食品化学 第三章食品中的水和冰 第三节 水分活度与吸湿等温曲线

合集下载

食品化学名词解释

食品化学名词解释

食品化学:Food Chemistry,是一门研究食品(包括食品原料)的化学组成、结构、性质、营养与安全性以及它们在食品贮藏加工运输中产生的化学变化、应用或控制这些变化的科学。

第2章水1 结合水:指食品中那些与非水组分通过氢键结合的水。

2 自由水:又称“体相水”除开束缚水外,剩余的那部分水都称为自由水,是与非水组分相距很远的水。

3 毛细管水:食品中的组织含有天然的毛细管,其内部保留的水称为毛细管水,实际上主要存在于细胞间隙中。

4 水分活度:指溶液(食品)中水的蒸汽压与同一温度下纯水饱和蒸汽压之比。

5 “滞后”现象:对于食品体系,采用向干燥样品中添加水(回吸作用)的方法绘制水分吸着等温线和按解吸过程绘制的等温线并不相互重叠,这种不重叠性称为滞后现象。

6 食品的吸湿等温线:moisture sorption isotherms,MSI,在恒定的温度下,将食品的Aw值作横坐标,此时达到平衡的食品含水量为纵坐标所描绘的曲线就称为吸湿等温线。

8 单分子层水:指与强极性基团(如-COOH、-NH2等)直接以氢键结合的第一个水分子层的水称单分子层水,亦称“邻近水”。

~第3章碳水化合物1吸湿性;指糖在空气湿度较高时吸收环境中水分的性质。

2保湿性;指糖在较低空气湿度环境下保持水分的性质。

3转化糖;指蔗糖的水解产物。

4糖化:是利用葡萄糖淀粉酶进一步将液化产物水解成葡萄糖。

5糊化;淀粉粒在适当温度下(一般60-80℃)的水中,吸水溶胀、分裂、形成均匀糊状溶液的变化过程称为糊化。

6液化:是指利用酸或淀粉液化酶使糊化淀粉水解成糊精和低聚糖等,由于在此过程中淀粉黏度大为降低,流动性增加,所以工业上称为液化。

7β-淀粉;未糊化的淀粉称为β-淀粉(20%直+80%支的结晶态),或生淀粉8α-淀粉;糊化后的淀粉又称α-化淀粉{9 DE:表示淀粉水解生成葡萄糖的程度,也称淀粉糖化值、葡萄糖当量(Dextrose Equivalency),定义为还原糖(以葡萄糖计)在淀粉糖浆中所占的百分数(按干物质计)。

食品化学知识点

食品化学知识点

食品化学知识点第一章水1、在冷冻食品中存在4中主要的冰晶体结构:六方形、不规则树枝状、粗糙的球形和易消失的球晶以及各种中间状态的晶体。

2、冰的特性—过冷A】食品中水的蒸汽压和该温度下纯水的饱和蒸汽压的比值。

3、【水分活度W4、水在食品中以游离水和结合水两种状态存在的。

5、结合水的特性:①在-40℃不会结冰;②不能作为所加入溶质的溶剂;③在质子核磁共振试验中使氢的谱线变宽。

6、各种有机分子与水之间的作用以氢键为主要方式。

7、【吸湿等温线(MSI)】在恒定温度下,食品的水分含量与它的水分活度之间的关系图。

8、吸湿等温线:Ⅰ区:水的主要形式是化合水。

Ⅰ区和Ⅱ区分界线之间:水的主要形式是化合水和单层水。

Ⅱ区:水的主要形式是化合水+单层水+多层水。

Ⅱ区和Ⅲ区分界线之间:出现游离水。

Ⅲ区:游离水。

9、滞后现象:理论上二者应该一致,但实际二者之间有一个滞后现象,形成滞后环。

在一定时,食品的解吸过程一般比回吸过程时含水量更高。

【简答】10、简述水分活度与食品保存性的关系。

(一)、水分活度与微生物生长的关系:不同类群微生物生长繁殖的W A 最低范围是:大多数细菌为0.94~0.99,大多数霉菌为0.80~0.94,大多数耐盐细菌为0.75,耐干燥霉菌和耐高渗透压酵母为0.60~0.65。

