高数第九章数项级数-任意项资料
任意项级数

n
三、小结 正 项 级 数
1. 若 Sn → S,则级数收敛;
任意项级数
审
2. 若 lim un 0, 则级数 un发散.
n
敛
法
3.按基本性质;
4.充要条件 5.比较法 6.比值法 7.根值法
n 1
4.绝对收敛 5.交错级数 (莱布尼茨定理)
n 1 n 1
级数条件收敛. 绝对收敛、条件收敛与收敛 之间有着什么样的关系呢?
定理2
若 un 收敛, 则 un收敛.
n 1 n 1
证明 令 vn 1 (un un ) (n 1, 2,),
2
显然vn 0, 且vn un , vn收敛,
又 un (2vn un ), un收敛.
n 1
若 un 收敛,则绝对收敛. n 1 结论:级数 un收敛, n 1 若 u 发散,则条件收敛. n n 1
n 1
n 1
n 1
例3
sin n 2 的收敛性. 判别级数 n n 1
解
sin n 1 2 2, n n
§9.3
任意项级数
一、交错级数及其审敛法
定义:如果在任意项级数 u n 中,正负号相间出
n 1
现,这样的任意项级数就叫做交错级数.它的一
n 1 n ( 1) u 或 ( 1) 般形式为: un n n 1 n 1
(其中un 0)
莱布尼茨定理
如果交错级数满足条件:
判别法,判断出正项级数 u n 发散,
n 1
高等数学无穷级数

【例9-6】讨论级数
n2
n
1 ln p
n
的敛散性,其中 p>0.
(2)比较法的应用 现在我们已经知道一些级数的敛散性,主要是等比 级数和p级数,便可以利用这些级数作为比较对象, 判断某些级数的敛散性了。
n1
v
n
收敛;
如果
n1
vn
发散,则 n1un
发散。
(2)比较判别法的极限形式(定理9-3的推论9-2)
n1un 与
n1
vn
是正项级数,并设
n1
v
n从某一
项之后是严格正项的。设
lim un l n vn
(i) (0l) 两个级数有相同的敛散性。
(ii)(l 0)
如果
n1un 发散,则
n1
下面给出三个相对具体或可操作的判别法,除了判
别法自身的意义,还分别与这两类级数密切相关。
3.积分判别法与p级数
n
1
1 np
(1)积分判别法(定理9-2):
非负函数 f (x) 在
[1,)上单调递减,则
n1
f(n)
与反常积分 1f(x)dx有相同的敛散性。
【例9-5】证明p-级数 n 1n 1p121p n 1p
(2)改变(包括增加和减少)级数中有限项, 不改变级数的敛散性,但可能改变收敛级数和的 值(性质3)。 (3)收敛级数可以任意增加括号,不改变收敛性 与级数和。 可称之为单向结合律,因为: 在有括号收敛的情况下,去括号可能改变敛散性; 由此可知,发散级数加括号也可能改变敛散性。 如果括号中各项符号一样,收敛级数可以去括号!
