大学物理 习题分析与解答

合集下载

《大学物理》习题训练与详细解答四(机械波)

《大学物理》习题训练与详细解答四(机械波)
20
(2)由波动方程求t0时刻的波形方程,只须令波动方程
的t为常数t0.
则所求t=T/4时刻的波形方程为

t T 0.5 , y 0.1cos(4 0.5 x)
44
45
0.1cos( x ) 0.1sin x (m)
52
5
y
波形曲线如右图
0
5
10 x
16
(3)t=T/4时与波源相距 / 2 处质点的位移
A cos 0 A sin
0
0
0
0
2
波动方程为:y Acos( t x ) u2
(2)Q 2 2 u Tu
x 的振动方程为:y Acos( t x ) Acos( t 2 . )
8
u2
8 2
y Acos( t ) 4
x 3 的振动方程为:y Acos( t x ) Acos( t 2 . 3 )
(1)9:1;(2)1:3;(3)3:1;(4)1:9
平均能流密度又叫波的强度,简称波强,则有
I 1 CA22 1 CA2 (2 v)2
2
2
I1200 : I400 32 :1 9 :1
答案:(1)
13
4.如图1所示,一余弦横波沿 x 轴正向传播。实线表示 t=0 时刻的波形,虚线表示 t=0.5s 时刻的波形,此波的波动方 程为:
以 A为原点 y 0.03cos 4 (t x ) (m)
20
将x=0.05m待入上式,得 B的振动方程
y 0.03cos 4 (t 0.05)=0.03cos 4 (t 1 )
20
400
则以B为原点的波动方程为:
y 0.03cos[4 (t x ) ] (m)

大学物理习题及解答(刚体力学)

大学物理习题及解答(刚体力学)

1 如图所示,质量为m 的小球系在绳子的一端,绳穿过一铅直套管,使小球限制在一光滑水平面上运动。

先使小球以速度0v 。

绕管心作半径为r D 的圆周运动,然后向下慢慢拉绳,使小球运动轨迹最后成为半径为r 1的圆,求(1)小球距管心r 1时速度大小。

(2)由r D 缩到r 1过程中,力F 所作的功。

解 (1)绳子作用在小球上的力始终通过中心O ,是有心力,以小球为研究对象,此力对O 的力矩在小球运动过程中始终为零,因此,在绳子缩短的过程中,小球对O 点的角动量守恒,即10L L =小球在r D 和r 1位置时的角动量大小 1100r mv r mv = 100r r v v =(2)可见,小球的速率增大了,动能也增大了,由功能定理得力所作的功 ⎥⎦⎤⎢⎣⎡-=-=-=1)(21 21)(21 21212102020210202021r r mv mv r r mv mv mv W2 如图所示,定滑轮半径为r ,可绕垂直通过轮心的无摩擦水平轴转动,转动惯量为J ,轮上绕有一轻绳,一端与劲度系数为k 的轻弹簧相连,另一端与质量为m 的物体相连。

物体置于倾角为θ的光滑斜面上。

开始时,弹簧处于自然长度,物体速度为零,然后释放物体沿斜面下滑,求物体下滑距离l 时,物体速度的大小。

解 把物体、滑轮、弹簧、轻绳和地球为研究系统。

在物体由静止下滑的过程中,只有重力、弹性力作功,其它外力和非保守内力作功的和为零,故系统的机械能守恒。

设物体下滑l 时,速度为v ,此时滑轮的角速度为ω则 θωsin 2121210222mgl mv J kl -++= (1)又有 ωr v = (2) 由式(1)和式(2)可得 m r J kl mgl v +-=22sin 2θ本题也可以由刚体定轴转动定律和牛顿第二定律求得,读者不妨一试。

3 如右图所示,一长为l 、质量为m '的杆可绕支点O 自由转动,一质量为m 、速率为v 的子弹射入杆内距支点为a 处,使杆的偏转为︒30。

大学物理习题及解答(电磁感应)

大学物理习题及解答(电磁感应)