在低于0.60时。

绝大多数微生物就无法生长。

细菌形成芽孢时的W A 阈值比繁殖生长时要高。

(二)、水分活度与酶水解的关系:当降低到0.25~0.30的范围,就能有效地减慢或阻止酶促褐变的进行。

(三)、水分活度与化学反应的关系:① 大多数化学反应都必须在水溶液中才能进行。

降低水分活度,食品中许多化学反应受到抑制,反应速率下降。

② 发生离子化学反应的条件是反应物首先必须进行离子的水合作用,所以要有足够的游离水。

③ 化学反应和生物反应都必须有水分子参与。

降低水分活度,减少了参加反应的水的有效数量,反应速率下降。

④ 当W A <0.8时,大多数酶活力受抑制;当W A 在0.25~0.30之间时,淀粉酶、多酚氧化酶和过氧化物酶就会丧失活力或受到强烈的抑制。

食品化学重点部分总结

食品化学重点部分总结

水分活度(water activity)是指食品中水的蒸汽压与该温度下纯水的饱和蒸汽压的比值,可用下式表示:水分吸附等温线 (Moisture sorption isotherms,MSI),在恒定温度下,使食品吸湿或干燥,所得到的食品水分含量(每克干物质中水的质量)与Aw的关系曲线。

意义:吸湿等温线表示了食品的Aw与含水量对应关系,除去水(浓意义缩、干燥)的难易程度与Aw有关,配制食品混合应注意水在配料间的转移,测定包装材料的阻湿性质,测定一定水分含量与微生物生长的关系,预测食品稳定性与水分含量的关系区Ⅰ的水的性质:构成水和邻近水,最强烈地吸附,最少流动,水-离子或水-偶极相互作用,在-40℃不结冰,不能作为溶剂,看作固体的一部分,占总水量极小部分BET单层:区Ⅰ和Ⅱ接界,0.07g H2O/ g干物质,Aw =0.2 ,相当于一个干制品能呈现最高的稳定性时含有的最大水分含量区Ⅱ的水的性质:多层水通过氢键与相邻的水分子和溶质分子缔合,流动性比体相水稍差,大部分在-40℃不结冰,导致固体基质的初步肿胀,区Ⅰ和区Ⅱ的水占总水分的5%以下真实单层:区Ⅱ和Ⅲ接界, 0.38g H2O/ g干物质,Aw =0.85完全水合所需的水分含量,即占据所有的第一层部位所需的水分含量区Ⅲ的水的性质:体相水,被物理截留或自由的,宏观运动受阻,性质与稀盐溶液中的水类似,占总水分的95%以上回吸:把水加到干的样品中解吸:先使样品吸水饱和,再干燥滞后现象(Hysteresis):回吸与解吸所得的等温线不重叠现象即为“滞后现象”(Hysteresis)。

糖苷:是由单糖的半缩醛羟基和非糖化合物缩合形成的化合物。

凝胶:三维网络结构 ,氢键、疏水相互作用、范德华引力、离子桥连、缠结或共价键,网孔中液相,凝胶特性——二重性,固体性质和液体性质 ,粘弹性的半固体。

淀粉的糊化:淀粉粒在适当温度下,破坏结晶区弱的氢键,在水中溶胀,分裂,胶束则全部 崩溃形成匀的糊状溶液的过程被称为糊化。

食品化学水课件

食品化学水课件
2016/10/8 2
重点 结合水及其分类;水分活度的定义及与温 度的关系;吸着等温线的含义。 难点 水分活度与微生物、化学反应、食品质构、 食品稳定性的关系;笼形水合物。
2016/10/8
3
水是以各种形态展现在人们面 前的丰富大自然的景象。
提起水的变化,真可说 是多彩多姿。
2016/10/8 4
2016/10/8
26
5 食品中水与非水成分的相互作用
结合水是样品在一定温度和低相对湿度下 的平衡水分含量; 高频电场对介电常数没有影响; 低温(-40℃或更低)下不能冻结; 不能作为外加溶质的溶剂; 在质子核磁共振实验中产生宽带; 处在溶质和其它非水物质的邻近位置。
2016/10/8 27
Chapter Two Water
2016/10/8
1
本章内容
水的功能 水和冰的物理性质 水分子和水分子的缔合; 冰和水的结构; 食品中水与非水成分的相互作用; Water activity and food stability (bilingual teaching)
水分活度与食品稳定性
5 食品中水与非水成分的相互作用
构成水(constitutional water)
结合最强的水,已成为非水物质的整体部分
邻近水(vicinal water)
占据着非水成分的大多数亲水基团的第一层位 置
多层水(multilayer water)
占有第一层中剩下位置及形成了邻近水外的几 层
5.5 水与能形成氢键的中性基团的相互作用 一般认为能形成氢键的溶质会促进(至少 不会破坏)纯水的正常结构。 溶质氢键部位的分布和定向在几何上与水 不相容时对水结构具有破坏作用,如尿 素——显著破坏效应。

