计算机组成原理 运算方法和运算器ppt课件
合集下载
计算机组成原理(本全)课件

计算机组成原理(本 全)课件
目录
CONTENTS
• 计算机系统概述 • 中央处理器(CPU) • 存储器系统 • 输入输出(I/O)系统 • 计算机的体系结构 • 计算机的软件系统
01 计算机系统概述
计算机的发展历程
第一代计算机
电子管计算机,20世纪40年代 中期至50年代末期,主要用于
军事和科学研究领域。
CPU每个时钟周期执行的指令数,是 衡量CPU性能的重要指标。
03 存储器系统
存储器的分类和作用
分类
根据存储器的功能和位置,可以分为内存和外存两大类。内存是计算机内部存储器,用 于存放运算数据和程序代码;外存则是计算机外部存储器,用于长期保存大量数据和程
序。
作用
存储器是计算机的重要组成部分,它负责存储程序运行过程中所需的数据、指令等信息 ,使得CPU能够快速、准确地读取和写入数据,从而完成程序的执行。
软件系统
包括系统软件和应用软件两大类。
操作系统
是计算机的软件系统中最基本、最重要的部分,负责 管理和调度计算机的软硬件资源。
计算机的工作原理
二进制数制
计算机内部采用二进制数制进行运算和存储。
指令和程序
计算机按照程序中预定的指令序列进行自动执 行。
存储程序原理
将程序和数据存储在计算机内部,根据指令从存储器中取出数据和指令进行运 算和传输。
内存的工作原理和组织结构
工作原理
内存由多个存储单元组成,每个单元可以存储一个二进制数 。当CPU需要读取或写入数据时,会通过地址总线发送地址 信号,内存控制器根据地址信号找到对应的存储单元,完成 数据的读取或写入操作。
组织结构
内存的组织结构通常采用线性编址方式,即将内存单元按照 一定顺序排列,每个单元都有一个唯一的地址。内存的容量 大小由地址总线的位数决定,地址总线位数越多,可访问的 内存单元数量就越多。
目录
CONTENTS
• 计算机系统概述 • 中央处理器(CPU) • 存储器系统 • 输入输出(I/O)系统 • 计算机的体系结构 • 计算机的软件系统
01 计算机系统概述
计算机的发展历程
第一代计算机
电子管计算机,20世纪40年代 中期至50年代末期,主要用于
军事和科学研究领域。
CPU每个时钟周期执行的指令数,是 衡量CPU性能的重要指标。
03 存储器系统
存储器的分类和作用
分类
根据存储器的功能和位置,可以分为内存和外存两大类。内存是计算机内部存储器,用 于存放运算数据和程序代码;外存则是计算机外部存储器,用于长期保存大量数据和程
序。
作用
存储器是计算机的重要组成部分,它负责存储程序运行过程中所需的数据、指令等信息 ,使得CPU能够快速、准确地读取和写入数据,从而完成程序的执行。
软件系统
包括系统软件和应用软件两大类。
操作系统
是计算机的软件系统中最基本、最重要的部分,负责 管理和调度计算机的软硬件资源。
计算机的工作原理
二进制数制
计算机内部采用二进制数制进行运算和存储。
指令和程序
计算机按照程序中预定的指令序列进行自动执 行。
存储程序原理
将程序和数据存储在计算机内部,根据指令从存储器中取出数据和指令进行运 算和传输。
内存的工作原理和组织结构
工作原理
内存由多个存储单元组成,每个单元可以存储一个二进制数 。当CPU需要读取或写入数据时,会通过地址总线发送地址 信号,内存控制器根据地址信号找到对应的存储单元,完成 数据的读取或写入操作。
组织结构
内存的组织结构通常采用线性编址方式,即将内存单元按照 一定顺序排列,每个单元都有一个唯一的地址。内存的容量 大小由地址总线的位数决定,地址总线位数越多,可访问的 内存单元数量就越多。
计算机组成原理(本全PPT)白中英

16