1.一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t sin .Φπ51008-⨯=,求在s .t 21001-⨯=时,线圈中的感应电动势。

2.如图所示,用一根硬导线弯成半径为r 的一个半圆。

使这根半圆形导线在磁感强度为 B 的匀强磁场中以频率f 旋转,整个电路的电阻为R ,求感应电流的表达式和最大值。

解:由于磁场是均匀的,故任意时刻穿过回路的磁通量为θcos )(0BS Φt Φ+=其中Φ0等于常量,S 为半圆面积,ft t πϕωϕθ200+=+= )2cos(21)(020ϕππ++=ft B r Φt Φ根据法拉第电磁感应定律,有)2sin(d d 022ϕππε+=-=ft fB r t Φ因此回路中的感应电流为 )2sin()(022ϕππε+==ft R fBr R t I则感应电流的最大值为R fBr I 22m π= 3.如图所示,金属杆 AB 以匀速v = 2.0 m .s -1平行于一长直导线移动,此导线通有电流 I = 40 A 。

问:此杆中的感应电动势为多大?杆的哪一端电势较高?解1:杆中的感应电动势为 V 1084.311ln 2d 2d )(501.11.00AB AB -⨯-=-=-=⋅⨯=⎰⎰πμπμεIv x v x I l B v 式中负号表示电动势方向由B 指向A ,故点A 电势较高。

解2:对于 右图,设杆AB 在一个静止的U 形导轨上运动,并设顺时针方向为回路ABCD 的正向,根据分析,在距直导线x 处,取宽为d x 、长为y 的面元d s ,则穿过面元的磁通量为x y x I Φd 2d d 0πμ=⋅=S B穿过回路的磁通量为11ln 2d 2d 01.11.00πμπμIy x y x I ΦΦS -===⎰⎰回路的电动势为V 1084.311ln 2d d 11ln 2d d 500-⨯-=-=-==πμπμεIv t y I t Φ由于静止的U 形导轨上电动势为零,所以 V 1084.35AB -⨯-==εε式中负号说明回路电动势方向为逆时针,对AB 导体来说电动势方向应由B 指向A ,故点A 电势较高。

大学物理3第11章习题分析与解答

大学物理3第11章习题分析与解答

大学物理3第11章习题分析与解答-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN习 题 解 答11-1 在双缝干涉实验中,若单色光源S 到两缝21S S 、距离相等,则观察屏上中央明纹位于图中O 处。

现将光源S 向下移动到示意图中的S '位置,则( )(A )中央明条纹也向下移动,且条纹间距不变 (B )中央明条纹向上移动,且条纹间距不变 (C )中央明条纹向下移动,且条纹间距增大 (D )中央明条纹向上移动,且条纹间距增大解 由S 发出的光到达21S S 、的光成相等,它们传到屏上中央O 处,光程差0=∆,形成明纹,当光源由S 向下移动S '时,由S '到达21S S 、的两束光产生了光程差,为了保持原中央明纹处的光程差为0,它将上移到图中O '处,使得由S '沿21S S 、传到O '处的两束光的光程差仍为0.而屏上各级明纹位置只是向上平移,因此条纹间距不变。

故选B11-2 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如附图所示,若薄膜厚度为e , 且n 1<n 2,n 3<n 2, λ1为入射光在n 1中的波长,则两束反射光的光程为( )(A )e n 22 (B )11222n e n λ-3n S S ’OO ’(C )22112λn e n - (D )22122λn e n - 习题11-2图解 由于n 1〈n 2,n 3〈n 2,因此光在表面上的反射光有半波损失,下表面的反射光没有半波损失,所以他们的光程差222λ-=∆e n ,这里λ是光在真空中的波长,与1λ的关系是11λλn =。