食品化学课后题答案

食品化学课后题答案

食品化学课后复习题答案第一章绪论一、名词解释1、食品《食品工业基本术语》对食品的定义:可供人类食用或饮用的物质,包括加工食品、半成品和未加工食品,不包括烟草或只作药品用的物质。

《食品卫生法》对“食品”的法律定义:各种供人食用或者饮用的成品和原料以及按照传统既是食品又是药品的物品,但是不包括以治疗为目的的物品。

2、食品化学研究食品的种类、组成、营养、变质、分析技术及食品成分在加工和贮藏过程中所发生的化学反应的一门学科。

或者也可定义为是从化学角度和分子水平上研究食品的化学组成、结构、理化性质、营养和安全性质以及它们在生产加工、贮存和运销过程中的化学变化及其对食品品质和食品安全性影响的科学。

3、基本营养素营养素是指那些能维持人体正常生长发育和新陈代谢所必需的物质。

基本营养素一般包括六大类,即蛋白质、脂肪、碳水化合物、矿物质、维生素和水。

二、简答题1、食品化学家与生物化学家的研究对象和兴趣有何不一样。

答:生物化学家的研究对象是具有生命的生物物质,他们的兴趣包括在与生命相适应或几乎相适应的环境条件下,生物物质所进行的繁殖、生长和变化。

而食品化学加则研究的是死的或将死的生物物质,其主要研究兴趣在于暴露在环境变化很大、不适宜生存的环境中热处理、冷冻、浓缩、脱水、辐照等加工和保藏条件下食品中各个组分可能发生的物理、化学和生物化学变化。

2、简述食品化学的主要研究内容。

首先是对食品中的营养成分、呈色、呈香、呈味成分和激素、有毒成分的化学组成、性质、结构和功能进行研究。

其次研究食品成分之间在生产、加工、贮存、运输、销售过程中的变化,即化学反应历程、研究反应过程中的中间产物和最终产物的结构及其对食品的品质和卫生安全性的影响。

最后是对食品贮藏加工的新技术、开发新的产品和新的食品资源以及新的食品添加剂等进行研究。

这三大部分构成了食品化学的主要研究内容。

3、简述食品化学的研究方法。

任何一门学科的发展都是通过理论-实践-理论不断循环的体系中发展的,食品化学是一门实践性很强的学科,在食品化学的研究中,要采用理论和实验相结合的方法,实验主要通过感官实验和理化实验两条途径来实现,将实验结果与查证的资料相结合从而得出新的结论或者观点,然后将理论知识再反馈到实践中,又可以指导实践,不断循环,使得食品化学的理论只是不断推向新的阶段。

食品化学笔记1

食品化学笔记1

第二章 水分第一节 水和冰的结构和性质一、食品中的水分含量及功能 12、水的功能(1) 水在生物体内的功能稳定生物大分子的构象,使表现特异的生物活性 体内化学介质,使生物化学反应顺利进行 营养物质,代谢载体 热容量大,调节体温 润滑作用 (2) 水的食品功能组成成分显示色、香、味、形、质构特征 分散蛋白质、淀粉、形成溶胶 影响鲜度、硬度影响加工,起浸透、膨胀作用 影响储藏性 二 水的结构和性质 1 水的物理性质水的熔点、沸点较高;介电常数、表面张力、热容和相变等物理常数也较高; 密度较低,热导率较大;冰的热扩散速度是水的9倍。

2 水的结构H原子的单键结合成的非线性极性共价化合物。

氧原子外层电子构型为2s22p2---2s22p x22p y12p z1,两个与H原子之间靠近氧原子,由于孤对电子同性相斥,排斥力大于共价键的两对电子,使O—H键角度压缩为104.5º,(如果是正四面体中心原子与四对电子互成109º28’),水分子中共同电子对强烈地偏向氧原子一边,使H原子带有部分正电荷,H原子无内层电子因而不受排斥,只能和另一个水分子的氧原子的孤对电子相吸引,因此水分子之间形成H键,使2个,3个……水分子缔合。

