瞬态动力学分析
瞬态动力学分析

第章瞬态动力学分析瞬态动力学分析(也称时间历程分析)是用于确定承受任意的随时间变化载荷的结构的动力学响应的一种方法。
本章将通过实例讲述瞬态动力学分析的基本步骤和具体方法。
瞬态动力学概论弹簧阻尼系统的自由振动分析任务驱动&项目案例A NSYS 17.0中文版有限元分析从入门到精通Note10.1 瞬态动力学概论可以用瞬态动力学分析确定结构在静载荷、瞬态载荷和简谐载荷的随意组合作用下随时间变化的位移、应变、应力及力。
载荷和时间的相关性使得惯性力和阻尼作用比较显著。
如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。
瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和人力。
可以先做一些预备工作以理解问题的物理意义,从而节省大量资源,例如,可以做以下预备工作。
首先分析一个比较简单的模型,由梁、质量体、弹簧组成的模型可以以最小的代价对问题提供有效、深入的理解,简单模型或许正是确定结构所有的动力学响应所需要的。
如果分析中包含非线性,可以首先通过进行静力学分析尝试了解非线性特性如何影响结构的响应。
有时在动力学分析中没必要包括非线性。
了解问题的动力学特性。
通过做模态分析计算结构的固有频率和振型,便可了解当这些模态被激活时结构如何响应。
固有频率同样也对计算出正确的积分时间步长有用。
对于非线性问题,应考虑将模型的线性部分子结构化以降低分析代价。
子结构在帮助文件中的ANSYS Advanced Analysis Techniques Guide里有详细的描述。
进行瞬态动力学分析可以采用3种方法,即Full Method(完全法)、Mode Superposition Method (模态叠加法)和Reduced Method(减缩法)。
下面来比较一下各种方法的优缺点。
10.1.1 Full Method(完全法)Full Method采用完整的系统矩阵计算瞬态响应(没有矩阵减缩)。
瞬态动力学分析

瞬态分析步骤
规定边界条件和初始条件
建模 选择分析类型和选项 规定边界条件和初始条件 • 在这种情况下边界条件为载荷或在整 个瞬态过程中一直为常数的条件, 个瞬态过程中一直为常数的条件,例 如: – 固定点(约束) 固定点(约束) – 对称条件 – 重力 • 初始条件将在下面讨论
瞬态分析步骤
规定边界条件和初始条件命令(接上页) 规定边界条件和初始条件命令(接上页)
•
瞬态分析 - 术语和概念
积分时间步长(接上页) 积分时间步长(接上页)
响应频率 • 不同类型载荷会在结构中激发不同 的频率(响应频率 的频率 响应频率); 响应频率 • ITS应足够小以获取所关心的最高 应足够小以获取所关心的最高 最低响应周期); 响应频率 (最低响应周期 最低响应周期 • 每个循环中有 个时间点应是足够 每个循环中有20个时间点应是足够 的,即: ∆t = 1/20f 式中 ,f 是所关心的最高响应频率 。
求解运动方程
直接积分法
模态叠加法
隐式积分
显式积分
完整矩阵法
缩减矩阵法
完整矩阵法
缩减矩阵法
瞬态分析 – 术语和概念
求解方法 (接上页) 接上页)
运动方程的两种求解法: 运动方程的两种求解法: • 模态叠加法(在第六章中讨论) 模态叠加法(在第六章中讨论) • 直接积分法: 直接积分法: – 运动方程可以直接对时间按步积分。在每个时间点, 运动方程可以直接对时间按步积分。在每个时间点, 需求解一组联立的静态平衡方程( 需求解一组联立的静态平衡方程(F=ma); ); – ANSYS 采用 采用Newmark 法这种隐式时间积分法; 法这种隐式时间积分法; – ANSYS/LS-DYNA 则采用显式时间积分法; 则采用显式时间积分法; – 有关显式法和隐式法的讨论请参见第一章。 有关显式法和隐式法的讨论请参见第一章。
有限元分析丨瞬态动力学分析

有限元分析丨瞬态动力学分析瞬态动力学分析(Transient Structural)是结构有限元分析中非常重要的模块,下文是学习过程的一些积累,仅供参考学习使用,如有错误请指正!目录9.1 瞬态动力学分析简介瞬态动力学分析(Transient Structural)是用于分析载荷随时间变化的结构的动力学响应的方法。
