离散型动态规划问题(举例)

合集下载

4.3动态规划的建模与求解

4.3动态规划的建模与求解

5 5 13 5
k=2
f 2 s 2 max g 2 u 2 f 3 s3
0u 2 s 2
工厂 1 投资额 1 2 3 4.5 7 9
2 2 4.5 7.5
3 5 7 8
sk+1 = sk -uk
s3
u3
f 3 ( s3 )
u3
*
0 0 0
0
1 1 5 1
2 2 7 2
i k n
U k {uk | 0 uk sk }
最优值函数 f k sk :第k阶段可分配的资金数为sk时, 第k至第n个项目的最大总收益 求f1 a
最优值函数 f k sk :在第k阶段分配的资金数为sk时, 第k至第n个项目的最大总收益
建立递推公式:
f k s k
fk( sk ) =在工厂k,可供分配的资金数为sk时, 投资工厂k至工厂3所得的最大总收益 求f1( 5 ) 基本方程: f k s k max g k u k f k 1 s k 1 0u k sk k 3,2,1 f 4 s4 0 f 3 s3 max g 3 u3 k=3 0 u 3 s3 s3 0 4 1 2 3
0
0 0 0
0
4 5 2 3 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 5 2 7 7 4.5 8 9 9.5 7.5 10 10 11.512.511 13 12 12.514.5 16 15 12.5 16 5 7 9.5 3 2 4 0 0或1 1 5 3 4 5
解:设A---整个系统正常工作,Ai—部件i正常工作 A A1 A2 An ,
则P A P A1 P A2 P An pi xi

动态规划的应用举例大全

动态规划的应用举例大全
多背包问题
在0/1背包问题的基础上,通过动态规 划的方式解决多个约束条件下的物品 选择问题。
排程问题
作业车间调度问题
通过动态规划的方式,求解给定一组作业和机器,如何分配作业到机器上,使得 完成时间最早且总等待时间最小。
流水线调度问题
通过动态规划的方式,解决流水线上的工件调度问题,以最小化完成时间和总延 误时间。
应用场景
在基因组测序、进化生物学和生物分类学等领域中,DNA序列比对是关键步骤。通过比对,可以发现物种之间的相 似性和差异,有助于理解生物多样性和进化过程。
优势与限制
动态规划算法在DNA序列比对中具有高效性和准确性,能够处理大规模数据集。然而,对于非常长的序 列,算法可能需要较长时间来运行。
蛋白质结构预测
应用场景
深度学习中的优化算法广泛应用于语音识别、图像处理、 自然语言处理等领域,动态规划可以帮助提高训练效率和 模型的准确性。
自适应控制和系统优化
问题描述
动态规划方法
自适应控制和系统优化是针对动 态系统的优化和控制问题。在这 些问题中,动态规划可以用于求 解最优控制策略和系统参数调整。
通过定义状态转移方程和代价函 数,将自适应控制和系统优化问 题转化为动态规划问题。状态表 示系统的当前状态和参数,代价 函数描述了在不同状态下采取不 同行动的代价。
考虑风险因素和概率
动态规划可以考虑到风险因素和概率,以制定最优的风险评估和管 理策略。
考虑风险承受能力和资本充足率
动态规划可以考虑到风险承受能力和资本充足率,以制定最优的风 险评估和管理策略。
04 动态规划在生物信息学中 的应用
DNA序列比对
算法描述
DNA序列比对是生物信息学中常见的问题,通过动态规划算法可以高效地解决。算法将DNA序列视为字符串,并寻 找两个或多个序列之间的最佳匹配。