水分子的缔合作用造成水具有低蒸气压、高沸点、高熔化热、高蒸发热的特点。

▲水的结构:四面体结构(不是正四面体)▲缔合作用:水分子中的氧原子的点负性大,O-H键的电子云强烈地偏向氧原子一边,使得氧原子带有部分正电荷,因为氢电子无内层电子,不受其他原子排斥,而只能和另一个水分子的孤对电子相吸引,结果,水分子间便形成缔合。

▲缔合作用的特点:①水具有溶剂性,也能溶解非离子有机分子,包括含羟基的糖和醇以及含羰基的醛和酮。

(原因:水的偶极性使其能以氢键与这些极性分子或功能基团相互作用)②水能作为两亲分子的分散介质。

(两亲分子的特点是同时具有亲水基和疏水基)三冰的结构和性质1、六方冰晶形成条件①在最适度的低温冷却剂中缓慢冷冻;②溶质的性质及浓度均不严重干扰水分子的迁移。

(完整版)食品化学答案整理

(完整版)食品化学答案整理

食品化学第二章水分1、名词解释:(1) 水分活度:指食品的水分蒸汽压与相同温度下纯水的饱和蒸汽压的比值。

(2) 水分的吸湿等温线:在恒定温度下,以食品中水分含量为纵坐标,以水分活度为横坐标绘制而成的曲线称为吸附等温线(MSI)。

(3) 等温线的滞后现象:一种食物一般有两条吸附等温线。

一条是水分回吸等温线,是食品在吸湿时的吸附等温线;一条是水分解吸等温线,是食品在干燥时的吸附等温线;往往这两条曲线并不完全重叠,在中低水分含量部分张开了一细长的眼孔,把这种现象称为“滞后”现象。

2、I可答题(1) 水分活度与食品稳定性的关系。

①食品aw与微生物生长[的关系:从微生物活动与食物水分活度的关系来看,各类微生物生长都需要一定的水分活度,一般说来:细菌为Aw>0.9; 酵母为Aw>0.87; 霉菌为Aw>0.&②食品aw与酶促反应的关系:一方面影响酶促反应的底物的可移动性,另一方面影响酶的构象。