(347) 8 =3×82+4×81+7×80=(103)10 (347.5) 8 =3×82+4×81+7×80+5×8-1 =(231.625)10 (34E.5) 16 =3×162+4×161+14×160+5×16-1 =(846.3125)10
17
2、不同数制间的转换 1>十进制八,十六进制二进制 法则 整数部分:除8(16)取余数 小数部分:乘8(16)取整 重复循环
27
任意十进制N,可以化为 N=M×10E 其中M为小数,E为整数 一个数S的任意进制表示 (S)R=m×Re m :尾数,是一个纯小数。 e :比例因子的指数,称为浮点的指数,是一个 整数。 R :比例因子的基数,对于二进计数值的机器 是一个常数,一般规定R 为2,8或16。
28
浮点表示法:把一个数的有效数字和数的范围 在计算机的一个存储单元中分别予以表示, 这种把数的范围和精度分别表示的方法,数 的小数点位置随比例因子的不同而在一定范 围内自由浮动。 对于:101.1101(=0.1011101×20011) 只需存放0.1011101和0011即010111010011
33
当浮点数的①尾数为 0,不论其阶码为何值,或者 ②阶码的值遇到比它能表示的最小值还小时, 不管其尾数为何值,计算机都把该浮点数看成 零值,称为机器零。
浮点数转换的实例见P18
34
IEEE754浮点数格式说明 一个规格化的32位浮点数x的真值可表示为 x=(-1)s×(1.M)×2E-127 e=E-127 其中E的范围是1~254(阶码范围-126~+127), 0和255作特殊用途: ①浮点数+0, -0:E=0,M=0时表示x=(-1)S×0 ②+∞,-∞:E=255,M=0时x= (-1)S×∞ • IEEE754的32位浮点数表示的除0外的绝对值最小的数: s 00000001 0000 0000 0000 0000 0000 000 x=(-1)S×2-126×1.0 • IEEE754的32位浮点数表示的除∞外的绝对值最大的数: s 11111110 1111 1111 1111 1111 1111 111 x=(-1)S×2127×(2-2 -23)
计算机组成原理第1章ppt课件

和电路实现。
浮点数的表示与运算
浮点数的概念
浮点数是指小数点位置可以浮 动的数,用于表示更大范围、
更高精度的数值。
浮点数的表示方法
通常采用IEEE 754标准表示, 包括符号位、指数位和尾数位 。
浮点数的加减运算
需要进行对阶、尾数加减、规 格化等步骤,同时处理溢出和 舍入等问题。
浮点数的乘除运算
需要设计高效的算法和电路实 现,包括浮点乘法、浮点除法
地址译码器
将地址寄存器中的地址转换为对 应存储单元的选择信号。
存储体
由大量存储单元组成,每个存储 单元可存放一个字节或多个字节 的数据。
读写控制电路
根据CPU的命令控制存储器的读 写操作。
主存储器的性能指标与优化
存储容量
主存储器可以容纳的二进制信息量,通常以字节(Byte)为单位进 行衡量。
存取时间
逻辑门电路
基本逻辑门电路
介绍与门、或门、非门等 基本逻辑门电路的工作原 理和实现方法。
复合逻辑门电路
讲解与非门、或非门、异 或门等复合逻辑门电路的 工作原理和实现方法。
逻辑门电路的应用
介绍逻辑门电路在数字电 路中的应用,如组合逻辑 电路的设计和实现等。
03
计算机中的数据表示
数值数据的表示
定点数表示法
计算机的发展
计算机经历了从机械式计算机、电子管计算机、晶体管计算机、集成电路计算 机到超大规模集成电路计算机的五个发展阶段。
计算机系统的组成
硬件系统
包括中央处理器、存储器、输入 输出设备等,是计算机的物理基
础。
软件系统
包括系统软件和应用软件,是计算 机的逻辑基础。
数据
是计算机处理的对象,包括数值数 据、非数值数据和多媒体数据等。