用于确定结构在受到稳态载荷、瞬态载荷和简谐载荷的随意组合下随时间变化的位移、应变和应力。
惯性力和阻尼在瞬态动力学中非常重要,如果惯性力和阻尼可以忽略,则可以用静力学分析代替瞬态动力学分析。
瞬态动态分析比静态分析更复杂,计算消耗和时间消耗较大。
通过做一些初步的工作来理解问题的物理性质,可以节省大量的资源。
9.2 瞬态动力学分析应用承受各种冲击载荷的结构,如:汽车中的门、导弹发射阶段等;承受各种随时间变化载荷的结构,如:桥梁、地面移动装置等;承受撞击和颠簸设备,如:机器设备运输过程。
9.3 瞬态动力学行业标准GB/T 2423.35-1995 电工电子产品环境试验第2部分:试验方法试验Ea和导则:冲击GJB 150-18 军用设备环境试验方法:冲击试验表9.1 脉冲加速度和持续时间(1)半正弦波半正弦形脉冲适用于模拟线性系统的撞击或线性系统的减速所引起的冲击效应,例如弹性结构的撞击。
图半正弦脉冲例:峰值加速度为15G,脉冲持续时间为11ms,Z方向冲击为例图 workbench中输入半正弦波输入载荷类型为加速度(Acceleration)条件,其中Define By选择Components,在Z Component处选择函数(Function),在等号后输入:Asin(ωt),ω=2π/Ta=14700*sin(2π*time/0.022)=14700*sin(2*180*time/0.022)=14700*sin((16363.636*time)^2)^0.5)mm/s2。
注意:单位为角度制,由于此处函数符号不支持绝对值运算符(abs)。
第13章 瞬态动力学分析22

第13章瞬态动力学分析13.1 瞬态动力学分析概述可以用瞬态动力学分析确定结构在静载荷、瞬态载荷和简谐载荷的随意组合作用下随时间变化的位移、应变、应力及力。
载荷和时间的相关性使得惯性力和阻尼作用比较显著。
如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。
瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和人力。
可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。
首先分析一个比较简单的模型。
由梁、质量体、弹簧组成的模型可以以最小的代价对问题提供有效深入地理解,简单模型或许正是确定结构所有的动力学响应所需要的。
如果分析中包含非线性,可以首先通过进行静力学分析尝试了解非线性特性如何影响结构的响应。
有时在动力学分析中没必要包括非线性。
了解问题的动力学特性。
通过做模态分析计算一下结构的固有频率和振型,便可了解当这些模态被激活时结构如何响应。
固有频率同样对计算出正确的积分时间步长有用。
对于非线性问题,应考虑将模型的线性部分子结构化以降低分析代价。
子结构在帮助文件中的“ANSYS Advanced Analysis Techniques Guide”里有详细的描述。
进行瞬态动力学分析可以采用3种方法:Full(完全法),Reduced(减缩法),Mode Superposition(模态叠加法)。
下面比较一下各种方法的优缺点。
13.1.1完全法(Full Method)Full法采用完整的系统矩阵计算瞬态响应(没有矩阵减缩)。
它是3种方法中功能最强的,允许包含各类非线性特性(塑性、大变形、大应变等)。
Full法的优点是:(1)容易使用,因为不必关心如何选取主自由度和振型。
(2)允许包含各类非线性特性。
(3)使用完整矩阵,因此不涉及质量矩阵的近似。
(4)在一次处理过程中计算出所有的位移和应力。
(5)允许施加各种类型的载荷:节点力,外加的(非零)约束,单元载荷(压力和温度)。
ansys动力学瞬态分析详解

§3.1瞬态动力学分析的定义瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。
可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。
载荷和时间的相关性使得惯性力和阻尼作用比较重要。
如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。
