:f[i,j]=min(f[k,j-1]+w[k+1,i]){j-1<=k<i}注意边界条件:f[i,1]:=w[1,i];f[i,i]:=0;参考程序如下:const maxn=100;maxk=100;varf:array[1..maxn,1..maxk]of longint;w:array[1..maxn,1..maxn]of longint;a:array[1..maxn]of longint;i,j,k,k1,n,s1,s2:integer;beginassign(input,'horse.in');reset(input);assign(output,’horse.out’);rewrite(output);readln(n,k);for i:=1to n do read(a[i]);for i:=1to n do//求w[i,j]for j:=i to n dobegins1:=0;s2:=0;for k1:=i to j doif a[k1]=0then inc(s1)else inc(s2);w[i,j]:=s1*s2;end;for i:=1to n do//初始化for j:=1to k dof[i,j]:=maxint;for i:=1to n do//边界条件beginf[i,i]:=0;f[i,1]:=w[1,i];end;for j:=1to k do//动规过程for i:=j to n dofor k1:=j-1to i-1doif(k1>0)and(j-1>=1)and(f[k1,j-1]<>maxint)thenf[i,j]:=min(f[k1,j-1]+w[k1+1,i],f[i,j])writeln(f[n,k]);close(input);close(output);end.(三)、区间类模型区间类模型的动态规划,一般是要求整段区间的最优值,子问题一般是把区间分成两个子区间。
一般用二维数组表示状态,例如f[i,j]表示从i到j的最优值。
则状态转移方程就是跟子区间之间的关系,下面我们用个典型的例子讲解这个模型的应用。
[问题描述]给定一个具有n(n<50)个顶点(从1到n编号)的凸多边形,每个顶点的权均已知。
问如何把这个凸多边形划分成n-2个互不相交的三角形,使得这些三角形顶点的权的乘积之和最小?输入文件:第一行顶点数n第一行n个顶点(从1到n)的权值输出格式:最小的和的值,各三角形组成的方式输入示例:5122123245231输出示例:t he minimum is:12214884the formation of3triangle:345,153,123分析:这是一道很典型的区间模型动态规划问题。
设f[i,j](i<j)表示从顶点i到顶点j 的凸多边形三角剖分后所得到的最大乘积,我们可以得到下面的动态转移方程:f[i,j]=min{f[i,k]+f[k,j]+s[i]*s[j]*s[k]}(i<k<j)目标状态为:f[1,n]但我们可以发现,由于这里为乘积之和,在输入数据较大时有可能超过长整形甚至实形的范围,所以我们还需用高精度计算,但这是基本功,程序中就没有写了,请读者自行完成。
参考程序vars:array[1..50]of integer;f:array[1..50,1..50]of comp;d:array[1..50,1..50]of byte;n:integer;procedure init;var i:integer;beginreadln(n);for i:=1to n do read(s[i]);end;procedure dp;//动态规划var i,j,k:integer;beginfor i:=1to n dofor j:=i+1to n do f[i,j]:=maxlongint;//赋初始值for i:=n-2downto1dofor j:=i+2to n dofor k:=i+1to j-1doif(f[i,j]>f[i,k]+f[k,j]+s[i]*s[j]*s[k])thenbeginf[i,j]:=f[i,k]+f[k,j]+s[i]*s[j]*s[k];d[i,j]:=k;//记录父节点end;end;procedure print(i,j:integer);//输出每个三角形beginif j=i+1then exit;write(',',i,'',j,'',d[i,j]);out(i,d[i,j]);out(d[i,j],j);end;procedure out;//输出信息beginwriteln('the minimum is:',f[1,n]:0:0);writeln('the formation of',n-2,'triangle:');write(1,'',n,''d[1,n]);out(1,d[1,n]);out(d[1,n],n);end;begin//主程序init;dp;out;end.区间模型的动态规划,在历届的信息学竞赛,应用非常广泛,如noi95的石子合并问题,noip2003普及组的数字游戏,noip2006提高组第1题等。