MS分子动力学模拟具体实施步骤
分子动力学模拟方法

分子动力学模拟方法Molecular Dynamics Simulation Method分子动力学模拟方法是一种计算方法,可以预测原子和分子在不同温度和压力下的运动和力学行为。
该方法已被广泛应用于物理、化学、生物学和材料科学等领域,用于研究材料性质、生物分子结构和动态、相变等现象。
本文将介绍分子动力学模拟的基本原理、模拟过程以及如何用该方法研究材料或生物分子。
1. 基本原理分子动力学模拟基于牛顿力学原理,用原子和分子之间的势能函数描述系统内部的相互作用力。
根据牛顿第二定律 F=ma,通过求解系统中每个分子的运动方程来推导出分子的运动轨迹。
在计算中,采用的势能函数决定了分子之间的相互作用,包括范德华力、静电作用、键角等力。
基于这些相互作用力和分子的运动轨迹,可以计算出分子的位置、速度、加速度和能量等物理量。
2. 模拟过程分子动力学模拟的过程包括初始化、模拟和分析三个阶段。
2.1 初始化初始化阶段主要是为模拟设置一些参数,包括分子数、模拟时间、初速度、初位置和系统温度等。
初速度可以根据玻尔兹曼分布生成,初位置随机分布,系统温度也可以通过控制分子初速度实现。
模拟阶段分为两个步骤:计算分子运动和更新分子位置。
计算分子运动:在每个时间步中,使用牛顿运动方程计算每个分子的运动。
分子与其他分子之间的相互作用通过势能函数计算。
时间步长各不相同,一般为1-10飞秒。
更新分子位置:根据计算出的分子运动轨迹和速度,使用欧拉法更新分子位置。
在此过程中,通过周期性边界条件保证系统的连续性。
2.3 分析分析阶段主要是对模拟结果进行分析和处理,如计算能量、相变、速度相关的分布函数等。
有效的分析可以给出关键参数和物理量,如分子动力学能量、热力学性质和动力学行为。
3. 应用分子动力学模拟方法已经被广泛应用于物理、化学、生物学和材料科学等研究领域,尤其是材料和生物分子方面的研究具有广泛的前景。
3.1 材料科学分子动力学模拟可用于研究材料的力学、热力学和电学等性质。
分子动力学模拟流程

分子动力学模拟流程Molecular dynamics simulation is a powerful tool in the field of computational chemistry and physics. It allows researchers to study the movement of atoms and molecules over time, providing valuable insights into the behavior of materials at the molecular level. By simulating the interactions between particles based on classical mechanics, scientists can explore various physical and chemical processes in great detail.分子动力学模拟是计算化学和物理领域中一种强大的工具。
它允许研究人员随着时间的推移研究原子和分子的运动,为在分子水平上材料的行为提供有价值的见解。
通过基于经典力学对粒子之间的相互作用进行模拟,科学家可以详细地探索各种物理和化学过程。
One of the key advantages of molecular dynamics simulation is its ability to capture the dynamics of complex systems that are difficult to study experimentally. By monitoring the trajectories of individual particles in a simulated environment, researchers can observe how macroscopic properties emerge from the interactions of atoms and molecules. This information is crucial for understanding the behaviorof materials under different conditions and for designing new materials with desired properties.分子动力学模拟的一个关键优势是它能够捕获实验难以研究的复杂系统的动态。
MS动力学模拟

第3章铁基块体非晶合金-纳米晶转变的动力学模拟过程3.1 Discover模块3.1.1 原子力场的分配在使用Discover模块建立基于力场的计算中,涉及几个步骤。
主要有:选择力场、指定原子类型、计算或指定电荷、选择non-bond cutoffs。
在这些步骤中,指定原子类型和计算电荷一般是自动执行的。
然而,在某些情形下需要手动指定原子类型。
原子定型使用预定义的规则对结构中的每个原子指定原子类型。
在为特定的系统确定能量和力时,定型原子使工作者能使用正确的力场参数。
通常,原子定型由Discover使用定型引擎的基本规则来自动执行,所以不需要手动原子定型。
然而,在特殊情形下,人们不得不手动的定型原子,以确保它们被正确地设置。
图 3-11)计算并显示原子类型:点击Edit→Atom Selection,如图3-1所示图3-2弹出对话框,如图3-2所示从右边的…的元素周期表中选择Fe,再点Select,此时所建晶胞中所有Fe 原子都将被选中,原子被红色线圈住即表示原子被选中。
再编辑集合,点击Edit →Edit Sets,如图3-3、3-4所示。
图3-3图3-4弹出对话框见图3-4,点击New...,给原子集合设定一个名字。
这里设置为Fe,则3D视图中会显示“Fe”字样,再分配力场:在工具栏上点击Discover按钮,从下拉列表中选择Setup,显示Discover Setup对话框,选择Typing选项卡,见图3-5。
图3-5在Forcefield types里选择相应原子力场,再点Assign(分配)按钮进行原子力场分配。
注意原子力场中的价态要与Properties Project里的原子价态(Formalcharge)一致。
3.1.2力场的选择1)Energy,见图3-6。
图3-6力场的选择:力场是经典模拟计算的核心,因为它代表着结构中每种类型的原子与围绕着它的原子是如何相互作用的。
对系统中的每个原子,力场类型都被指定了,它描述了原子的局部环境。
分子动力学MS的应用实例