瞬态动力学的基本运动方程是:其中:[M] =质量矩阵[C] =阻尼矩阵[K] =刚度矩阵{}=节点加速度向量{}=节点速度向量{u} =节点位移向量在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和阻尼力([C]{})的静力学平衡方程。
ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。
两个连续时间点间的时间增量称为积分时间步长(integration time step)。
§3.2学习瞬态动力学的预备工作瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。
可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。
例如,可以做以下预备工作:1.首先分析一个较简单模型。
创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。
2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。
在某些场合,动力学分析中是没必要包括非线性特性的。
3.掌握结构动力学特性。
通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。
同时,固有频率对计算正确的积分时间步长十分有用。
4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。
<<高级技术分指南>>中将讲述子结构。
§3.3三种求解方法瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。
14-瞬态动力学分析

Advanced Contact & Fasteners
(1)
在任何给定的时间t,这些方程都会转换为一系列的静态平衡方程,并且把以 下的载荷考虑进去:
-惯性力;
-阻尼力; 为了求解这些方程,ANSYS提供了两种方法:
-纽马克时间积分算法(Newmark);
-改进算法HHT算法; 时间积分步:在两个邻近的时间点的增量:
{u}: 结构节点位移矢量 (t): 载荷的作用时间
2.瞬态动力学的理论基础
求解运动方程
Training Manual
Advanced Contact & Fasteners
直接积分法
模态叠加法
隐式积分
显式积分
完整矩阵法
缩减矩阵法
完整矩阵法
缩减矩阵法
2.瞬态动力学的理论基础
Training Manual
5.模态叠加法(振型叠加法)
Training Manual
Advanced Contact & Fasteners
5.模态叠加法(振型叠加法)
时间步设置:
Training Manual
Advanced Contact & Fasteners
-时间步长必须设置为恒定值;
-自动时间步程序会自动关闭; -定义的子步或时间步作用于施加 的所有载荷; 阻尼设置: -阻尼矩阵不是显示计算的,而 是通过阻尼比来考虑的
子步 子步是载荷步中的载荷增量。子步用于逐步施加载荷。
平衡迭代步 平衡迭代步是ANSYS为得到给定子步(载荷增量)的收敛解而采用的 方法。
3.完全法的基本设置
Training Manual
Advanced Contact & Fasteners
瞬态动力学分析

2、瞬态动力学理论
2.1 完全法求解理论
ANSYS中使用隐式方法Newmark和 HHT来求解瞬态问题。Newmark方法使用
有限差分法,在一个时间间隔内有
u n 1 u n ( 1 ) u n u n 1 t
(2)
u n 1 u n u n t (1 2 ) u n u n 1 t2
C a 1 u n a 4 u n a 5 u n
一旦求出 u n,1 速度和加速度可以利用(5)和(6)求得。对于初始
施加于节点的速度或加速度可以利用位移约束并利用(3)计算得到
根据Zienkiewicz的理论,利用(2)和(3)式得到的Newmark求解方法的无 条件稳定必须满足:
2、瞬态动力学理论
2.1 完全法求解理论