动态规划练习例题

动态规划练习例题
c(m,n)为最终最小代价,反向追踪获得编辑序列
动态规划方法总结
动态规划算法的设计步骤
– – – – – – – 将问题表示成多步判断 确定是否满足优化原则——必要条件 确定子问题的重叠性——估计算法效率 列出关于优化函数的递推方程(或不等式)和边界条件 自底向上计算子问题的优化函数值----非递归的算法 备忘录方法记录中间结果 标记函数追踪问题的解
• S(i)表示结束于位置i的最大子区间和 • max{S(i)}即为所求最大子区间和 • 考虑如何递推求解并反算问题解
最大子矩阵
• 已知矩阵的大小定义为矩阵中所有元素的 和。给定一个矩阵,找到最大的非空(大小 至少是1 * 1)子矩阵。 • 例如这个矩阵的最大子矩阵大小为15。
0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
动态规划练习例题在棋盘上移动在一个nn的棋盘上棋子可以向上方右上方或左上方移动每次从x方格移动到y方格将获得pxy元钱pxy不一定是正数现求一个获得钱最多的从底边到顶边的一种移动棋子的方案
动态规划练习例题
在棋盘上移动
• 在一个n×n的棋盘上,棋子可以向上方、 右上方或左上方移动,每次从x方格移动到y 方格将获得p(x,y)元钱, p(x,y)不一定是正 数,现求一个获得钱最多的从底边到顶边 的一种移动棋子的方案。
解题思路
Qx, y 1 Q x, y max Qx 1, y 1 Q x 1, y 1 y 1 px, y 1, x, y y 1 px 1, y 1, x, y y 1且x 1 px 1, y 1, x, y y 1且x 字符串X=x1,x2,…xm和Y=y1,y2,…yn 使用一系列编辑操作将字符串X转变成Y。允许使 用插入,删除,修改三种操作,每种操作都有 一定的代价,求一个总代价最小的操作序列。 – 设从字符X中删除符号xi的代价为D(xi) – 将符号yj插入X的代价为I(yj) – 将X中的符号xi修改成yj的代价为C(xi,yj)

动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。

本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。

二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。

其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。

具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。

这种分解可以通过递归的方式进行。

2. 定义状态:确定每个子问题的独立变量,即问题的状态。

状态具有明确的定义和可计算的表达式。

3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。

这个方程可以是简单的递推关系式、递归方程或其他形式的方程。

4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。

三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。

假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。

目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。

这个问题可以通过动态规划算法来求解。

具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。

(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。

(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。

(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。

2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。

动态规划例题

动态规划例题

动态规划例题动态规划是一种以最优化原理为基础的问题求解方法,通过拆分问题为若干阶段,每个阶段求解一个子问题,再逐步推导出整个问题的最优解。

例如,有一个背包能够承受一定的重量,现有一些物品,每个物品都有自己的重量和价值。

我们希望将物品放入背包中,使得背包的总价值最大。

这个问题可以用动态规划来解决。

首先,我们定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,容量为j的背包中所能放入的物品的最大价值。

那么,对于每一个物品,可以选择放入背包或者不放入背包。

如果选择放入背包,最大价值为dp[i-1][j-w[i]] + v[i],其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。

如果选择不放入背包,最大价值为dp[i-1][j]。

因此,dp[i][j]的状态转移方程为:dp[i][j] = max(dp[i-1][j-w[i]] + v[i], dp[i-1][j])。

基于这个状态转移方程,可以逐步求解从第1个物品到第n个物品的最大价值。

最终,dp[n][W]即为问题的最优解,其中W 表示背包的容量。

举个简单的例子,假设背包的容量为10,有3个物品,它们的重量分别为3、4、5,价值分别为4、5、6。

此时,可以得到如下的dp矩阵:0 0 0 0 0 0 0 0 0 0 00 0 0 4 4 4 4 4 4 4 40 0 0 4 5 5 9 9 9 9 90 0 0 4 5 5 9 10 10 14 14我们可以看到,dp[3][10]的最大价值为14,表示在前3个物品中,容量为10的背包中所能放入的物品的最大价值为14。

