《弹塑性力学》第十一章 塑性力学基础.ppt
合集下载
弹塑性力学PPT

P
研究对象:
P
与其他学科的关系:
课程 理论力学 材料力学 结构力学 弹性力学 塑性力学 研究对象 刚体 弹性杆件 (一维) 弹性杆系 (二维) 弹性体(三维) 塑性体 解决的问题 力的静力平衡、运动 学、动力学 杆的拉、压、弯、 剪、扭 杆系的内力位移 应力、应变、位移 塑性加工 工程力学 固体力学 力学范畴 一般力学
哑标号:
三、求和约定:
当一个下标符号在一项中出现两次时,这个下标符号应理解为 取其变程N中所有的值然后求和,这就叫做求和约定。
ai xi a1 x1 a2 x2 a3 x3
ii 11 22 33 (i : 哑标,i 1, 2,3) S Ni ij l j i1l1 i 2l2 i 3l3
2 2 2
uy
2
主要参考书目
1 、杨伯源 《工程弹塑性力学》 2 、杨桂通 《弹塑性力学》 3 、徐秉业 《应用弹塑性力学》
二阶以上的张 量已不可能在 三维空间有明 显直观的几何 意义。
二、下标记号法:
为了书写上的方便,在张量的记法中,都采用下标字母符号 来表示和区别该张量的所有分量。这种表示张量的方法,就 称为下标记号法。
( x, y, z) ( x1, x2 , x3 ) xi (i 1, 2,3)
一、张量的概念
只需指明其大小即足以被说明的物理量,称为标量 温度、质量、力所做的功 除指明其大小还应指出其方向的物理量,称为矢量 物体的速度、加速度 在讨论力学问题时,仅引进标量和矢量的概念是不够的 如应力状态、应变状态、惯性矩、弹性模量等
张量
具有多重方向性的物理量,称为张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成: M=rn=3n 标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
研究对象:
P
与其他学科的关系:
课程 理论力学 材料力学 结构力学 弹性力学 塑性力学 研究对象 刚体 弹性杆件 (一维) 弹性杆系 (二维) 弹性体(三维) 塑性体 解决的问题 力的静力平衡、运动 学、动力学 杆的拉、压、弯、 剪、扭 杆系的内力位移 应力、应变、位移 塑性加工 工程力学 固体力学 力学范畴 一般力学
哑标号:
三、求和约定:
当一个下标符号在一项中出现两次时,这个下标符号应理解为 取其变程N中所有的值然后求和,这就叫做求和约定。
ai xi a1 x1 a2 x2 a3 x3
ii 11 22 33 (i : 哑标,i 1, 2,3) S Ni ij l j i1l1 i 2l2 i 3l3
2 2 2
uy
2
主要参考书目
1 、杨伯源 《工程弹塑性力学》 2 、杨桂通 《弹塑性力学》 3 、徐秉业 《应用弹塑性力学》
二阶以上的张 量已不可能在 三维空间有明 显直观的几何 意义。
二、下标记号法:
为了书写上的方便,在张量的记法中,都采用下标字母符号 来表示和区别该张量的所有分量。这种表示张量的方法,就 称为下标记号法。
( x, y, z) ( x1, x2 , x3 ) xi (i 1, 2,3)
一、张量的概念
只需指明其大小即足以被说明的物理量,称为标量 温度、质量、力所做的功 除指明其大小还应指出其方向的物理量,称为矢量 物体的速度、加速度 在讨论力学问题时,仅引进标量和矢量的概念是不够的 如应力状态、应变状态、惯性矩、弹性模量等
张量