我们期望在高频模型中使用可控的数值阻尼计算方法,因为使用有限元计算 离散空间域的结果,在高频率的模式不太准确。然而,这种算法必须具备以 下特征:在高频下引进数值阻尼不应该降低求解精度,在低频下不能产生过 多的数值阻尼。在完全瞬态分析中,HHT时间积分方法可以满足以上的要求 : 基本的HHT的方法由下式给出:
(14)
i 1
i 1
i 1
在(14)式中左乘一个典型的模态振型i T
i T M n i y i i T C n i y i i T K n i y i i T F a (15)
i 1
自然模态的正交条件:
i 1
i 1
jTKi0 i j
(16)
jTMi0 i j
2、瞬态动力学理论
2.1 完全法求解理论
1 2
1 2
1 2
m
f
(11)
m
f
1 2
有限元基础理论 瞬态分析

第8章 瞬态动力学分析
✓后处理 时间历程后处理 定义变量,提取数据,绘制变量的时间变化曲线(在实例中讲解) 实例1(静力分析)
实例1(瞬态分析,方法1)
实例1(瞬态分析,方法2)
第8章 瞬态动力学分析
共振(瞬态分析,方法1)
第8章 瞬态动力学分析
共振(瞬态分析,方法2)
第8章 瞬态动力学分析
第8章 瞬态动力学分析
8.2.3缩减法(Reduced method)。 采用主自由度和缩减矩阵来压缩问题的规模。主自由度处的位移计算出来 后,扩展到初始的完整DOF集上。 特点: 比Full法快,开销小; ✓所有载荷必须施加在用户定义的自由度上,不能在实体模型和单元上施 加载荷; ✓整个瞬态分析过程中时间步长必须保持恒定,不允许用自动时间步长; ✓唯一允许的非线性是点-点接触; ✓不允许非零位移; ✓初始解只计算出主自由度的位移。要得到完整的位移、应力和力的解需 进行扩展处理。
第8章 瞬态动力学分析
8.1 瞬态动力学分析概述
瞬态动力学分析(也称时间历程分析)用于受任意随时间变 化载荷的结构动力学响应。
8.2 瞬态动力学分析方法
8.2.1完全法(full method)。 采用完整的系统矩阵计算瞬态响应。功能最强,允许包含各类非线性特 性(塑性、大变形、接触)。 优点: 容易使用,不必关心和选取主自由度; 允许包含各类非线性; 在一次处理过程中计算出所有的位移和应力; 允许施加各种类型的载荷; 允许采用实体模型上所加的载荷。
第8章 瞬态动力学分析
8.3Full法瞬态动力学分析基本步骤
✓前处理(建立模型、划分网格) ✓建立初始条件; ✓设置求解控制; ✓设置求解选项; ✓施加载荷(不随时间变化的载荷和边界条件); ✓设定载荷步和变化载荷; ✓瞬态求解; ✓后处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16章瞬态动力学分析第1节基本知识瞬态动力学分析,亦称时间历程分析,是确定随时间变化载荷作用下结构响应的技术。
它的输入数据是作为时间函数的载荷,可以是静载荷、瞬态载荷和简谐载荷的随意组合作用。
输出数据是随时间变化的位移及其它导出量,如:应力、应变、力等。
用于瞬态动力分析的运动方程为:[]{}[]{}[]{}(){}t FM=u++CKuu其中:式中[M]为质量矩阵;[C]为阻尼矩阵;[K]为刚度矩阵。
所以在瞬态动力分析中密度或质点质量、弹性模量及泊松比、阻尼等因素均应考虑,在ANSYS分析过程中密度或质量、弹性模量是必须输入的,忽略阻尼时可以选忽略选项。
瞬态动力学分析可以应用于承受各种冲击载荷的结构,如:炮塔、汽车车门等,应用于承受各种随时间变化载荷的结构,如:混凝土泵车臂架、起重机吊臂、桥梁等,应用于承受撞击和颠簸的办公设备,如:移动电话、笔记本电脑等,同时ANSYS在瞬态动力学分析中可以使用线性和非线性单元(仅在完全瞬态动力学中使用)。
材料性质可以是线性或非线性、各向同性或正交各项异性、温度恒定的或温度相关的。
分析结果写入jobname.RST文件中。
可以用POST1和POST26观察分析结果。
ANSYS在进行瞬态动力学分析中可以采用三种方法,即Full(完全)法、Reduced(缩减)法和Mode Superposition(模态叠加)法。
ANSYS提供了各种分析类型和分析选项,使用不同方法ANSYS软件会自动配置相应选择项目,常用的分析类型和分析选项如表16-1所示。
在瞬态分析中,时间总是计算的跟踪参数,在整个时间历程中,同样载荷也是时间的函数,有两种变化方式:Ramped :如图16-1(a )所示,载荷按照线性渐变方式变化。