食品体系中大多数的酶类物质在Aw<0.85时,活性大幅度降低,如淀粉酶、酚氧化酶和多酚氧化酶等。

但也有一些酶例外,如酯酶在Aw为0.3甚至0.1时也能引起甘油三酯或甘油二酯的水解。

③食品aw与非酶化学反应的关系:降低食品的Aw,可以延缓酶促反应和非酶反应的进行,减少食品营养成分的破坏,防止水溶性色素的分解。

但Aw过低,则会加速脂肪的氧化酸败,还能引起非酶褐变。

④食品aw与质地的关系:当水分活度从0.2 ~0.3增加到0.65时,大多数半干或干燥食品的硬度及黏着性增加。

水分活度为0.4〜0.5时,肉干的硬度及耐嚼性最大。

(2) 水分的吸附等温线的定义,以及3个区段的水分特性。

在恒定温度下,以食品中水分含量为纵坐标,以水分活度为横坐标绘制而成的曲线称为吸附等温线。

I区:为化合水和临近水区。

这部分水是食品中与非水物质结合最为紧密的水,为化合水和构成水,吸湿时最先吸入,干燥时最后排除;这部分水不能使干物质膨润,不能作为溶剂,在-40 C不结冰。

食品中水分和水分活

食品中水分和水分活
原理利用i时需要有一定的水参加反应氧化还原反应2hi此反应具有可逆性当生成物浓度005时即发生可逆反应要使反应顺利向右进行要加入适量的碱性物质以中和生成的酸可以选择吡啶c氢碘酸吡啶硫酸吡啶硫酸吡啶很不稳定与水发生副反应形成干扰
第Hale Waihona Puke 章第一节 概述食品中水分和水分活 度的测定
一、水分测定的意义 水分测定意义 水分是影响食品质量的因素, 控制水分是保障食品不变质的手段。
b. 固体样品要磨碎(粉碎),谷类达18 目,其他30~40目。 c. 液态样品要在水浴上先浓缩,然后进干 燥箱,不然烘箱受不了。 d.浓稠液体(糖浆、炼乳等):加水稀释, 最后要把加入的水除去。加入海砂,海 砂与玻璃棒在水浴上干燥后入干燥箱, 两者要知重量。 e.含水量﹥16%的谷类食品,采用两步干 燥法。如面包,切成薄片,自然风干 15~20h,再称量,磨碎,过筛,烘干。
不同的食品水分含量相差较多(见表5-1)
3、水分活度 Water Activity
从食品保藏的角度出发,食品的含水量不 用绝对含量(%)表示,而用活度表示 AW。 AW 指食品所显示的水蒸气压P对在同一湿 度下最大水蒸气压PO之比。 AW=P /P0=RH/100 P ——食品中水蒸气分压 P0——纯水的蒸气压 RH——平衡相对湿度
2.测定意义:水分活度表示食品中水分存 在的状态,反应水与食品的结合或游离 程度,Aw↓结合程度↑,Aw↑结合程度 ↓。 Aw影响色、香、味保存期。一般, 同种食品水分含量↑,Aw值↑。 3.水分活度值的测定方法 (1)Aw测定仪法; (2)扩散法; (3)溶剂萃取法。
(1)样品必须具备的条件: (2)称量皿的使用: (3)称样量: ⑷ 干燥条件 (5)干燥时间:
2. 蒸馏法 共沸蒸馏法:水与甲苯或二甲苯形成共 沸物。适用:易氧化、分解、热敏性及 易挥发组分。 [原理]:两种互不相溶的液体,二元体系 的沸点低于其中各组份分沸点,将食品 中的水分与有机溶剂如甲苯、苯、二甲 苯等,共沸蒸出,冷凝并收集馏出液, 由于水与其他组分密度不同,馏出液在 有刻度的接收管中分层,根据水的体积计 算水分含量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N:稀溶液中溶质的mol分数; n2:稀溶液中溶质的mol数。
n1:稀溶液中水的mol数;
3.3.2 水分活度和温度的关系
上边对于水分活度定义及测定方法的叙述中,均强调了在一定的温度 下。也就是说温度对于水分活度的值有较大的影响。
物理化学中的克劳修斯-克拉贝龙方程精确表示了水分活度与绝对温度 (T)之间的关系:
m 1=Y轴 截 距 1 +斜 率
Ⅱ区:多层水区,即食品中与酰胺基、羧基等基团和结合水、邻近水 以水-溶质、水-水以氢键和缔合作用被相对固定的水,也包括直径小于 1μm的毛细管的水;这部分水的aw一般在0.25~0.8之间,相当于物料含 水量在0.07g/g干物质至0.14~0.33g/g干物质。当食品中的水分含量相当 于Ⅱ区和Ⅲ区的边界时,水将引起溶解过程,它还起了增塑剂的作用并且 促使固体骨架开始溶胀。溶解过程的开始将促使反应物质流动,因此加速 了大多数的食品化学反应。
由b可以得出结论:在比较冰点以上或冰点以下的水分活度值时应该注 意到以下两个重要的区别。第一,在冰点以上,水分活度是样品组成和温 度的函数,并且样品组成对于水分活度值有明显的影响;而在冰点以下时, 水分活度与样品的组成无关,仅与温度有关。因此不能根据冰点以上水分 活度值来预测体系中溶质种类和含量对冰点以下体系发生变化的影响。第 二,冰点以上和以下时,就食品而言,水分活度的意义是不一样的。例如: 在水分活度为0.86的-15℃的食品中,微生物不再生长,其它化学反应的速 度也很慢;但在同样的水分活度而温度是20℃情况下,一些化学反应将快 速进行,一些微生物也将中等速度生长。
定样品水分活度的对数在不太宽的温度范围内随绝对温度的升高而正比例 升高。
b.但在较大的温度范围内, lnaw与-1/T之间并非始终为一直线关系;当 冰开始形成时,lnaw与-1/T曲线中出现明显的折点,冰点以下lnaw与-1/T的变 化率明显加大了,并且不再受样品中非水物质的影响;这是因为此时水的 汽化潜热应由冰的升华热代替,也就是说前述的aw与温度的关系方程中的 △H值大大增加了。要解释冰点以下aw与样品的组成无关,现在的观点认为, 在冰点以下样品的蒸气分压等于相同温度下冰的蒸气压,并且水分活度的 定义式中的p0此时应采用过冷纯水的蒸气压。
dlnaw/d(1/T)=-△H/R……………….(1) 其中R为气体常数,△H为样品中水分的等量净吸附热。
整理此式可得: lnaw=-kΔH/R(1/T)………………(2) 其中:此处的ΔH 可用纯水的汽化潜热表示,是常数,其值为40537.2J/mol;
样 品 的 绝 对 温 度 - 纯 水 的 蒸 气 压 为 样 品 蒸 气 压 ( p ) 时 的 绝 对 温 度
3.3.3 吸湿等温曲线
一、定义及测定方法
定义:在恒定温度下,食品的水含量(以g水/g干物质表示)对其活度 形成的曲线称为等温吸湿曲线(MSI)。
大多数食品或食品原料的吸湿等温线为S型,而水果、糖制品、含有大 量糖和其他可溶性小分子的咖啡提取物等食品的吸湿等温线为J型。如图:
测定方法:在恒定温度下,改变食品中的水分含量,测定相应的活度, 以水分含量为纵轴、Aw为横轴画出曲线。