浮点数的表示与运算
浮点数的概念
浮点数是指小数点位置可以浮 动的数,用于表示更大范围、
更高精度的数值。
浮点数的表示方法
通常采用IEEE 754标准表示, 包括符号位、指数位和尾数位 。
浮点数的加减运算
需要进行对阶、尾数加减、规 格化等步骤,同时处理溢出和 舍入等问题。
浮点数的乘除运算
需要设计高效的算法和电路实 现,包括浮点乘法、浮点除法
地址译码器
将地址寄存器中的地址转换为对 应存储单元的选择信号。
存储体
由大量存储单元组成,每个存储 单元可存放一个字节或多个字节 的数据。
读写控制电路
根据CPU的命令控制存储器的读 写操作。
主存储器的性能指标与优化
存储容量
主存储器可以容纳的二进制信息量,通常以字节(Byte)为单位进 行衡量。
存取时间
逻辑门电路
基本逻辑门电路
介绍与门、或门、非门等 基本逻辑门电路的工作原 理和实现方法。
复合逻辑门电路
讲解与非门、或非门、异 或门等复合逻辑门电路的 工作原理和实现方法。
逻辑门电路的应用
介绍逻辑门电路在数字电 路中的应用,如组合逻辑 电路的设计和实现等。
03
计算机中的数据表示
数值数据的表示
定点数表示法
计算机的发展
计算机经历了从机械式计算机、电子管计算机、晶体管计算机、集成电路计算 机到超大规模集成电路计算机的五个发展阶段。
计算机系统的组成
硬件系统
包括中央处理器、存储器、输入 输出设备等,是计算机的物理基
础。
软件系统
包括系统软件和应用软件,是计算 机的逻辑基础。
数据
是计算机处理的对象,包括数值数 据、非数值数据和多媒体数据等。
《计算机组成原理》课件

指令结束
将结果存回内存或寄存器 。
CPU的性能指标
速度
执行指令的速度,通常以MIPS(百万条 指令每秒)表示。
功耗
CPU在工作时的能耗。
集成度
CPU中晶体管的数量和密度。
可靠性
CPU在正常工作条件下无故障运行的概率 。
03
存储器
内存的分类与结构
分类
根据存储介质,内存可以分为RAM(随机存取存储器)和ROM(只读存储器)。RAM又可以分为DRAM(动态 随机存取存储器)和SRAM(静态随机存取存储器)。
谢谢您的聆听
THANKS
《计算机组成原理》ppt课件
CONTENTS
• 计算机系统概述 • 中央处理器 • 存储器 • 输入输出系统 • 总线系统 • 计算机系统可靠性及安全性
01
计算机系统概述
计算机的发展历程
机械计算机时代
1946年第一台电子计算机ENIAC诞生,占地170平方米,重30吨,运算速度5000次/秒。
晶体管计算机时代
20世纪50年代中期至60年代,计算机体积缩小,运算速度提高,可靠性增强。
集成电路计算机时代
20世纪60年代末至70年代初,微处理器出现,个人电脑开始进入市场。
大规模集成电路计算机时代
20世纪70年代中期至今,计算机体积更小,性能更高,应用领域更广泛。
计算机系统的组成
硬件系统
包括中央处理器、存储器、输入输出设备 等物理部件。
结构
内存主要由存储单元阵列、地址译码器和数据输入/输出缓冲器组成。每个存储单元阵列负责存储数据,地址译 码器负责将地址码转换为相应的存储单元的地址,数据输入/输出缓冲器则负责数据的读写操作。
内存的工作原理
将结果存回内存或寄存器 。
CPU的性能指标
速度
执行指令的速度,通常以MIPS(百万条 指令每秒)表示。
功耗
CPU在工作时的能耗。
集成度
CPU中晶体管的数量和密度。
可靠性
CPU在正常工作条件下无故障运行的概率 。
03
存储器
内存的分类与结构
分类
根据存储介质,内存可以分为RAM(随机存取存储器)和ROM(只读存储器)。RAM又可以分为DRAM(动态 随机存取存储器)和SRAM(静态随机存取存储器)。
谢谢您的聆听
THANKS
《计算机组成原理》ppt课件