故选C11-3 如图所示,两平面玻璃板构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将发生( )变化(A )干涉条纹间距增大,并向O 方向移动 (B )干涉条纹间距减小,并向B 方向移动 (C )干涉条纹间距减小,并向O 方向移动 (D )干涉条纹间距增大,并向B 方向移动解 空气劈尖干涉条纹间距θλsin 2n l =∆,劈尖干涉又称为等厚干涉,即k相同的同一级条纹,无论是明纹还是暗纹,都出现在厚度相同的地方. 当A 板与B 板的夹角θ增大时,△l变小. 和原厚度相同的地方向顶角方向移动,所以干涉条纹向O 方向移动。

大学物理习题分析与解答

大学物理习题分析与解答

大学物理1 习题分析与解答 第1章 质点运动学习题分析与解答1.1 云室为记录带电粒子轨迹的仪器。

当快速带电粒子射入云室时,在其经过的路径上产生离子,使过饱和蒸气以离子为核心凝结成液滴,从而可采用照相方法记录该带电粒子的轨迹。

若设作直线运动带电粒子的运动方程为: (SI 单位),12C C α、、均为常量,并在粒子进入云室时计时,试描述其运动情况.解:分析 本题为一维直线运动问题,为已知运动学方程求带电粒子其他物理量的问题,属于运动学第一类问题,该类问题可直接应用求导方法处理。

即由带电粒子运动学方程对时间t 求导得到带电粒子的速度、加速度,进一步得到其初、终状态的位置、速度、加速度等运动学信息。

作如图1.1所示一维坐标系,选择计时处为坐标原点,则有Ox图1.1 1.1题用图12222e d e d d e d t tt x C C xv C t v a C vtαααααα---=-∴====-=- (1.1.1) 故带电粒子的初始状态为 2012020200t x C C v C a C v ααα=⇒=-==-=-、、 (1.1.2) 带电粒子的最终状态为 100t x C v a ∞∞∞=∞⇒===、、 (1.1.3) 讨论:(1)由(1.1.1)式知,粒子进入云室后作减速运动,其加速度为速度的一次函数;(2)由(1.1.2)式得到粒子的初始位置、初始速度和初始加速度; (3)由(1.1.3)式得到粒子的终态位置、终态速度和终态加速度;(4)由(1.1.1)式的加速度、速度及初始条件,对时间t 积分可得速度和运动学方程,此类问题属于运动学第二类问题,一般可直接应用积分方法处理。

1.2 将牛顿管抽为真空且垂直于水平地面放置,如图1.2所示自管中O 点向上抛射小球又落至原处用时2t ,球向上运动经h 处又下落至 h 处用时1t 。

现测得1t 、2t 和 h ,试由此确定当地重力加速度的数值.解:分析 本题为匀加速直线运动问题,由该类问题的运动学方程出发即可求解。

大学物理学(课后答案)第7章

大学物理学(课后答案)第7章

⼤学物理学(课后答案)第7章第七章课后习题解答、选择题7-1处于平衡状态的⼀瓶氦⽓和⼀瓶氮⽓的分⼦数密度相同,分⼦的平均平动动能也相同,则它们[](A) 温度,压强均不相同(B)温度相同,但氦⽓压强⼤于氮⽓的压强(C)温度,压强都相同(D)温度相同,但氦⽓压强⼩于氮⽓的压强3分析:理想⽓体分⼦的平均平动动能τk= kT,仅与温度有关,因此当氦⽓和氮2⽓的平均平动动能相同时,温度也相同。

⼜由理想⽓体的压强公式p =nkT ,当两者分⼦数密度相同时,它们压强也相同。

故选( C)O7-2理想⽓体处于平衡状态,设温度为T,⽓体分⼦的⾃由度为i ,则每个⽓体分⼦所具有的[](A)动能为-kT (B)动能为丄RT2 2(C)平均动能为^kT (D)平均平动动能为^RT分析:由理想⽓体分⼦的的平均平动动能3 kT和理想⽓体分⼦的的平均动能2T⼆丄kT ,故选择(C)O27-3三个容器A、B、C中装有同种理想⽓体,其分⼦数密度n相同,⽽⽅均根1/2 1/2 1/2速率之⽐为V A : V B : V C 1:2:4 ,则其压强之⽐为P A : P B : P C[](A) 1:2:4 (B) 1:4:8 (C) 1 : 4 : 16 (D) 4:2:1分析:由分⼦⽅均根速率公式= J3RT,⼜由物态⽅程p = nkT ,所以当三容器中得分⼦数密度相同时,得p1: P2: P3 =T1 :T2 :T3 =1:4:16 O故选择(C)O7-4图7-4中两条曲线分别表⽰在相同温度下氧⽓和氢⽓分⼦的速率分布曲线。