通过动态规划,我们可以有效地求解背包问题,得到物品放入背包的最优解。

这个例子只是动态规划的一个简单应用,实际上,动态规划可以解决各种复杂的问题,如最长公共子序列、最大子数组和、最大字段和等。

因此,学习动态规划是非常有意义的。

动态规划-例题众多-详细讲解

动态规划-例题众多-详细讲解

步骤2:状态转移方程:
步骤3:以自底向上的方法来计算最优解
12
程序的实现
BuyTicks(T, R)
1 n ← length[T]
2 f[0] ← 0
3 f[1] ← T[1]
4 for i ← 2 to n do
5
f[i] ← f[i-2]+R[i-1]
6
if f[i] > f[i-1]+T[i] then
n 0 1 2 3 4 5 6 7 8 9 10 F(n) 1 1 2 3 5 8 13 21 34 55 89
2
递归 vs 动态规划
递归版本:
F(n)
1 if n=0 or n=1 then
2
return 1
3 else
4
return F(n-1) + F(n-2)
太慢!
动态规划:
F(n)
1 A[0] = A[1] ← 1
这里是某支股票的价格清单: 日期 1 2 3 4 5 6 7 8 9 10 11 12 价格 68 69 54 64 68 64 70 67 78 62 98 87 最优秀的投资者可以购买最多4次股票,可行方案中的一种是: 日期 2 5 6 10 价格 69 68 64 62 输入 第1行: N (1 <= N <= 5000),股票发行天数 第2行: N个数,是每天的股票价格。 输出 输出文件仅一行包含两个数:最大购买次数和拥有最大购买次数的方案数(<=231) 当二种方案“看起来一样”时(就是说它们构成的价格队列一样的时候),这2种方 案被认为是相同的。
你的任务是,已知所有N位同学的身高,计算最少需要 几位同学出列,可以使得剩下的同学排成合唱队形。

离散型随机变量的例子

离散型随机变量的例子

离散型随机变量的例子
1. 你看抛硬币不,正面或反面朝上,这就是一个离散型随机变量的典型例子呀!每次抛硬币,结果都是不确定的,就好像人生的选择一样,每一次都充满了未知和惊喜呢!
2. 彩票算吧!彩票的中奖号码不就是离散型随机变量嘛。

你想想,买的时候你根本不知道会中还是不会中,那心情,一会儿期待得不行,一会儿又觉得没啥希望,这感觉多刺激呀!
3. 骰子的点数也属于离散型随机变量哦。

在玩游戏的时候,扔出骰子的那一刻,谁知道会是几点呢,心里是不是会有点小紧张,小期待呀,就像等待一个重要的消息一样。

4. 生男生女也是呀,宝宝还没出生前,你知道是男孩还是女孩吗?不知道对吧,这就是个离散型随机变量嘛,多神奇呀!
5. 抽查产品的质量合格与否,这也是离散型随机变量呢。