Stepped :如图16-1(b )所示,载荷按照解体突变方式变化。
图16-1 载荷增加方式 渐变与突变依据载荷变化方式可以将整个时间历程划分成多个载荷步(LoadStep ),每个载荷步代表载荷发生一次突变或一次渐变阶段。
在每个载荷步时间内,载荷增量又可以划分多个子步(Substep ),在子步载荷增量的条件下程序进行迭代计算即Iteriation ,经过多个子步的求解实现一个载荷步的求解,进而求出多个载荷步的求解实现整个载荷时间历程的求解。
利用ANSYS 进行瞬态动力学分析时可以在实体模型或有限元模型上施加下列载荷:约束(Displacement )、集中力(Force )、力矩(Moment )、面载荷(Pressure )、体载荷(Temperature 、Fluence )、惯性力(Gravity ,Spinning ,ect.)。
在ANSYS 中,进行多载荷步加载的基本方法常用有三种:(1)连续多载荷步加载法。
(2)定义载荷步文件批加载法。
(3)定义表载荷加载法。
第2节 瞬态动力学分析实例案例1——自由度弹簧质量系统瞬态分析LOAD(a) Ramped (b ) Stepped图16-2 弹簧质量系统/载荷图问题 如图16-2所示,单自由度的弹簧质量系统,试对质点M 在变力FORCE 作用下的瞬态分析,并绘出位移瞬态响应曲线。
条件 弹簧刚度50 000 N/m ,长度0.2 m,质量大小为150 KG ,质点受力如表16-3所示,忽略阻尼。
解题过程以弹簧上部端点为坐标原点,建立直角坐标系。
制定分析方案。
分析类型为瞬态动力学分析;模型类型为线、质点模型,由于结构简单可以直接创建节点和单元,弹簧部分选用Combin14单元,质量块部分简化为质点选用MASS21单元,边界条件为上端施加固定全约束,据图16-2中Force —Time 图的特点采用外力以Ramped 线性渐变方式加载,连续多载荷步加载方法。
瞬态分析的求解方法采用Reduce (缩减)法。
1.ANSYS 分析开始准备工作(1)清空数据库并开始一个新的分析选取Utility Menu>File>Clear & Start New ,弹出Clears database and Start New 对话框,单击OK 按钮,弹出Verify 对话框,单击OK 按钮完成清空数据库。
(2)指定新的工作文件名指定工作文件名。
选取Utility Menu>File>Change Jobname ,弹出Change Jobname 对话框,在Enter New Jobname 项输入工作文件名,本例中输入的工作文件名为“Transient example1”,单击OK 按钮完成工作文件名的定义。
(3)指定新的标题指定分析标题。
选取Utility Menu>File>Change Title ,弹出Change Title 对话框,在Enter New Title 项输入标题名,本例中输入“exercise1”为标题名,然后单击OK 按钮完成分析标题的定义。
Time -100-200-300-400-500Force(4)重新刷新图形窗口选取Utility Menu>Plot>Replot,定义的信息显示在图形窗口中。
(5)定义结构分析运行主菜单Main Menu>Preferences,出现偏好设置对话框,选中赋值分析模块为Structure结构分析模块,单击OK按钮完成分析模块的定义。
2.定义单元及材料(1)新建单元类型运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择单元大类为Structural Mass,接着选择3D Mass 21(MASS21单元),单击Apply按钮,选择单元大类为Combination,接着选择Spring-damper14(COMBIN14单元)单击OK按钮,完成单元类型TYPE 1和单元类型TYPE 2的定义,如图16-3所示。
图16-3 定义单元类型选择TYPE 1,单击Option按钮进入单元设置选项,弹出MASS21 Element type options 对话框,在Rotary inertia options(K3)栏中更改选项为2-D w/o rot iner(2D无转动惯量),在单击OK关闭窗口,如图16-4所示,再选择TYPE 2,单击Option按钮进入单元设置选项如图16-5所示,在DOF selection for 2D+3D(K3)栏中更改选项为2-D longitudinal(定义弹簧单元自由度),单击OK按钮。