9.2.正项级数敛散性判别法
数项级数的概念与基本性质

数项级数的概念与基本性质8.1 数项级数的概念与基本性质教学目的:理解级数的概念和基本性质。
教学重点:级数的基本性质,收敛的必要条件,几何级数。
教学难点:有限项相加与无穷项相加的差异。
教学过程:1.导入我们以前研究的加法是将有限个数相加,这种加法易于计算但无法满足应用的需要。
在许多技术问题中,常要求我们将无穷多个数相加,这种加法叫做无穷级数。
无穷级数是表示函数、研究函数性质以及进行数值计算的一种工具。
无穷级数分为常数项级数和函数项级数,常数项级数是函数项级数的特殊情况,是函数项级数的基础。
2.讲授新课2.1 常数项级数的概念定义8.1:设给定数列{an},我们把形如a1+a2+。
+an+。
=∑an (n=1,2.)的式子称为一个无穷级数,简称级数。
其中第n项an称为级数∑an的通项(或一般项)。
如果级数中的每一项都是常数,我们称此级数为数项级数。
例如,等差数列各项的和a1+(a1+d)+(a1+2d)+。
+[a1+(n-1)d]+。
称为算术级数。
等比数列各项的和XXX.称为等比级数,也称为几何级数。
级数2n-1+。
+1111+。
=∑(2n-1)/(3n) (n=1,2.)称为调和级数。
级数(8.1.1)的前nXXX:XXX,k=1,2.n称Sn为级数∑an的前n项部分和,简称部分和。
2.2 常数项级数收敛与发散定义8.2:若级数(8.1.1)的部分和数列{Sn}的极限存在,即limSn=S (常数)n→∞则称极限S为无穷级数∑an的和。
记作S=∑an=a1+a2+。
+an+。
此时称级数∑an收敛;如果数列{Sn}没有极限,则称级数∑XXX发散,这时级数没有和。
显然,当级数收敛时,其部分和Sn是级数和S的近似值,它们之间的差rn=S-Sn=an+1+an+2+。
叫做级数的余项。
用近似值Sn代替S所产生的误差是这个余项的绝对值,即误差为|rn|。
例1:讨论几何级数∑aq^(n-1)=a+aq+aq^2+。
高数第九章数项级数

n
dx 1 1 1 (1 p1 ) 1 p 1 x p1 n p1
即sn有界,
则P 级数收敛.
当p 1时, 收敛 P 级数 当p 1时, 发散
中央财经大学
数学分析
例 2 证明级数
n 1
1 是发散的. n( n 1)
证明
1 1 , n( n 1) n 1
un1 N , 当n N时, 有 , un
un1 即 un
(n N )
中央财经大学
数学分析
当 1时, 取 1 ,
使r 1,
uN 2 ruN 1 ,
uN m r
uN 3 ruN 2 r 2 uN 1 ,
中央财经大学
1 (1) sin ; n n 1
数学分析
5.比值审敛法(达朗贝尔 D’Alembert 判别法):
设
n 1
un 1 (常数或 ) n u un 是正项级数,如果 lim n
则 1时级数收敛; 1 时级数发散; 1 时失效.
证明 当为有限数时, 对 0,
n dx 1 设 p 1, 由图可知 p n1 p n x 1 1 1 sn 1 p p p 2 3 n 2 dx n dx o 1 1 p n1 p x x
y
y
1 ( p 1) xp
1
2
3
4
x
中央财经大学
数学分析
1 1
1 而级数 发散, n 1 n 1
级数
n 1
1 发散. n( n 1)
高等数学-九-无穷级数

第九章无穷级数无穷级数是函数逼近与近似计算的重要工具。
本章主要讨论⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧--⎪⎩⎪⎨⎧---和函数展开收敛性傅立叶级数和函数展开收敛性幂级数函数项级数条件收敛绝对收敛任意项级数莱布尼兹审敛法交错级数根值法比值法比较法正项级数常数项级数级数,,,,,,,基本概念基本性质收敛域和函数§1、数项级数的基本概念与性质一、基本概念定义1(级数)设有无穷数列,称形式和{}∞1n u++++n u u u 21为无穷级数,简称级数,记为,即∑∞=1n n u ,211++++=∑∞=n n nu u u u其中每个数均称为级数的项,数称为级数的一般项或通项,级数的前n 项和n unnk k n u u u u s +++==∑= 211称为级数的部分和数列。
研究级数的基本问题:1、判定级数是否收敛——无穷个数相加是否等于一个有限数(级数的和);2、当级数收敛时,如何求其和。
判定级数收敛或发散的方法统称为审敛法。
熟练掌握针对各种级数的审敛法是学习的主要内容。
定义2(敛散性)设有级数,其部分和为,则n s ∑∞=1n nu∑∞=1n nu1、级数收敛此时,称s 为级数的和,并记,lim s s n n =⇔∞→∃;1s un n=∑∞=2、级数发散不存在。
∑∞=1n nun n s ∞→⇔lim 显然,收敛级数才有和,发散级数无和;任何级数要不收敛,要不发散,两者不可兼得。