具有多重方向性的物理量,称为张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成: M=rn=3n 标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
弹塑性力学课件-塑性基本概念

五种简化模型的应力应变关系曲线及相应的机械形态 模型。
机械模型中,力和位移分别 对应于材料的应力和应变。力和 位移的线性关系用弹簧给出,而 干摩擦表示:当力小于某一定值 时,没有发生位Байду номын сангаас,当力达到该 定值时位移可以无限增大(对应 于屈服后的塑性流动)。
如果不考虑材料的强化性质,并且忽略屈服 极限上限的影响,则模型简化为理想弹塑性模型。
2.基本假设
对一般应力状态的塑性理论,作以下基本假设: 1. 材料的塑性行为与时间、温度无关。即只研究常温静载下的材料,认
为材料是非粘性的,在本构关系中没有时间效应。
2. 材料具有无限的韧性,即认为材料可以无限地变形而不出现断裂。
~~
3. 变形前材料是初始各向同性的,且拉伸和压缩的 (真应力—
b) 由于塑性应变不可恢复,所以外力所作的塑性功具有不可逆性,或称为耗散 性(dissipation)。在一个加载-卸载的循环中外力作功恒大于零,这一部 分能量被材料的塑性变形损耗掉了。
c) 当受力固体产生塑性变形时,将同时存在有产生弹性变形的弹性区域和产生 塑性变形的塑性区域。并且随着载荷的变化,两区域的分界面也会产生变化 。
塑性基本概念
1.基本实验 2.基本假设 3.简化模型 4.应力分析
1.基本实验
1.1材料简单拉压实验
弹性与塑性的根本区别不在于应力-应 变关系是否线性,而在于卸载后变形 是否可恢复
没有明显屈服平台的应力应变曲线 有明显屈服阶段的拉伸曲线(低碳钢类) (铝合金类)
卸载后再加载
经过屈服阶段后,材料又恢复了抵抗变形的能力。 在第二次加载过程中,弹性系数仍保持不变,但 弹性极限及屈服极限有升高现象,后继屈服应力 升高程度与塑性变形的历史有关,决定于前面塑 性变形的程度。这种现象称为材料的应变强化。
工程弹塑性力学课件

工程弹塑性力学课件
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。
塑性力学 ppt课件

或者
l l n ij i j S n ij l i 2 S n n
2 n
(求和约定的缩写形式)
一点的应力状态及应力张量
一点的应力状态:是指通过变形体内某点的单元体所有 截面上的应力的有无、大小、方向等情况。 一点的应力状态的描述: 数值表达:x=50MPa,xz=35MPa 图示表达:在单元体的三个正交面上标出(如图 1-2) 张量表达: (i,j=x,y,z) x xy xz
1 2 2 3 3 1
x
I3 . .
xy xz y yz . z
23 1
讨论:
1. 2. 3. 4. 5. 6. 可以证明,在应力空间,主应力平面是存在的; 三个主平面是相互正交的; 三个主应力均为实根,不可能为虚根; 应力特征方程的解是唯一的; 对于给定的应力状态,应力不变量也具有唯一性; 应力第一不变量I1反映变形体体积变形的剧烈程 度,与塑性变形无关;I3也与塑性变形无关; I2与塑性 变形有关。 7. 应力不变量不随坐标而改变,是点的确定性的判据。
弹性、塑性变形的力学特征
可逆性:弹性变形——可逆;塑性变形——不可逆 -关系:弹性变形——线性;塑性变形——非线性 与加载路径的关系:弹性——无关;塑性——有关 对组织和性能的影响:弹性变形——无影响;塑性变形—— 影响大(加工硬化、晶粒细化、位错密度增加、形成织构等) 变形机理:弹性变形——原子间距的变化; 塑性变形——位错运动为主 弹塑性共存:整体变形中包含弹性变形和塑性变形;塑性变 形的发生必先经历弹性变形;在材料加工过程中,工件的塑 性变形与工模具的弹性变形共存。