每次抽检都像是一场冒险,合格了大家开心,不合格就着急上火,这不就跟生活中的起伏一样吗?
6. 学生考试及格或不及格,也可以看成离散型随机变量呢。

考试前的忐忑,等待成绩的焦急,那种感觉是不是特别熟悉?这就像在人生道路上等待一个个结果一样。

我的观点结论就是:离散型随机变量在我们生活中无处不在,给我们的生活带来了很多不确定和乐趣,同时也让我们体验到各种不同的心情和经历。

动态规划算法的常见实例

动态规划算法的常见实例

动态规划算法的常见实例动态规划算法是一种将复杂问题分解为简单子问题来解决的算法,它可被应用于多个领域中,如经济学、生物学、计算机科学等。

在本文中,我们将详细讨论动态规划算法的常见实例。

一、最长公共子序列问题最长公共子序列(LCS)问题是一个经典的计算机科学问题,它要求在两个字符串中找到最长的相同连续子序列。

例如,对于字符串“ABCD”和“ACDF”,最长公共子序列为“ACD”。

使用动态规划方法来解决LCS问题。

首先定义一个m行n列的二维矩阵,其中m和n分别表示两个字符串的长度。

然后,使用以下递推关系:1. 如果一个字符串的长度为0,LCS为0。

2. 如果两个字符不相同,则LCS为它们的前一个字符集合和它们的后一个字符集合的最大值。

3. 如果两个字符相同,则LCS为它们的前一个字符集合和它们的后一个字符集合所组成的子序列中的最大值加1。

最后,矩阵右下角的值就是LCS的长度。

二、背包问题背包问题(Knapsack problem)是一个经典的组合优化问题,被广泛应用于计算机科学和其他领域。

在一个决策者必须决定是否将某些物品放入背包中的场景中,背包问题就发挥了作用。

具体来说,我们要解决的问题是:对于一个固定容量的背包,有一些物品,它们的重量和价值都不同,如何在不超过背包容量的前提下,使所装载物品的总价值最大化。

一种解决方案是使用动态规划方法。

定义一个二维数组,其行表示物品,列表示背包大小。

然后,使用以下递推关系:1. 如果所考虑的物品重量大于背包容量,则不选此物品。

2. 否则,在选取该物品和不选该物品两种情况中选择最优解作为最终结果。

最后,矩阵中右下角的值就是最大的总价值。

三、矩阵链乘法矩阵链乘法是一种计算矩阵乘积的优化算法。

它使用动态规划算法来确定矩阵乘积的最小值。

对于一个长度为n的矩阵链,我们可以定义一个n×n 的矩阵M,其中第i行第j列的元素Mi,j表示第i个矩阵与第j个矩阵相乘的最小次数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表1 利润增长额 gi (x j ) (百元)
投资额
(j) 0 100 200 300 400 500 600
工厂(i)
2
0 25 45 57 65 70 73
f2 (600) max{g2 (0) f3(600), g2 (100) f3(500), g2 (200) f3(400), g2 (300) f3(300), g2 (400) f3(200), g2 (500) f3(100) g2 (600) f3(0)}
工厂(i)
4
0 28 47 65 74 80 85
自然问:现在还有多少钱?即 s4 =? s4 =0,100,200,300,400,500,600都有可能。 下面分情况讨论:
s4 0
表1 利润增长额 gi (x j ) (百元)
投资额
(j) 0 100 200 300 400 500 600
工厂2
状态 s3
投资x3
工厂3
投资x4
状态 s4 工厂4 s5
g1 (x1 )
s2 s1 x1 g 2 (x2 ) s3 s2 x2
s4 s3 x3 g3 (x3 )
g4 (x4 )
状态变量 sk :可用于第k, k+1,…n个工厂的投资额。
决策变量 xk :第 k 阶段对第 k 个工厂的投资额。 允许决策集 Dk : Dk {0, 100, , sk }
投资额
(j) 0 100 200 300 400 500 600
工厂(i)
4
0 28 47 65 74 80 85
f4 (s4 )

max {g
0x4 s4
4
(
x4
)