CONTENTS
• 计算机系统概述 • 中央处理器 • 存储器 • 输入输出系统 • 总线系统 • 计算机系统可靠性及安全性
01
计算机系统概述
计算机的发展历程
机械计算机时代
1946年第一台电子计算机ENIAC诞生,占地170平方米,重30吨,运算速度5000次/秒。
晶体管计算机时代
20世纪50年代中期至60年代,计算机体积缩小,运算速度提高,可靠性增强。
集成电路计算机时代
20世纪60年代末至70年代初,微处理器出现,个人电脑开始进入市场。
大规模集成电路计算机时代
20世纪70年代中期至今,计算机体积更小,性能更高,应用领域更广泛。
计算机系统的组成
硬件系统
包括中央处理器、存储器、输入输出设备 等物理部件。
结构
内存主要由存储单元阵列、地址译码器和数据输入/输出缓冲器组成。每个存储单元阵列负责存储数据,地址译 码器负责将地址码转换为相应的存储单元的地址,数据输入/输出缓冲器则负责数据的读写操作。
内存的工作原理
《计算机组成原理》ppt课件

VS
挑战
在计算机组成原理的发展过程中,面临着 许多挑战和问题,如处理器的性能和功耗 问题、存储器的速度和容量问题、系统的 可靠性和安全性问题等。这些问题需要不 断研究和探索,以推动计算机组成原理的 持续发展。
THANKS
感谢您的观看
解释定点数与浮点数的表示方法,包括整数和实数的表示。
逻辑代数基础
1 2
逻辑变量与逻辑函数
引入逻辑变量和逻辑函数的概念,为后续的逻辑 运算打下基础。
基本逻辑运算
介绍与、或、非三种基本逻辑运算及其性质。
3
复合逻辑运算
阐述其他复合逻辑运算,如异或、同或等。
逻辑门电路
基本门电路
01
介绍与门、或门、非门等基本门电路的工作原理及实现。
01
03 02
I/O接口的功能和基本结构
数据传输寄存器
命令/状态寄存器
控制逻辑电路
I/O控制方式
优点
控制简单,易于实现
缺点
CPU利用率低,实时性差
I/O控制方式
优点
提高了CPU的利用率,实时性较好
缺点
中断次数多,开销大,数据丢失问题
I/O控制方式
优点
数据传输速度快,CPU干预少
缺点
需要专门的DMA控制器,硬件开销大
指令的执行过程
取指周期
从内存中读取指令,并放入指令 寄存器IR中。
中断周期
在执行过程中,如果出现中断请 求,则进入中断周期,保存现场 信息,并转向中断服务程序。
分析周期
对取回的指令进行分析,确定指 令的操作性质和操作数地址。
执行周期
根据分析结果,执行相应的操作 ,如算术运算、逻辑运算、数据 传输等。
计算机组成原理(本全)ppt课件

定点数的加减法实现
通过硬件电路实现定点数的加减法,包括加 法器、减法器等。
浮点数的加减运算
浮点数的表示方法
包括IEEE 754标准中浮点数的表示方法、规格化表示 和精度。
浮点数的加减法规则
包括阶码和尾数的运算规则、对阶操作、尾数加减运 算和结果规格化等。
浮点数的加减法实现
通过硬件电路实现浮点数的加减法,包括浮点加法器 、浮点减法器等。
指令的执行过程与周期
指令执行过程
取指、译码、执行、访存、写回等阶段 。
VS
指令周期
完成一条指令所需的时间,包括取指周期 、间址周期、执行周期等。
07
中央处理器(CPU)
CPU的功能与组成
控制器
负责指令的取指、译码和执行,控制 数据和指令在CPU内部的流动。
运算器
执行算术和逻辑运算,包括加、减、 乘、除、与、或、非等操作。
多核处理器与并行计算
多核处理器
将多个处理器核心集成在一个芯片上,每个核心可以独立执行指令,提高处理器的并行 处理能力。
并行计算
利用多核处理器或多个处理器同时处理多个任务或数据,加速计算过程,提高计算效率 。
08
输入输出系统
I/O接口与I/O设备
I/O接口的功能
实现主机与外设之间的信息交换,包括数据 缓冲、信号转换、设备选择等。