MD含温度与时间, 还可得到如材料的玻璃化转变温度、 热容、晶体结晶过程、输送过程、膨胀过程、动态弛豫(relax) 以及体系在外场作用下的变化过程等。
分子动力学模拟应用实例
速度,原子i所受的力 一阶导数,即 Fi (t)
可Fi (以t,)直Ur其i 接中用U为势势能能函函数数对(坐简标称的势ri
函数或力场),因此对N个粒子体系的每个粒子有
mi
vi t
F
U ri
...
• r (t )
v(t )
求解这组方程要通过数值方法,即给出体系中每个粒
子的初始坐标和速度,从而产生一系列的位置与速度,即 为任意时刻的坐标和速度。
MD是用计算机方法来表示统计力学,用来研究不能用解 析方法来解决的复合体系的平衡和力学性质,是理论与实验 的桥梁。
经典力学定律
分子动力学的基本思想
分子动力学中处理的体系的粒子遵从牛顿方程,即
Fi (t) miai(t)
式中 是Fi(粒t) 子所受的力, 为m粒i子的质量, 是ai原(t)子i的加
准备试样
解N个粒子(分子)组成的 模拟体系的牛顿运动方程 直至平衡,平衡后进行材
料性能的计算
将试样放入测试仪器中进 行测量
对模拟结果 进行分析
测量结果的分析
启动计算
分子动力学运行流程图
设定坐标、速度的初始值
时间更新 回路
t+Δt
时间步长
——参考原子或分 子特征运动频率来 选取
计算作用于原子上的力Fi
MM和MD的应用,通常称作分子模拟(molecular simulation, molecular modeling) 或 分子设计(molecular design)。
MS实验指导书(哈工大)

材料计算设计基础实验指导书朱景川编哈尔滨工业大学2005年2月实验一、第一性原理计算1. 实验目的(1) 掌握第一性原理和密度泛涵的计算方法;(2) 学会使用Visualizer 的各种建模和可视化工具;(3) 熟悉CASTEP 模块的功能。
2. 实验原理CASTEP 是基于密度泛涵理论平面波赝势基础上的量子力学计算。
密度泛涵理论的基本思想是原子、分子和固体的基本物理性质可以用粒子密度函数进行描述。
可以归纳为两个基本定理:定理1:粒子数密度函数是一个决定系统基态物理性质的基本参量。
定理2:在粒子数不变的条件下能量对密度函数变分得到系统基态的能量。
不计自旋的全同费米子的哈密顿量为:H T U V =++其中动能项为:()()T dr r r ψψ+=∇∇⎰库仑作用项为:11'()(')()(')2'U drdr r r r r r r ψψψψ++=-⎰ V 为对所有粒子均相同的局域势u(r)表示的外场影响:()()()V dru r r r ψψ+=⎰粒子数密度函数为:()()()r r r ρψψ+=ΦΦ对于给定的()r υ,能量泛函[]E ρ定义为:[]()()E dr r r T U ρυρ=+Φ+Φ⎰;[]F T U ρ=Φ+Φ系统基态的能量:'''''[]''''[][]()()[][]()()[]E T U V GE F dr r r E G G F dr r r E G ρρυρφρυρρΦ=Φ+Φ+ΦΦ==+>⎰=+=⎰3. 实验内容实验 1. 材料的电子结构计算;实验2. 晶体材料的晶格[点阵]参数预报(要求材料体系为金属合金、化合物半导体或有机 高分子材料);实验 3. 材料的弹性模量计算。
* 在三个实验内容中可以任选一个内容进行计算,有能力的同学也可以全做。
4. 实验设备和仪器(1)硬件:多台PC机和一台高性能计算服务器。
分子模拟 (MS)