金属塑性加工原理
弹塑性力学塑性本构关系

0
14
1.理想塑性材料的增量本构关系 2.硬化材料的增量塑性本构关系 3.全量塑性本构关系
15
2. 硬化材料的增量塑性本构关系
d
p ij
d
f
ij
f g 相关联流动
塑性应变大小 塑性应变方向
对于强化材料
f
ij
d ij
0
d ij 在
f
ij
方向上的投影,反映了塑性应变增量的大小。
可假设:
d
1 h
H121
Cp ijkl
1
9K 2
G
H11H 22
H
2 22
对称
H11H 33
H 22H33
H
2 33
H11H12 H 22H12 H 33 H12
H122
H11H 23
H 22H 23
H 33 H12
H12H 23
H
2 23
H11H 31 H 22H31
H
33
H
31
H12H31
H12
H
0
如果hd以 d累积pf塑2ij d性d32应ijd变ijpdkfddijpkdp作32p0为d内2变hd量f ij
f
fij ij
ij
p ij
d
k k p k d2 p f f
p ij
d
d
p ij
d
f k
k
p
d
d p
f
p
ij
0
3 ij ij
2 f f
3 ij ij
h f
Cijkl
1 H
H
ij
H
kl
H
《工程弹塑性力学》PPT课件

工程弹塑性力学
(有限元、塑性力学部分)
演示稿
h
1
第0章 平面问题的有限单元法
0.1 概述、基本量及基本方程的矩阵表示 0.2 有限单元法的概念 0.3 位移模式与解答的收敛性 0.4 单元刚度矩阵 0.5 等效结点荷载 0.6 整体刚度矩阵 0.7 单元划分应注意的问题
h
2
0.1 概述、基本量及基本方程的矩阵表示
y
j
(2) i
(1)
m x
▲相邻单元之间:uij(1)=uij(2)?vij(1)=vij(2) ?
ij边的方程:y=ax+b,则
uij=a1+a2 x+a3(ax+b)= cx+d
uij(1)、uij(2)均为坐标的线性函数,故可由i、j两
点的结点位移唯一确定。
h
12
0.4 单元刚度矩阵
建立: {F}e=[k]{d}e
如 k25: • [k]的性质:
(1) 对称性: kpq= kqp (2) 奇异性;
y vj
j
vi , (Vi) i ui , (Ui)
单元刚度矩阵:
[k][B]T[D ]B []dxdyt
y vj j
vi , (Vi) i ui , (Ui)
uj
vm
m um
x
结点位移 位移 应变
应力 结点力
{d}e ——{f} ——{} ——{} —— {F}e
位移模式 几何方程 物理方程 虚功方程
{f }=[N]{d}e
{}=[B]{d}e {}=[S]{d}e ,[S]= [D][B] {F}e=[k]{d }e,[k]= [B]T [D] [B]tA
(有限元、塑性力学部分)
演示稿
h
1
第0章 平面问题的有限单元法
0.1 概述、基本量及基本方程的矩阵表示 0.2 有限单元法的概念 0.3 位移模式与解答的收敛性 0.4 单元刚度矩阵 0.5 等效结点荷载 0.6 整体刚度矩阵 0.7 单元划分应注意的问题
h
2
0.1 概述、基本量及基本方程的矩阵表示
y
j
(2) i
(1)
m x
▲相邻单元之间:uij(1)=uij(2)?vij(1)=vij(2) ?