不同种类的食品即使水分含量相同,其腐败变质的难易程度也有明 显的差异。食品的品质和贮藏性能与水分活度有密切的关系。
3.3.1 水分活度的定义及测定方法
一、定义:一定温度下样品水分蒸气压与纯水蒸气压的比值;
用公式表示即为:aw=p/p0=ERH/100=N=n1/(n1+n2)
其中:aw:水份活度; p:样品中水的蒸气分压 p0:同温纯水蒸气压; ERH:样品周围空气不与样品换湿时的平均相对湿度;
食品单分子层水含量的意义及计算:
意义:由于一般食品当其含水量接近单层值时,有最大的稳定性,因而根据具体对象确 定其单层值,对于食品的有效保存是非常重要的。
计算:a..公式法:BET方程式:
m (A 1-w A w )=m 1 1C+m C1 -C 1A w
其中:m:水分含量(g水/g干物质) m1:单层值 C:常数 b.作图法:以Aw/[m(1-Aw)]~Aw作BET图,在一定范围内有较好的 线性关系。由图上可 以直接测量出Y轴截距及斜率;通过下式求出M1值。
c.结合水不易结冰,由于这种性质使得植物的种子和微生物的孢子 得以在很低的温度下保持其生命力;而多汁的组织在冰冻后细胞结构往 往被体相水的冰晶所破坏,解冻后组织不同程度的崩溃;
d.结合水不能作为可溶性成分的溶剂,也就是说丧失了溶剂能力;
e.体相水可被微生物所利用,结合水则不能。
3.3 水分活度与吸湿等温曲线
二、MSI中的分区
一般的MSI均可分为三个区,如下图所示:
Ⅰ区:为构成水和邻近水区,即与食 品成分中的羧基、氨基等基团通过氢 键或静电引力相互结合的那部分水。 由于这部分水比较牢固的与非水成分 结合,因此aw较低,一般在0~0.25之 间,相当于物料含水量0~0.07g/g干 物质。这种水不能作为溶剂而且在40℃不结冰,对固体没有显著的增塑 作用,可以简单的看作固体的一部分。 要注意的是,一般把Ⅰ区和Ⅱ区交界 处的水分含量称为食品的“单分子层” 水含量,这部分水可看成是在干物质 可接近的强极性基团周围形成一个单 分子层所需水量的近似值。
Ⅲ区:自由水区,aw在0.8~0.99之间,物料最低含水量在0.14~0.33 g/g干物质,最高为20g/g干物质。这部分水是食品中与非水物质结合最不 牢固、最容易流动的水,也称为体相水。其蒸发焓基本上与纯水相同,既 可以结冰也可作为溶剂,并且还有利于化学反应的进行和微生物的生长。 在凝胶和细胞体系中,体相水以物理的方式被截留,其宏观流动性受到影 响,但它与稀盐溶液中水的性质相似。
k =
纯 水 的 蒸 气 压 为 样 品 蒸 气 压 ( p ) 时 的 绝 对 温 度
K的直观意义是在达到同样水蒸气压时,食品的温度比纯水温度高出的比值, 本质反映了食品中非水成分对水活性的影响。食品中非水成分越多并且与水的结
合能力越强,k值越大,相同温度时aw值越小;反之亦然。 讨论:a.由公式(2)可知, lnaw与-1/T之间为一直线关系,其意义在于:一
相关文档
最新文档