乘法与除法运算
浮点数的乘除法运算
包括浮点数的乘法、除法和平方根运算等。
定点数的乘除法运算
包括原码一位乘法、补码一位乘法、原码除 法和补码除法等。
乘除法运算的实现
通过硬件组成与设计
运算器的基本组成
包括算术逻辑单元(ALU)、寄存器组、数据总线等。
运算器的设计原则
计算机组成原理计算机的运算方法(共56张PPT)精选全文

10 0001 0000
0000
0001
……
……
1001
1010
0
00110000
1
00110001
……
9
00111001
A
16 0001 0110
1111
F
由于ASCII码低四位与BCD码相同,转换方便。 ASCII码左移四位得BCD码, BCD码前加0011得ASCII码。
一般采用二进制运算的计算机中不采用BCD码,矫正不方便。 商用计算机中采用BCD码,专门设置有十进制运算电路。
八进制数与十六进制数之间,可将二进制数作为中介进行转换。
、数值的处理(数制转换)
3) BCD码(十进制):P214-215
如果计算机以二进制进行运算和处理时,只要在输入输出处理时进
行二 / 十进制转换即可。
但在商业统计中,二 / 十进制转换存在两个问题:
(1)转换占用实际运算很大的时间; (2)十进制的,无法用二进制精确表示;
例:将(0. 1)10转换成二进制数 ( 要求5位有效位) 。
结果
0.1×2
最高位 0 .2×2
… 0 .4×2
0 .8×2
1 .6×2
1 .2×2
0 .4×2
直到乘积的小数部分为0,
或结果已满足所需精度要求为止.
0 .8×2
最低位 1 .6000
可能永远乘不完,小数部分不为0, 意味存在一点误差。
2 105
余数
结果
2 52
1
2 26
0
2 13
0
26
1
23
0
21
1
0
1
直到商等于0为止
经典:计算机组成原理-第2章-运算方法和运算器

1加法器的流水线时钟周期至少为90ns10ns100ns如果采用同样的逻辑电路但不是流水线方式则浮点加法所需的时间为300ns因此4级流水线加法器的加速比为30010032当每个过程段的时间都是75ns时加速比为300754例30已知计算一维向量xy的求和表达式如下
第二章:运算方法和运算器
2.1 数据与文字的表示方法 2.2 定点加法、减法运算 2.3 定点乘法运算 2.4 定点除法运算 2.5 定点运算器的组成 2.6 浮点运算方法和浮点运算器
其中尾数域所表示的值是1.M。因为规格化的浮点数的尾数域最
左位(最高有效位)总是1。故这一位经常不予存储,而认为隐藏
在小数点的左边。
64位的浮点数中符号位1位,阶码域11位,尾数域52位,指数偏
移值是1023。因此规格化的64位浮点数x的真值为:
x=(-1)s ×(1.M) × 2E-1023 e=E-1023
[X]反=1.x1x2...xn 对于0,有[+0]反=[-0]反之分:
[+0]反=0.00...0
[-0]反=1.11...1
我们比较反码与补码的公式
[X]反=2-2-n+X
[X]补=2+X
可得到 [X]补=[X]反+2-n
8
若要一个负数变补码,其方法是符号位置1,其余各位0变1,1变 0,然后在最末位(2-n)上加1。
10100.10011=1.010010011*24 e=4 于是得到:S=0,E=4+127=131=10000011, M=010010011 最后得到32位浮点数的二进制存储格式为: 0100 0001 1010 0100 1100 0000 0000 0000=(41A4C000)164
第二章:运算方法和运算器
2.1 数据与文字的表示方法 2.2 定点加法、减法运算 2.3 定点乘法运算 2.4 定点除法运算 2.5 定点运算器的组成 2.6 浮点运算方法和浮点运算器