ij边的方程:y=ax+b,则
uij=a1+a2 x+a3(ax+b)= cx+d
uij(1)、uij(2)均为坐标的线性函数,故可由i、j两
点的结点位移唯一确定。
h
12
0.4 单元刚度矩阵
建立: {F}e=[k]{d}e
如 k25: • [k]的性质:
(1) 对称性: kpq= kqp (2) 奇异性;
y vj
j
vi , (Vi) i ui , (Ui)
单元刚度矩阵:
[k][B]T[D ]B []dxdyt
y vj j
vi , (Vi) i ui , (Ui)
uj
vm
m um
x
结点位移 位移 应变
应力 结点力
{d}e ——{f} ——{} ——{} —— {F}e
位移模式 几何方程 物理方程 虚功方程
{f }=[N]{d}e
{}=[B]{d}e {}=[S]{d}e ,[S]= [D][B] {F}e=[k]{d }e,[k]= [B]T [D] [B]tA
《弹塑性力学》第十一章塑性力学基础

几何方程
描述了塑性变形过程中应变和位移之 间的关系,是塑性力学的基本方程之 一。
塑性变形的增量理论
流动法则
描述了塑性变形过程中应力和应变增量之间的关系,是增量理论的核心。
屈服准则
描述了材料在受力达到屈服点时的行为,是增量理论的重要概念。
塑性变形的全量理论
全量应力和全量应变
描述了塑性变形过程中应力和应变的 状态,是全量理论的基本概念。
100%
材料性能
塑性力学为材料性能的描述提供 了理论基础,有助于深入了解材 料的变形和破坏行为。
80%
科学基础
塑性力学是连续介质力学的一个 重要分支,为研究物质宏观性质 的变化规律提供了科学基础。
塑性力学的发展历程
初创期
塑性力学作为独立学科始于20 世纪初,初期主要研究简单的 应力状态和理想塑性材料。
有限元法的优点在于其灵活性和通用性,可以处 理复杂的几何形状和边界条件,适用于各种类型 的塑性变形问题。
然而,有限元法在处理大规模问题时可能会遇到 计算效率和精度方面的问题,需要进一步优化算 法和网格划分技术。
边界元法在塑性力学中的应用
01
02
03
04
边界元法是一种仅在边界上离 散化的数值方法,通过将问题 转化为边界积分方程来求解。
发展期
随着实验技术的进步,塑性力 学在20世纪中叶得到了快速发 展,开始涉及更复杂的材料和 应力状态。
深化期
进入20世纪末至今,塑性力学 与计算机技术、先进材料等交 叉融合,研究领域不断扩大和 深化。
塑性力学的基本假设
02
01
03
连续性
材料内部是连续的,没有空洞或缝隙。
塑性变形不可逆
塑性变形发生后,不会消失或还原。
描述了塑性变形过程中应变和位移之 间的关系,是塑性力学的基本方程之 一。
塑性变形的增量理论
流动法则
描述了塑性变形过程中应力和应变增量之间的关系,是增量理论的核心。
屈服准则
描述了材料在受力达到屈服点时的行为,是增量理论的重要概念。
塑性变形的全量理论
全量应力和全量应变
描述了塑性变形过程中应力和应变的 状态,是全量理论的基本概念。
100%
材料性能
塑性力学为材料性能的描述提供 了理论基础,有助于深入了解材 料的变形和破坏行为。
80%
科学基础
塑性力学是连续介质力学的一个 重要分支,为研究物质宏观性质 的变化规律提供了科学基础。
塑性力学的发展历程
初创期
塑性力学作为独立学科始于20 世纪初,初期主要研究简单的 应力状态和理想塑性材料。
有限元法的优点在于其灵活性和通用性,可以处 理复杂的几何形状和边界条件,适用于各种类型 的塑性变形问题。
然而,有限元法在处理大规模问题时可能会遇到 计算效率和精度方面的问题,需要进一步优化算 法和网格划分技术。
边界元法在塑性力学中的应用
01
02
03
04
边界元法是一种仅在边界上离 散化的数值方法,通过将问题 转化为边界积分方程来求解。
发展期
随着实验技术的进步,塑性力 学在20世纪中叶得到了快速发 展,开始涉及更复杂的材料和 应力状态。
深化期
进入20世纪末至今,塑性力学 与计算机技术、先进材料等交 叉融合,研究领域不断扩大和 深化。
塑性力学的基本假设
02
01
03
连续性
材料内部是连续的,没有空洞或缝隙。
塑性变形不可逆
塑性变形发生后,不会消失或还原。
弹塑性力学课件

i,j
任晓丹 第二讲:张量分析基础
矩阵的标量函数
aij bij = A : B
张量概述 张量的运算和性质 张量分析初步
矩阵
矩阵的向量函数 y1 = f1 (B) y2 = f2 (B) y3 = f3 (B)
线性函数
∑ 1 y1 = ∑i,j aij bij y2 = i,j a2 bij ∑ ij 3 y3 = i,j aij bij
标量
标量 x, y, x1 , y1 , ...... 标量函数 y = f(x), y1 = g(x1 ), ...... 线性标量函数 (线性变换) f(x1 + x2 ) = f(x1 ) + f(x2 )
线性函数的表示 f(x1 + x2 ) = f(x1 ) + f(x2 ) ⇐⇒ y = ax
张量概述 张量的运算和性质 张量分析初步
Why?