如果(VP O和(V P 分别表⽰氧⽓和氢⽓的最概然速率,则[](A)图中a表⽰氧⽓分⼦的速率分布曲线且V P O z V P H= 4(B) 图中a表⽰氧⽓分⼦的速率分布曲线且V P O/ V P H? =1/4(C) 图中b表⽰氧⽓分⼦的速率分布曲线且V P O / V P H=1/4(D) 图中b表⽰氧⽓分⼦的速率分布曲线且V P O/ V P H2 =4分析:在温度相同的情况下,由最概然速率公式'..P=I j2RT及氢⽓与氧⽓的摩尔质量M H2£M o2,可知氢⽓的最概然速率⼤于氧⽓的最概然速率,故曲线a对应于氧分⼦的速率分布曲线。

大学物理第五章机械振动习题解答和分析

大学物理第五章机械振动习题解答和分析

5-1 有一弹簧振子,振幅m A 2100.2-⨯=,周期s T 0.1=,初相.4/3πϕ=试写出它的振动位移、速度和加速度方程。

分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。

解:振动方程为:]2cos[]cos[ϕπϕω+=+=t TA t A x 代入有关数据得:30.02cos[2]()4x t SI ππ=+ 振子的速度和加速度分别是:3/0.04sin[2]()4v dx dt t SI πππ==-+ 2223/0.08cos[2]()4a d x dt t SI πππ==-+5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度.分析 通过与简谐振动标准方程对比,得出特征参量。

解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππϕω+=+=t t A x 得:振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==, 周期1/0.1T s ν==,/4rad ϕπ=(2)2t s =时,振动相位为:20/4(40/4)t rad ϕππππ=+=+ 由cos x A ϕ=,sin A νωϕ=-,22cos a A x ωϕω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=-5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小;(2)作用于质点的力的最大值和此时质点的位置.分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。

解:(1)跟据x m ma f 2ω-==,)]6/(5sin[2.0π-=t x 将0=t 代入上式中,得: 5.0f N =(2)由x m f 2ω-=可知,当0.2x A m =-=-时,质点受力最大,为10.0f N =5-4为了测得一物体的质量m ,将其挂到一弹簧上并让其自由振动,测得振动频率Hz 0.11=ν;而当将另一已知质量为'm 的物体单独挂到该弹簧上时,测得频率为Hz 0.22=ν.设振动均在弹簧的弹性限度内进行,求被测物体的质量.分析 根据简谐振动频率公式比较即可。

大学物理第二册习题答案详解

大学物理第二册习题答案详解
导体球的电势为
=59.9V
球壳的电势为0
9-10一无限长圆柱形导体,半径为a,单位长度上带有电量λ1,其外有一共轴的无限长导体圆筒,内、外半径分别为b和c,单位长度带有电量λ2,试求各区域的场强分布.
解:根据对称性,取一高为l的圆柱形的高斯面,
由高斯定理
r<a时:
a<r<b时:
得:
b<r<c时:
c<r时:
9-12证明:两平行放置的无限大带电的平行平面金属板A和B相向的两面上电荷面密度大小相等,符号相反;相背的两面上电荷面密度大小相等,符号相同.如果两金属板的面积同为100cm2,带电量分别为QA=6×10-8C和QB=4×10-8C,略去边缘效应,求两板的四个表面上的电荷面密度.
解:取圆柱形高斯面,如图
∴2+3= 0 (1)
2= -3
(1)另放一点电荷在高斯球面外附近.
(2)另放一点电荷在高斯球面内某处.
(3)将原来的点电荷q移离高斯面的球心,但仍在高斯面内.
(4)将原来的点电荷q移到高斯面外.
答:根据高斯定理,穿过高斯面的电通量仅取决于面内电量的代数和,而与面内电荷的分布情况及面外电荷无关,但各点的场强E与空间所有分布电荷有关,故:
题8-8(a)图题8-8(b)图题8-8(c)图
8-9如图所示,电荷面密度为σ的均匀无限大带电平板,以平板上的一点O为中心,R为半径作一半球面,求通过此半球面的电通量.
解:均匀无限大带电平面的电场
大小: ,方向:垂直平面
电通量:
8-10有证据表明,地球表面以上存在电场,其平均值约为130V·m-1,且指向地球表面,试由此推算整个地球表面所带的负电荷.(地球平均半径R=6.4×106m)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 恒定磁场 8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。