其中尾数域所表示的值是1.M。因为规格化的浮点数的尾数域最
左位(最高有效位)总是1。故这一位经常不予存储,而认为隐藏
在小数点的左边。
64位的浮点数中符号位1位,阶码域11位,尾数域52位,指数偏
移值是1023。因此规格化的64位浮点数x的真值为:
x=(-1)s ×(1.M) × 2E-1023 e=E-1023
[X]反=1.x1x2...xn 对于0,有[+0]反=[-0]反之分:
[+0]反=0.00...0
[-0]反=1.11...1
我们比较反码与补码的公式
[X]反=2-2-n+X
[X]补=2+X
可得到 [X]补=[X]反+2-n
8
若要一个负数变补码,其方法是符号位置1,其余各位0变1,1变 0,然后在最末位(2-n)上加1。
10100.10011=1.010010011*24 e=4 于是得到:S=0,E=4+127=131=10000011, M=010010011 最后得到32位浮点数的二进制存储格式为: 0100 0001 1010 0100 1100 0000 0000 0000=(41A4C000)164
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结论:符号位为 0 表示负值
符号位为 1 表示正值
举例:n=7
〔X〕移=128+X 其中 -128≤x ≤127
13
意义:
0
128
0
255
X移
-128
x 127
比较:
〔+1011〕补
〔 +1011 〕移
〔-1011 〕补 〔-1011 〕移
14
课堂练习:设机器字长为16位,其中4位用来表示 阶码,12位用来表示尾数,阶符和尾符各占一位。 求该浮点数用补码表示时的最大值、最小值和最小 绝对值。
器本身能够表示的数据范围,这时就会产生溢 出现象。
上溢 下溢
23
判断溢出的方法: (1)单符号位法:V=C f + C 0
0 无溢出 V=
1 有溢出 (2)变形补码: V=Sf1+ S f2
0 无溢出 V=
1 有溢出
举例:
24
§2.2 定点加法/减法运算
• 基本的二进制加法/减法器 (1)一位全加器 (2)N位行波进位加法/减法器 结构:由N个一位全加器组成 工作原理:
16
Ms Es E1 E2 … Em
M1 M2 … Mn
数符1位
阶码8位
尾数23位
真值=(-1)S·2E-127 ·(1.M)
举例:按IEEE754标准写出176.0652的真值表达 式和存储格式。
17
作业:
某浮点格式如下表所示,阶码部分连阶符共 m+1位,补码表示,以2为底;尾数共n+1位, 含一位数符,补码表示,规格化。
3
2 章 运算方法和运算器
主要内容
❖数据与文字在计算机中的表示方法 ❖定点加法、减法运算 ❖定点乘法运算 ❖定点除法运算 ❖定点运算器的组成 ❖浮点运算方法和浮点运算器
4
§2.1 数据与文字在计算机中的的表 示方法
数值数据的表示三要素:进位计数制、小数点、符号。
• 进位计数制:凡是按进位方式计数的数值就 叫做进位计数制。
基数:该进位制中允许选用的基本数码的个数。
权:与数码位置有关的常数,简称 “权”。
• 进位计数制的相互转换
十进制
二进制
二进制
十进制
5
定点数 • 数据格式
浮点数
①定点整数: 0≤︱X︱≤2n﹣1
X0 X1 X2
……
Xn
符号位
②定点小数: 0≤︱X︱≤1﹣2﹣n
X0 X1 X2
……
Xn
符号位
6
③浮点数 : 表示形式: N=±RE ·M E------阶码 M------尾数 R-------与所采用的进制有关
2 回顾
1.什么是存储程序的概念?冯.诺依曼计算 机的基本思想是什么?
2.计算机系统的硬件由哪些基本功能部件组 成?主要功能是什么?