弹塑性力学的三要素:非线性、多维、基础。 张量是适用于多维函数、方程以及微分系统 等的表示工具。 张量的本质是(多维、一般)线性变换。
任晓丹
第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
What?
任晓丹
第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
任晓丹 第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
向量
向量 x = [x1 , x2 , x3 ]T , y = [y1 , y2 , y3 ]T
向量的标量函数 y = f(x) = f(x1 , x2 , x3 )
线性函数 f(x1 + x2 ) = f(x1 ) + f(x2 ) ⇐⇒ y = a1 x1 + a2 x2 + a3 x3 =
任晓丹 第二讲:张量分析基础
矩阵的标量函数
aij bij = A : B
张量概述 张量的运算和性质 张量分析初步
矩阵
矩阵的向量函数 y1 = f1 (B) y2 = f2 (B) y3 = f3 (B)
线性函数
∑ 1 y1 = ∑i,j aij bij y2 = i,j a2 bij ∑ ij 3 y3 = i,j aij bij
标量
标量 x, y, x1 , y1 , ...... 标量函数 y = f(x), y1 = g(x1 ), ...... 线性标量函数 (线性变换) f(x1 + x2 ) = f(x1 ) + f(x2 )
线性函数的表示 f(x1 + x2 ) = f(x1 ) + f(x2 ) ⇐⇒ y = ax
张量概述 张量的运算和性质 张量分析初步
Why?
弹塑性力学的三要素:非线性、多维、基础。 张量是适用于多维函数、方程以及微分系统 等的表示工具。 张量的本质是(多维、一般)线性变换。
任晓丹
第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
What?
任晓丹
第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
任晓丹 第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
向量
向量 x = [x1 , x2 , x3 ]T , y = [y1 , y2 , y3 ]T
向量的标量函数 y = f(x) = f(x1 , x2 , x3 )
线性函数 f(x1 + x2 ) = f(x1 ) + f(x2 ) ⇐⇒ y = a1 x1 + a2 x2 + a3 x3 =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 塑性力学基础
§11-1 金属材料的力学实验及几种简化力学模型 §11-2 一维问题弹塑性分析
§11-3 应力、应变偏量的不变量和等效应力 e 等效应变 e、罗德(Lode)参数
§11-4 屈服条件 §11-5 理想弹塑性厚壁筒受内压力 §11-6 弹塑性应力应变关系增量理论
2020/10/9
应力较少)屈服条件是不变的。当应力满足
屈服条件时,卸载将有残余变形,即塑性变
形存在。卸载按线性弹性。
C
s A B
’s s
A
B
C
o
p
e
p
e
o O’
p e
软钢 -
合金钢 -
2020/10/9
5
§11-1 金属材料的力学实验及几种简化力学模型
而对于合金钢,无明显屈服,当 s时进
入强化阶段,在加载即发生弹性变形和塑性变
Et
s
s+Et
o
理想刚塑性模型
o
线性强化刚塑性模型
2020/10/9
11
§11-1 金属材料的力学实验及几种简化力学模型
1.3金属材料在静水压力实验:
前人(Bridgman)对大量金属进行水压力实验 及拉压和静水压力联合实验,得到下列结果:
1.在静水压力(高压) p 作用下, 金 属 体 积 应 变
15
§11-2 一维问题弹塑性分析
得
N1 P /(1 a b)
最大弹性荷载
N2 (P a b) (1 a b)
Pe N1(1 a b) s A(1 a b)
力P 作用点的伸长为
e
N1a EA
Pea (1 a )EA
sa
E
b
2020/10/9
16
§11-2 一维问题弹塑性分析
(2)弹塑性解Pp P Pe : P = Pe 后,P 可继续增大,而 N1=sA 不增加
当软钢应力达到A点后,软钢有明显屈服 (塑性流动)阶段。
经过屈服阶段后,荷载可再次增加(称为
强化阶段,BC段),但强化阶段 增幅较少。
A
s
B
C
’s s
A
B
软钢 -
o
p
e
p
e
o
O’
p e
C
合金钢 -
2020/10/9
4
§11-1 金属材料的力学实验及几种简化力学模型
对于此种材料(有明显屈服流动,强化阶段
理想弹塑性模型
2020/10/9
14
§11-2 一维问题弹塑性分析
(1)弹性解:
当杆处于弹性阶段,杆两部分的伸长为
a
N1a EA
b
N2b EA
代入变形协调方程为
N1a N2b 0 或
EA EA
N2
N1
a b
由于b a,所以 N1 N2 ,将 N2 N1 a b
代入平衡方程。
2020/10/9
是一一对应关系,而要考虑加载变形历史。
(3)对于有明显屈服流动且强化阶段较小的材料, 屈服条件采用初始屈服条件。对于无明显屈服流 动且强化阶段较高的材料,将有后继屈服函数产生。
(4)有些强化材料具有包辛格效应。
2020/10/9
8
§11-1 金属材料的力学实验及几种简化力学模型
1.2 常见的几种简化力学模型
结论:静水压力与塑性变形无关。
2020/10/9
13
§11-2 一维问题弹塑性分析
1.拉压杆的弹塑性问题
EA
N1
图示为两端固定的等
P
N2
截面杆(超静定杆),
x ab
设材料为理想弹塑性材料,
在x = a 处(b a)作用一
逐渐增大的力P。
s
平衡条件 : N1+N2=P
变形协调条件:a+b=0
o s
o
p
e
p
e
’s s
A
BC
合金钢 -
o
O’
p e
当应力-应变曲线在OA范围内变化,材料
为弹性变化。当应力达到 s时(软钢有明显
屈服发生(AB段),合金钢无明显屈服发生) 将发生塑性变形。确定材料发生塑性变形的
条件为
2020/10/9
3
§11-1 金属材料的力学实验及几种简化力学模型
f () = - s = 0 初始屈服条件(函数)
映出反向加载的屈服极限 ’’s s —— 称为
包辛格效应(Bauschinger. J. 德国人)。
BC
包辛格效应
A
’s s
o
O’
’
s’’
2020/10/9
7
§11-1 金属材料的力学实验及几种简化力学模型
小结:
(1)在弹性阶段( s): = e 应力应变关系
一一对应。
(2)当应力达到初始屈服条件( =s时),材料 进入弹塑性阶段, = e+ p,应力-应变关系不再
e=V/V=p/k成正比,当p达到或超过金属材料 的s时,e与p 仍成正比;并且除去压力后,
体积变化可以恢复,金属不发生塑性变形。
2020/10/9
12
§11-1 金属材料的力学实验及几种简化力学模型
2. 金属受静水压力和拉压联合作用与金属单 独受拉压作用比较,发现静水压力对初始屈
服应力 s没有影响。
1
§11-1 金属材料的力学实验及几种简化力学模型
1.1 单 向 拉 压 实 验 :
不同材料在单向拉压实验中,有不同的 应力-应变曲线。
C
s A B
’s s
A
B
C
o
p
e
p
e
软钢 -
o O’
p e
合金钢 -
2020/10/9
2
§11-1 金属材料的力学实验及几种简化力学模型
C
软钢 - s A B
Et E
E( s
)