利用敛散性定义可以判定一些级数的敛散性,并求出收敛级数的和。
【例1】判定级数的敛散性。
∑∞=+1)1(1n n n 〖解〗由分项分式),2,1(111)1(1 =+-=+k k k k k 得级数部分和为)1(1431321211+++⋅+⋅+⋅=n n s n )111()4131()3121()211(+-++-+-+-=n n111+-=n s n 故n n s ∞→lim )111(lim +-=∞→n n 1=于是,原级数收敛,且和为1,即.1)1(11=+∑∞=n n n □练习:判定下列级数∑∞=-+1)1(n n n 的敛散性。
9.3任意项级数及敛散性判别法

∞
∑u
∞ n =1
∞
n =1
n
条件收敛
定理: 绝对收敛, 定理:若任意项级数 ∑ u n 绝对收敛,则此级数一 n =1 定收敛. 定收敛 注:收敛级数未必绝对收敛. 收敛级数未必绝对收敛
推论: 发散, 也发散. 推论:若 ∑ u n 发散,则 ∑ un 也发散
n =1 n =1
∞
∞
例3:判别下列级数的敛散性,若收敛是条件收敛 :判别下列级数的敛散性, 还是绝对收敛. 还是绝对收敛
n =1
的任意项级数,称为交错级数. 的任意项级数,称为交错级数 其中 un > 0, n = 1,2, L 交错级数 注:在后面的学习中,我们主要讨论 * 式的交错级数 在后面的学习中, ()
2、交错级数判别法 、 定理(莱布尼兹判别法): 定理(莱布尼兹判别法): 若交错级数 ∑ (−1) u n 满足: 满足:
n −1 1 ⑴ ∑ (−1) np n =1 ∞
sin(n sin(n!) ⑵∑ n2 n =1
∞
1 ln(1 + ) ∞ n n ⑶ ∑ (−1) n n =1
xn 的敛散性. 例4:讨论级数 ∑ s ( s > 0) 的敛散性 : n =1 n
∞
三、利用级数的收敛性可求数列的极限
方法: 是一个数列, 满足: 方法:设 {u n } 是一个数列,若通项 u n 满足:
u n +1 lim = r < 1 或 lim n un = r < 1 n →∞ n →∞ u n
则级数
∑u
n =1
∞
n
绝对收敛, 绝对收敛,故 lim u n = 0
n →∞
xn =0 例5:证明对任意 x ∈ R ,有 lim : n →∞ n!
第九章 级数

142第九章 级 数无穷级数包括常数项级数与函数项级数两部分,可以利用它求出某些函数、积分和微分方程的近似值,还可以利用它来表示很多重要的非初等函数。
基本内容:基本概念:常数项级数、正项级数、函数项级数、幂级数、傅立叶级数;基本运算:判断级数的敛散性;求幂级数的收敛半径与收敛区间;求泰勒级数与幂级数展开式; 基本理论:极限的理论;本章重点:无穷级数收敛与发散的概念;正项级数的比值判别法;级数的绝对收敛和收敛的关系;幂级数的收敛半径与收敛区间;泰勒级数;函数的幂级数展开式;傅立叶级数。
课标导航1.理解常数项级数收敛、发散及级数求和;2.掌握收敛级数的基本条件,了解正项级数收敛的充分必要条件; 3.掌握-p 级数、几何级数、条件级数收敛与发散的条件; 4.熟练掌握正项级数的比较、比值和根式敛散法;了解交错级数的敛散法以及绝对收敛和条件敛散的概念;5.了解函数项级数及其收敛域、掌握幂级数的收敛半径和收敛域的求法,并会求较简单的幂级数的和函数;6.了解函数在某点处的泰勒级数以及函数展开成幂级数的概念,会用间接法将函数展开成幂级数; 一、知识梳理与链接 (一).基本概念 1.数项级数【定义】如果给定一个数列 ,,,,21n u u u 则由这些数列构成的表达式∑+∞==++++121n n n u u u u 叫做(常数项)无穷级数,简称(常数项)级数。
其中:级数的第n 项n u 叫做级数的通项或一般项,级数的前n 项和叫做级数的部分和,记为n s .即n n u u u s +++= 21;如果级数部分和数列n s 极限存在,则称该级数收敛,其极限值叫做级数的和,记为s ,否则称该级数发散;级数和与部分和的差称为该级数的余项,记为n r .2.正项级数、交错级数级数中的各项均由正数或零组成,则称该级数为正项级数;级数中的各项是由正负交错组成,则称该级数为交错级数。
3.绝对收敛与条件收敛如果级数∑+∞=1n n u 各项的绝对值所构成的正项级数∑+∞=1n n u 收敛,则称级数∑+∞=1n n u 绝对收敛;如果级数∑+∞=1n n u 收敛,而级数∑+∞=1n n u 发散,则称级数∑+∞=1n n u 条件收敛。
高数第9章函数项级数、幂级数

中央财经大学
数学分析
说明: 虽然函数序列 s n ( x ) x 在( 0, 1 )内处处
n
收敛于 s( x ) 0 , 但 sn ( x )在( 0, 1 )内各点处收 敛于零的“快慢”程度是不一致的.