f5 (s5 )}
(注意到此时 f5 (s5 ) =0)
0mx4axs4{g4 (x4 )}
s1 600
投资x1
工厂1
(2)k=3时 到第三个工厂投资时,可利用的资金还有 s3 ,
若向第三个工厂投资 x3(万元),则自此即以后最大利润为:
f3 (s3 ) 0mx3axs3{g3 (x3 ) f4 (s4 )}
0mx3axs3{g3 (x3) f4 (s3 x3 )}
sk1 sk xk ,
状态转移方程:sk1 sk xk , k 1,2,3,4. 其中 s1 600
阶段指标函数 gk (xk ) :第 k 阶段投资xk 元时所产生的利 润。(见上表) 最优指标函数 fk (sk ) :第 k 阶段状态为sk 且采取最佳投资 策略,从第 k 个工厂以及以后的最大总利润。
max{g3(0) f4 (300), g3(100) f4(200), g3(200) f4 (100), g3(300) f4 (0)}
s4 x4
表2 k=4 时决策表
g4 (x4 )
0 100 200 300 400 500 600
f4(s4) x4
00
0
0
100 0 28
28
100
200 0 28 47
47
200
300 0 28 47 65
65
300
400 0 28 47 65 74
74
400
500 0 28 47 65 74 80
80
500
600 0 28 47 65 74 80 85 85
600
表1 利润增长额 gi (x j ) (百元)
投资额
(j) 工厂(i)
47 0
0+65 18+47 39+28 61+0
67 200
0+74 18+65 39+47 61+28 78+0
89 300
0+80 18+74 39+65 61+74 78+28 90+0
108 300
0+85 18+80 39+74 61+65 78+47 90+28 95+0 126 300
100 200 300 400 500 600 f2 (s2 )
x
2
0 0+0
00
100 0+28 25+0
28 0
200 0+47 25+28 45+0
53 100
300 0+67 25+47 45+28 57+0
73 200
400 0+89 25+67 45+47 57+28 65+0
同样问:s3 =?,即现在还有多少钱?它是允许决策集上界。
同理 s3 S3 {0,100 ,200 ,300 ,400 ,500 ,600}
表1 利润增长额 gi (x j ) (百元)
投资额
(j) 0 100 200 300 400 500 600 工厂(i)
3
0 18 39 61 78 90 95
s1 600
投资x1
工厂1
状态 s2
投资x2
工厂2
状态 s3
投资x3
工厂3
投资x4
状态 s4 工厂4 s5
g1 ( x1 )
s2 s1 x1 g2 (x2 ) s3 s2 x2
s4 s3 x3 g3 (x3 )
g4 (x4 )
表1 利润增长额 gi (x j ) (百元)
资源分配问题 (离散型)
例:设有6万元资金用于4个工厂的扩建,已知每个工厂的利
润增长额同投资额的大小有关,见下表。问应如何确定对这
四个工厂的投资额,使总利润增长额最大?
表1 利润增长额 gi (x j ) (百元)
投资额
(j) 0 100 200 300 400 500 600
工厂(i)
1
0 20 42 60 75 85 90
s2 s1 x1 g2 (x2 ) s3 s2 x2
s4 s3 x3 g3 (x3 )
g4 (x4 )
表1 利润增长额 gi (x j ) (百元)
投资额
(j) 0 100 200 300 400 500 600
工厂(i)
4
0 28 47 65 74 80 85
解:(1)k=4时 考虑:若到最后一个,第4个工厂投资时,还有资金 s4 , 若投资于第4个工厂的资金为 x4 ,则最大利润为
工厂(i)
时, 4
0 28 47 65 74 80 85
f4 (s4 )

max {g
0x4 s4
4
(
x4
)}

max{g
0x4 0
4
(
x4
)
}

max{g
x4 0
4
(
x4
)
}
max{0} 0.
x4 0
s4 100 时,
f4 (s4 )

max {g
0x4 s4
4
(
x4
max{0 f3(600),25 f3(500), 45 f3(400),57 f3(300), 65 f3(200),70 f3(100), 73 f3(0)}
表3 k=3 时决策表
x3
s3
0 100 200 300 400 500 600
g 3 (x3 ) f4 (s3 x3 )
f3 (s3 ) x3
0 100 200 300 400 500 600
0+0
00
0+28 18+0
28 0
0+47 18+28 39+0
47 0
0+65 18+47 39+28 61+0
67 200
0+74 18+65 39+47 61+28 78+0
89 300
0+80 18+74 39+65 61+74 78+28 90+0
0 0 28 0 28 0 28 0 28 0 28 0 28
47 47 65 47 65 74 47 65 74 80 47 65 74 80 85
f 4 (s4 )
x
4
0
0
28
100
47
200
65
300
74
400
80
500
85
600
表1 利润增长额 gi (x j ) (百元)
投资额
(j) 0 100 200 300 400 500 600
108 300
0+85 18+80 39+74 61+65 78+47 90+28 95+0 126 300
f2 (600) max{0 f3(600),25 f3(500),45 f3(400),57 f3(300), 65 f3(200),70 f3(100),73 f3(0)}
x3 200
所有情况讨论结果汇总成下表:
表3 k=3 时决策表
x3
s3
0 100 200 300 400 500 600
g 3 (x3 ) f4 (s3 x3 )
f3 (s3 )
x
3
0 100 200 300 400 500 600
0+0
00
0+28 18+0
相关文档
最新文档