(A) B r 22π (B) B r 2π (C) 0 (D) 无法确定
分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。

正确答案为(B )。

8-2 下列说法正确的是[ ]。

(A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过
(B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零
(C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零
(D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零 分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。

正确答案为(B )。

8-3 磁场中的安培环路定理∑⎰=μ=⋅n
L I 1i i 0d l B 说明稳恒电流的磁场是[ ]。

(A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场
分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。

正确答案为(B )。

8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。

(A) B R I 2π (B) B R I 221π (C) B R I 24
1π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ⨯=n IS ,而且对任意形状的平面线圈都是适用的。

正确答案为(B )。

8-5 一长直螺线管是由直径d =0.2mm 的漆包线密绕而成。

当它通以I =0.5A 的电流时,其内部的磁感强度B =_____________。

(忽略绝缘层厚度,μ0=4π×10-7N/A 2)
分析与解 根据磁场中的安培环路定理可求得长直螺线管内部的磁感强度大小为nI B 0μ=,方向由右螺旋关系确定。

正确答安为(T 1014.33-⨯)。

8-6 如图所示,载流导线在平面内分布,电流为I ,则在圆心O 点处的磁感强度大小为_____________,方向为
_____________ 。

分析与解 根据圆形电流和长直电
流的磁感强度公式,并作矢量叠加,可得圆心O 点的总
D C O B A 的磁感强度。

正确答案为(⎪⎭
⎫ ⎝⎛π-μ1120R I ,向里)。

8-7 如图所示,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1)AB 中点的磁感应强度B P =_____________。

(2)
磁感应强度沿图中环路l 的线积分
=⋅⎰L
l B d _____________。

分析与解 根据长直电流的磁感强度公式
和电流分布的对称性,P 点的磁感强度是两电流产生的磁感强度的矢量叠加;B 的环流只与回路内的电流代数和有关,电流的正负由右螺旋关系确定。

正确答案为(0、I 0μ-)。

8-8 导线ABCD 如图所示,载有电流I ,其中BC 段为半径为R 的半圆,O 为其圆心,AB 、CD 沿直径方向,载流导线在O 点的磁感应强度为_____________,其方向为_____________。

分析与解 根据圆形电流和长直
电流的磁感强度公式,O 点的磁感强度是两电流
产生的磁感强度的矢量叠加;B 的方向由右螺旋
关系确
定。

正确答案为(向里,40R I μ)。

8-9 如图所示,一根载流导线被弯成半径为R 的
1/4圆弧,其电流方向由a →b ,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为____________ ,方向_________________。

分析与解 根据安培力公式B l F ⨯=d d I 及载流导线的对称性,可计算导线ab 所受磁场力,根据矢积可确定磁场力的方向。

正确答案为(RBI 2、沿y 轴正向)。

8-10 宽度为a 的薄长金属板中通有电流I ,电流沿薄板宽度方向均匀分布。

求在薄板所在平面内距板的边缘为b 的P 点处磁感强度大小和方向。

分析 把薄长金属板分割成无限多直线电流, P 点的磁感强度是各直线电流在P 点的磁感强度的矢量叠加。

解 选取如图x 坐标,P 为坐标原点,分割的直
线电流为式得
x a I I d d =,根无限长载流导线外一点的磁感强度公根据右螺旋关系,d B 的方向向里,积分遍及薄板得
P 点的场强
正确答案为:P 点的磁感强度大小为b
b a a I +πμln 20、方向向里。