从左图可以看出:
y
y sn ( x ) x n
n1
(1,1)
注意:对于任意正数r 1, 这级数在[0, r ] 上一致收敛. o
数学分析
第九章 函数项级数
中央财经大学
数学分析
I 函数项级数的一致收敛
一、函数项级数的概念
设 u1 ( x ), u2 ( x ),, un ( x ),是定义在 I R 上的函数, 则 un ( x ) u1 ( x ) u2 ( x ) un ( x )
( x )在[ a , b ]上一致收敛, u ( x ),并且级数 u n n
n 1
则级数 un ( x )在[ a , b ]上也一致收敛,且可逐
n 1
项求导,即
( x ) u s( x ) u1 ( x ) u ( x) 2 n
(5)
中央财经大学
所以原级数不可以逐项求导.
中央财经大学
数学分析
四、一致收敛性简便的判别法:
定理 (魏尔斯特拉斯(Weierstrass)判别法)
n 1
如果函数项级数 un ( x ) 在区间 I 上满足条件:
(1) (2)
当 x x 0 时,有 s( x ) s( x0 ) .
(3)
s( x ) 在点 x0 处连续, x0 在 [ a , b ] 上是任意 所以 而
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u1 (u2 u3 ) (u2m2 u2m1 ) (u2m u2m1 )
S2m1 即数列 {S2m-1 } 单调减少, 又因
un1 un 0,
中央财经大学
数学分析
S2m1 (u1 u2 ) (u3 u4 ) (u2m3 u2m2 ) u2m1
(u1 u2 )
[sin(n 1)x sin(n 1 )x]
2
2
sin(n
1 )x
2
当
x (0,2 )
时,
x sin
0,
故得到
2
1
1
n
sin(n x)
cos kx
2
2 k1
2sin x
2
中央财经大学
数学分析
所以级数 cosnx 的部分和数列当 x (0,2 ) 时 有界,由狄利克雷判别法推得级数 an cosnx 收敛. 同理可证级数 an sinnx 也是收敛的.
证明:由阿贝尔变换
同号
m
m1
S aibi | (ai ai1) || Bi | | amBm |
i1
i1
m1
S M | (ai ai1) | | am | M i 1
m
故 S aibi M ( a1 2 am ) i1
中央财经大学
数学分析
三、阿贝尔判别法和狄利克雷判别法
阿贝尔判别法
数学分析
第九章 级数
数项级数
中央财经大学
数学分析
III 任意项级数
一、交错级数及其审敛法
定义: 正、负项相间的级数称为交错级数.
(1)n1un或 (1)nun (其中un 0)
n1
n1
莱布尼茨定理 如果交错级数满足条件:
(ⅰ)un
un1
(n
1,2,3,)
;(ⅱ)
lim
n
un
0,
则级数收敛,且其和s u1,其余项rn的绝对值
rn un1.