线性强化弹塑性模型
s(1
Et E
)
Et
s(1 )
Et
Et E 1
2020/10/9
10
§11-1 金属材料的力学实验及几种简化力学模型
在实际问题中,有时当弹性应变 e p 塑
性应变,可忽略弹性变形。
上述两种模型分别简化为: s 时, = 0
s =s
1. 理想弹塑性模型:
加载时: =E = s
s s
s
o s
理想弹塑性模型
2020/10/9
9
§11-1 金属材料的力学实验及几种简化力学模型
2. 线性强化弹塑性模型:
加载时: =E s
Et
s
E
= E s+ Et ( - s ) s o s
s
Et ( s
) s
形,卸载按线弹性。对于强化特性明显的材料,
由O’点继续加载,在O’B段又是线性弹性变化,
当 达到B点再次发生塑性变形,
’s sAFra bibliotekBo
O’
p e
C - ’s=0——后继屈服函数 ’s=’s( p)
2020/10/9
6
§11-1 金属材料的力学实验及几种简化力学模型
当卸载后,反向加载时,有些金属材料反
(a段进入塑性屈服,但 b 段仍处于弹性)
N2=P- N1=P-sA 力 P 作用点的伸长取决于b 段杆的变形
b
N2b EA
(P
s
EA
A)b
2020/10/9
17
§11-2 一维问题弹塑性分析
b
N2b EA
(P
s A)b
EA
Pe s A(1 a b) s A Pe (1 a b)
§11-1 金属材料的力学实验及几种简化力学模型 §11-2 一维问题弹塑性分析
§11-3 应力、应变偏量的不变量和等效应力 e 等效应变 e、罗德(Lode)参数
§11-4 屈服条件 §11-5 理想弹塑性厚壁筒受内压力 §11-6 弹塑性应力应变关系增量理论
2020/10/9
应力较少)屈服条件是不变的。当应力满足
屈服条件时,卸载将有残余变形,即塑性变
形存在。卸载按线性弹性。
C
s A B
’s s
A
B
C
o
p
e
p
e
o O’
p e
软钢 -
合金钢 -
2020/10/9
5
§11-1 金属材料的力学实验及几种简化力学模型
而对于合金钢,无明显屈服,当 s时进
入强化阶段,在加载即发生弹性变形和塑性变
Et
s
s+Et
o
理想刚塑性模型
o
线性强化刚塑性模型
2020/10/9
11
§11-1 金属材料的力学实验及几种简化力学模型
1.3金属材料在静水压力实验:
前人(Bridgman)对大量金属进行水压力实验 及拉压和静水压力联合实验,得到下列结果:
1.在静水压力(高压) p 作用下, 金 属 体 积 应 变
15
§11-2 一维问题弹塑性分析
得
N1 P /(1 a b)
最大弹性荷载
N2 (P a b) (1 a b)
Pe N1(1 a b) s A(1 a b)
力P 作用点的伸长为
e
N1a EA
Pea (1 a )EA
sa
E
b
2020/10/9
16
§11-2 一维问题弹塑性分析
(2)弹塑性解Pp P Pe : P = Pe 后,P 可继续增大,而 N1=sA 不增加
当软钢应力达到A点后,软钢有明显屈服 (塑性流动)阶段。
经过屈服阶段后,荷载可再次增加(称为
强化阶段,BC段),但强化阶段 增幅较少。
A
s
B
C
’s s
A
B
软钢 -
o
p
e
p
e
o
O’
p e
C
合金钢 -
2020/10/9
4
§11-1 金属材料的力学实验及几种简化力学模型
对于此种材料(有明显屈服流动,强化阶段
理想弹塑性模型
2020/10/9
14
§11-2 一维问题弹塑性分析
(1)弹性解:
当杆处于弹性阶段,杆两部分的伸长为
a
N1a EA
b
N2b EA
代入变形协调方程为
N1a N2b 0 或
EA EA
N2
N1
a b
由于b a,所以 N1 N2 ,将 N2 N1 a b
代入平衡方程。
2020/10/9
是一一对应关系,而要考虑加载变形历史。