8-11 如图所示长直导线旁有一矩形线圈且CD 与长直导线平行,导线中通有电流I 1=20安培,线圈中通有电流I 2=10安培。

已知a =1.0
厘米,b =9.0厘米,l =20厘米。

求线圈每边所受的力(大小
和方
向)。

分析 根据直线电流在矩形线圈所在平面的磁感强度,由安培力公式可求得各边所受的磁场力。

解 选取如图坐标,O 为x 坐标原点,直线电流I 1的磁感强度为x
2I B 10πμ=
,方向向里,根据安培力公式B l F ⨯=d d I 可求得各边的磁场力。

CD 边:x=a ,a 2I B 10πμ=故 a
2l I I IlB F πμ210==、方向向左; EF 边:x=a+b ,)(b a 2I B 10+πμ=故)π(μ210b a 2l I I IlB F +==、方向向右; DE 边:因DE 边各处的磁感强度不同,把其分成线元,各线元所受磁场力的方向相同,求和时积分遍及DE 线段
a
b a I I x I I B I F b
a a 2b
a a DE +πμ=πμ==⎰⎰++ln 2d 2d 210210x x 、方向向上; FC 边:同理得a
b a I I F FC +πμ=ln 2210、方向向下。

8-12 若电子以速度()
s /m 100.3100.266j i v ⨯+⨯=,通过磁场()T 15.003.0j i B -=。

求:
(1)作用在电子上的力;
(2)对以同样速度运动的质子重复你的计算。

分析 运动电荷在磁场所受的力为洛伦兹力B v F ⨯=q ,力的方向由电荷的性质与运动方向决定。

解 (1)对于电子,C 106.119-⨯-=-=e q 由洛伦兹力公式,得
(2)对于质子,C 106.119-⨯==e q ,同理得
8-13 如图所示,有一根长的载流导体直圆管,内半径为a ,外半径为b ,电流强度为I ,电流沿轴线方向流动,并且均匀地分布在管壁的横截面上。

空间某—点到管轴的垂直距离为r ,求r <a ,a <r <b ,r >b 各区间的磁感应强度。

分析 直圆管导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆解得各区为积分路径,⎰π⋅=⋅r B 2d l B ,利用安培环路定理,可
域的磁感强度。

解 取同心圆为积分回路,根据安培环路定理得
当r <a 时,02d 011=μ=π⋅=⋅∑⎰I r B l B ,即01=B
当a <r <b 时,
当r >b 时,r I B I I r B πμ=μ=μ=π⋅=⋅∑⎰22d 030033即l B 8.14 一平面线圈由半径为0.2m 的l/4圆弧和相互垂直的二直线组成,通以电流2A ,把它放在磁感强度为0.5T 的均匀磁场中,求
(1)线圈平面与磁场垂直时(如图所示),圆弧AC 段所受的磁力;
(2)线圈平面与磁场成600角时,线圈所受的磁力矩。

分析 根据安培力公式B l F ⨯=d d I 及载流导线的对称性,可计算导线AC 段所受
磁场力;对任意形状的通电平面线圈在磁场中所受的磁力矩均可表示为=
IS,由此可求计算线圈所受的磁力矩。

M⨯
e
B
n
解(1)由于AC圆弧与AC弦段所受磁力相同,根据安培力公式B
d I得AC圆弧所受的磁力大小为
=d
F⨯
l
=IlB
=
F,方向垂直于AC。

N
2
2.0
(2)根据磁力矩公式B
所受的
IS得线圈
=
M⨯
e
n
磁力矩大小为
π
=
=ISB
M,方向向下。

sin600⋅
3
N
200
/
m。

相关文档
最新文档