中央财经大学
数学分析
证
设交错级数 (1)n1un 的部分和数列为 {Sn }, n1
其奇数项子列为 {S2m-1 }, 偶数项子列为 {S2m }, 于是有 S2m1 u1 u2 u3 u2m2 u2m1
u1 (u2 u3 ) (u2m2 u2m1 )
B1 b1, B2 b1 b2 , B3 b1 b2 b3,
Bm b1 b2 b3 bm
m
则,S aibi a1B1 a2 (B2 B1) am (Bm Bm1)
i 1
m1
(ai ai1)Bi am Bm
m
m1 i1
即, aibi (ai ai1)Bi am Bm
中央财经大学
数学分析
例 下列交错级数都是收敛的:
(1)n1 1
n1
n
(1)n1
1
n1
n
(1)n
1
n2
ln n
中央财经大学
数学分析
例 5 判别级数 (1)n n 的收敛性.
n2 n 1
解
(
x
x ) 1
2
(1 x) x( x 1)2
0
( x 2)
故函数 x 单调递减, x1
un un1 ,
n1
n1
n1
中央财经大学
数学分析
上定理的作用: 任意项级数
正项级数
定义:若 un 收敛, 则称 un 为绝对收敛;
n1
n1
若 un 发散,而 un 收敛, 则称 un 为条件收敛.
n1
n1
n1
中央财经大学
数学分析
例6
判别级数
n1
sin n n2
的收敛性.
解
sin n n2
1 n2
,
而 1 收敛, n2
n1
sin n 收敛,
n2
n1
故由定理知原级数绝对收敛.
中央财经大学
数学分析
例 下列级数都是条件收敛
(1)n1 1
n1
n
(1)n1
1
n1
n
(1)n
1
n2
ln n
中央财经大学
数学分析
三、阿贝尔判别法和狄利克雷判别法
定义:阿贝尔变换
m
对于 S aibi a1b1 a2b2 ambm ,设 i 1
如果(1)级数 bn收敛;(2)数列{an}(n 1,2,) n1
为单调、有界的, an K,则 anbn收敛. n1
狄利克雷判别法
如果(1)级数 bn的部分和Bn有界, Bn K (n 1,2,); n1
(2)数列{an}单调趋于0,则 anbn收敛. n1 中央财经大学
数学分析
又
lim
n
un
lim
n
n
n 1
0.
原级数收敛.
中央财经大学
数学分析
二、绝对收敛与条件收敛
定义: 正项和负项任意出现的级数称为任意项级数.
定理 若 un 收敛,则 un 收敛.
n1
n1
证明
令
vn
1 2 (un
un)Βιβλιοθήκη (n 1,2,),显然 vn 0, 且 vn un , vn收敛,
n1
又 un (2vn un ), un 收敛.
中央财经大学
数学分析
又因 S2m u1 (u2 u3 ) (u2m2 u2m1 ) u2m
u1
即数列 {S2m } 单调增加有上界,
从而极限
lim
m
S2m
存在.
于是
lim
m
S2m1
lim
m
S2m
lim(
m
S2m1
S2m )
lim
m
u2m
0
所以
lim
m
S2m
1
lim
m
S2m
,
故数列
即数列
{S2m-1 } 有下界, 从而极限
lim
m
S2m1
存在.
类似地对偶数项子列为 {S2m }, 有
S2m (u1 u2 ) (u3 u4 ) (u2m1 u2m )
(u1 u2 ) (u3 u4 ) (u2m1 u2m ) (u2m1 u2m2 ) S2m2 即子列 {S2m } 单调增加.
i 1
i 1
中央财经大学
数学分析
三、阿贝尔判别法和狄利克雷判别法
阿贝尔引理
如果 (1){ai}(i 1,2,, m)为单调的; (2){Bi}(i 1,2,, m)为有界的, Bi M
m
则 S aibi M ( a1 2 am ) i1
中央财经大学
数学分析
三、阿贝尔判别法和狄利克雷判别法
例3 若数列 { an } 单调递减趋于零,即
a1 a2 an ,
lim
n
an
0,
则级数 an sinnx 和 an cosnx 对任何 x (0,2 )
都收敛.
中央财经大学
数学分析
解 因为
2sin x ( 1 n cos kx)
sin
x
3x (sin
sin
x )
2 2 k1
2
22
{Sn
}
的极限存在,
所以交错级数 (1)n1un 收敛.
n1
中央财经大学
数学分析
因为有
S2m u1 ,
所以
S
lim
n
Sn
lim
m
S2m
u1
.
即交错级数的和不大于第一项的绝对值 u1 .
由于 (1)n1un 的余项 n1
| Rn | un1 un2 un3 un4
仍是交错级数,所以有 | Rn | un1 .