(3)对于有明显屈服流动且强化阶段较小的材料, 屈服条件采用初始屈服条件。对于无明显屈服流 动且强化阶段较高的材料,将有后继屈服函数产生。
(4)有些强化材料具有包辛格效应。
2020/10/9
8
§11-1 金属材料的力学实验及几种简化力学模型
1.2 常见的几种简化力学模型
结论:静水压力与塑性变形无关。
2020/10/9
13
§11-2 一维问题弹塑性分析
1.拉压杆的弹塑性问题
EA
N1
图示为两端固定的等
P
N2
截面杆(超静定杆),
x ab
设材料为理想弹塑性材料,
在x = a 处(b a)作用一
逐渐增大的力P。
s
平衡条件 : N1+N2=P
变形协调条件:a+b=0
o s
o
p
e
p
e
’s s
A
BC
合金钢 -
o
O’
p e
当应力-应变曲线在OA范围内变化,材料
为弹性变化。当应力达到 s时(软钢有明显
屈服发生(AB段),合金钢无明显屈服发生) 将发生塑性变形。确定材料发生塑性变形的
条件为
2020/10/9
3
§11-1 金属材料的力学实验及几种简化力学模型
f () = - s = 0 初始屈服条件(函数)
映出反向加载的屈服极限 ’’s s —— 称为
包辛格效应(Bauschinger. J. 德国人)。
BC
包辛格效应
A
’s s
o
O’
’
s’’
2020/10/9
7
§11-1 金属材料的力学实验及几种简化力学模型
小结:
(1)在弹性阶段( s): = e 应力应变关系
一一对应。
(2)当应力达到初始屈服条件( =s时),材料 进入弹塑性阶段, = e+ p,应力-应变关系不再
e=V/V=p/k成正比,当p达到或超过金属材料 的s时,e与p 仍成正比;并且除去压力后,
体积变化可以恢复,金属不发生塑性变形。
2020/10/9
12
§11-1 金属材料的力学实验及几种简化力学模型
2. 金属受静水压力和拉压联合作用与金属单 独受拉压作用比较,发现静水压力对初始屈
服应力 s没有影响。
1
§11-1 金属材料的力学实验及几种简化力学模型
1.1 单 向 拉 压 实 验 :
不同材料在单向拉压实验中,有不同的 应力-应变曲线。
C
s A B
’s s
A
B
C
o
p
e
p
e
软钢 -
o O’
p e
合金钢 -
2020/10/9
2
§11-1 金属材料的力学实验及几种简化力学模型
C
软钢 - s A B
Et E
E( s
)
线性强化弹塑性模型
s(1
Et E
)
Et
s(1 )
Et
Et E 1
2020/10/9
10
§11-1 金属材料的力学实验及几种简化力学模型
在实际问题中,有时当弹性应变 e p 塑
性应变,可忽略弹性变形。
上述两种模型分别简化为: s 时, = 0
s =s
1. 理想弹塑性模型:
加载时: =E = s
s s
s
o s
理想弹塑性模型
2020/10/9
9
§11-1 金属材料的力学实验及几种简化力学模型
2. 线性强化弹塑性模型:
加载时: =E s
Et
s
E
= E s+ Et ( - s ) s o s
s
Et ( s
) s
形,卸载按线弹性。对于强化特性明显的材料,
由O’点继续加载,在O’B段又是线性弹性变化,
当 达到B点再次发生塑性变形,
’s sAFra bibliotekBo
O’
p e
C - ’s=0——后继屈服函数 ’s=’s( p)
2020/10/9
6
§11-1 金属材料的力学实验及几种简化力学模型
当卸载后,反向加载时,有些金属材料反
(a段进入塑性屈服,但 b 段仍处于弹性)
N2=P- N1=P-sA 力 P 作用点的伸长取决于b 段杆的变形
b
N2b EA
(P
s
EA
A)b
2020/10/9
17
§11-2 一维问题弹塑性分析
b
N2b EA
(P
s A)b
EA
Pe s A(1 a b) s A Pe (1 a b)