3.定义实常数(1)新建实例常量运行主菜单Main Menu>Preprocessor>Real Constants Add/Edit/Delete命令,弹出实常数定义对话框,如图16-6所示。
16-4 设置单元配置项图16-5 设置单元配置项(2)输入实常数单击Add按钮进入选择单元类型对话框如图16-7所示,选择TYPE 1单击OK按钮。
进入实例常量输入对话框,如图16-8,输入质点质量150,单击OK按钮,出现如16-9左图所示。
如上步骤继续单击Add按钮,如图16-9、图16-10所示,完成实常数Set 2的输入,在Spring constant(K)项,输入50 000,在单击OK按钮。
(3)关闭实常数对话框回到实例常量对话框,此时显示出新建编号为Set 1和Set 2的实例常量,单击Close按钮完成输入,如图16-11所示。
图16-6 定义实常数对话框图16-7 选择定义实常数的单元类型对话框图16-8 实例常量Set 2输入对话框图16-9 选择定义实常数的单元类型对话框图16-10 实例常量Set 2输入对话框图16-11 定义实常数对话框4.建立有限元模型(由于本案例模型较为简单,可以直接创建节点和单元形成有限元模型。
)(1)创建节点运行主菜单Main Menu>Preprocessor>Modeling>Create>Nodes>In Active CS命令,在对话框中分别在节点号NODE栏输入1,节点坐标X,Y,Z栏输入0,0,0,单击Apply按钮完成一次输入,如图16-12所示。
在对话框中分别在节点号NODE栏输入2,节点坐标X,Y,Z栏输入0,-0.2,0,单击OK按钮完成节点输入,单击OK按钮,如图16-13所示。
图16-12 当前坐标系下创建节点对话框图16-13 当前坐标系下创建节点对话框(2)创建单元运行主菜单Main Menu>Preprocessor>Modeling>Create>Elements>Elem Attributes命令,在[TYPE]单元类型序号栏中更改选项为1 MASS21,在[REAL]实常数序号栏中更改选项为1,单击OK按钮,如图16-14所示。
运行主菜单Main Menu>Preprocessor>Modeling>Create>Elements>Auto Numbered>Thru Nodes命令,如图16-15所示,输入节点号2,单击OK按钮,创建质点单元。
运行主菜单Main Menu>Preprocessor>Modeling>Create>Elements>Elem Attributes命令,在[TYPE]单元类型序号栏中更改选项为 2 COMBIN14,在[REAL]实常数序号栏中更改选项为2,单击OK按钮,如图16-16所示。
运行主菜单Main Menu>Preprocessor>Modeling>Create>Elements>Auto Numbered>Thru Nodes命令,如图16-17所示,输入节点号1,2(中间用“,”间隔)或用鼠标按顺序点选1、2节点,单击OK按钮,创建弹簧单元。
图16-14 单元属性对话框图16-15 以节点创建单元对话框图16-16单元属性对话图16-17以节点创建单元对话框运行功能菜单Utility Menu>PlotCtrls>Numbering命令,弹出Plot Numbering Control菜单在NODE Node numbers栏中鼠标点击选项为On,在Elem/attrib numbering栏中更改选项为Element numbers单击OK按钮,如图16-18所示。
5.定义分析类型和分析选项并加载(1)定义分析类型及选项运行主菜单Main Menu>Solution>Analysis Type>New Analysis命令,弹出New Analysis 对话框,选择Transient瞬态分析选项,单击OK按钮,弹出Transient Analysis对话框,选择Reduced选项,单击OK按钮,如图16-19、图16-20所示。