3.为什么要讨论计算机系统的层次结构? 4.存储单元、地址、存储容量
1
2
2 回顾
ห้องสมุดไป่ตู้
控制器
计
算 机
入
硬
高速缓存
出
件 系
接
统
主存储器
口
组 成
和
外存设备
总
线
运算器
输入设备 输出设备
9
• 数的机器码表示 ① 原码
纯整数〔X〕原 =
X,
2n > x ≥ 0
2n – x = 2n + |x| , 0≥ x > - 2n
纯小数〔X〕原 = X ,
1>x≥0
1 – x = 1 + |x| , 0≥ x > -1
特点:表示简单易懂,但运算复杂,另外还存在 零表示的不唯一性。
10
• 数的机器码表示 ② 反码
Es E1 E2 … Em
阶符
阶码
Ms M1 M2 … Mn
数符
尾数
常用补码或移码表示
常用补码或原码表示
7
表示范围: 假如阶码和尾数均为原码表示:
32位浮点数:数符1位、阶码8位、尾数23位 32位定点整数:
8
溢出
负浮点数
负浮点数 溢出
溢出 负浮点数 负下溢 正下溢 负浮点数 溢出
★浮点数的规格化表示: ︱M︱ ≥0.5
当 M=0 加法 当 M=1 减法
典型值
浮点数代码
非零最小正数 10…0,0.10……0
最大正数
01…1,0.11……1
绝对值最小负数 10…,1.10……0
绝对值最大负数 01…1,1.00……0
真值 ? ? ? ?
表示范围:? 分辨率:?
18
❖ 非数值数据的表示(略)
❖ 校验码
思想:让写入的信息符合某种约定的规律,在 读出时检验其读出信息是否仍符合这一约定规律。
2n+1+x = 2n+1-|x| , 0≥ x ≥ -2n
X,
1>x≥0
纯小数〔X〕补 =
2 + x = 2 - |x| , 0≥ x > -1
特点:符号位是通过运算得到的,可直接参与运算; 另外零的表示具有唯一性。
12
④ 移码
定义:假如X为n+1位(包括一位符号位)则:
〔X〕移
= 2n + x , 2n -1> x ≥ - 2n 其中:x为真值 2n为符号位的位权
纯整数〔X〕反 =
X, (2n+1 – 1)+ x ,
2n > x ≥ 0 0≥ x > - 2n
纯小数〔X〕反 =
X, (2 – 2-n)+ x ,
1>x≥0 0≥ x > -1
特点:表示简单易懂,但运算复杂;另外还存在 零表示的不唯一性。
11
• 数的机器码表示
③ 补码
纯整数〔X〕补 =
X,
2n > x ≥ 0
最大值 最小值
0 111 0 1111 1111 111 0 111 1 0000 0000 000
最小绝对值 0 000 0 0000 0000 001
15
补充:IEEE754标准中浮点数的定义
1985年IEEE提出了IEEE754标准。该标准规定 基数为2,阶码E用移码表示,尾数M用原码表示, 根据原码的规格化方法,最高数字位总是1,该标 准将这个1缺省存储,使得尾数表示范围比实际存 储多一位。以单精度格式为例:书
21
§2.2 定点加法/减法运算
• 补码减法 补码加法公式:[X-Y]补=[X]补+[-Y]补
特点:*将减法转化为加法 *符号位参加运算
问题的提出: [-Y]补=?
举例:
[-Y]补= [Y]补+2- n / 20
定点小数
定点小数
22
§2.2 定点加法/减法运算
溢出概念与检测方法: 当两个数相加或相减的运算结果超出了机
“冗余校验” 奇偶校验:根据代码字的奇偶性质进行编码。
奇偶校验电路结构图如下:
19
并行奇偶统计电路
C/C (校验位形成)
F(校错信号)
D7 D6 D5 D4 D3 D2 D1 D0
校 验 位
20
§2.2 定点加法/减法运算
• 补码加法 补码加法公式: [X+Y]补= [X]补+[Y]补
证明:
特点 * 符号位参加运算; * 如果是小数,则模2意义相加; * 如果是整数,则模 2n+1 意义相加。