扭角能
2
非平面角角能
qi q j C12 C6 [ 12 6 ] rij 4 0 j rij i j rij
范德华相互作用能 静电作用能
6
Bond b0 Bond Angle
0
Dihedral Angle (i-j-k-l)
δ = 0或 π n= 1,2,3,4,5,6
力场由两大要素构成:势能函数形式和相关参数(力参
数、几何参数等)。
5
势函数
Vi (r ) Vi (r1 , r2 ......rN ) 1 1 2 2 K b (b b0 ) Kθ ( θ 0 ) θ b 2 键伸缩能 θ 2 键角能 Kφ ( Cos(n δ ) K ( 0 ) 1 φ
10
CHARMM(Chemistry
at Harvard Molecular Mechanics) 力场, 此力场可应用于研究许多分子系统, 包括小的 有机分子, 溶液, 聚合物, 生化分子等。除了有机金属分 子外,几乎皆可得到与实验值相近的结构, 作用能, 构型 能, 转动能垒, 振动频率, 自由能及许多与时间相关的物 理量。 CHARMM是蛋白质和核酸分子比较好的力场。 AMBER与CHARMM的区别:前者主要针对酶, 后者应用范围广且可计算生化反应自由能。
13
微观尺度材料模拟 分子动力学
分子动力学是在原子、分子水平上求解多体问题的
重要的计算机模拟方法,可以预测纳米尺度上的材料 动力学特性。是时下最广为采用的计算庞大复杂系统 的方法。
在分子动力学中,粒子的运动行为是通过经典的运
动方程(牛顿运动方程、拉格朗日方程等 )所描述。
通过求解所有粒子的运动方程,分子动力学方法可以
[教学]MS动力学模拟
![[教学]MS动力学模拟](https://img.taocdn.com/s3/m/f623b618bfd5b9f3f90f76c66137ee06eff94e00.png)
第3章铁基块体非晶合金-纳米晶转变的动力学模拟过程3.1 Discover模块3.1.1 原子力场的分配在使用Discover模块建立基于力场的计算中,涉及几个步骤。
主要有:选择力场、指定原子类型、计算或指定电荷、选择non-bond cutoffs。
在这些步骤中,指定原子类型和计算电荷一般是自动执行的。
然而,在某些情形下需要手动指定原子类型。
原子定型使用预定义的规则对结构中的每个原子指定原子类型。
在为特定的系统确定能量和力时,定型原子使工作者能使用正确的力场参数。
通常,原子定型由Discover使用定型引擎的基本规则来自动执行,所以不需要手动原子定型。
然而,在特殊情形下,人们不得不手动的定型原子,以确保它们被正确地设置。
图 3-11)计算并显示原子类型:点击Edit→Atom Selection,如图3-1所示图3-2弹出对话框,如图3-2所示从右边的…的元素周期表中选择Fe,再点Select,此时所建晶胞中所有Fe 原子都将被选中,原子被红色线圈住即表示原子被选中。
再编辑集合,点击Edit →Edit Sets,如图3-3、3-4所示。
图3-3图3-4弹出对话框见图3-4,点击New...,给原子集合设定一个名字。
这里设置为Fe,则3D视图中会显示“Fe”字样,再分配力场:在工具栏上点击Discover按钮,从下拉列表中选择Setup,显示Discover Setup对话框,选择Typing选项卡,见图3-5。
图3-5在Forcefield types里选择相应原子力场,再点Assign(分配)按钮进行原子力场分配。
注意原子力场中的价态要与Properties Project里的原子价态(Formalcharge)一致。
3.1.2力场的选择1)Energy,见图3-6。
图3-6力场的选择:力场是经典模拟计算的核心,因为它代表着结构中每种类型的原子与围绕着它的原子是如何相互作用的。
对系统中的每个原子,力场类型都被指定了,它描述了原子的局部环境。
分子动力学模拟的研究与应用

分子动力学模拟的研究与应用分子动力学模拟是一种通过计算机模拟分子间相互作用以及它们随时间的演变而得出分子结构和行为的方法。
这种方法对于研究物质的性质和反应、设计新的材料和药物、优化现有材料和生产工艺等方面具有广泛的应用。
一、分子动力学模拟的原理与流程分子动力学模拟基于牛顿力学原理,将物质看作是由分子组成的,通过计算其分子之间的相互作用力和速度的数值解,来推断研究物质的宏观行为。
具体地说,分子动力学模拟流程包括以下几个步骤:1. 确定所研究物质的分子模型和初始结构。
通常情况下,这需要使用计算化学方法先预测分子的理论结构,并采取实验手段进行验证。
2. 确定模拟中所使用的计算力场。
力场是描述原子或分子间相互作用的一组公式和参数,决定了分子间的势能和力的大小和方向。
3. 设定模拟的温度、压力等条件。
模拟温度和压力等参数的设定需根据实验需求进行选择。
4. 计算分子间的相互作用力和速度。
分子之间的相互作用力通常采用范德华力、库伦力和键能等几种力。
计算相互作用力和速度的数值解可以通过使用微分方程和数值计算方法得到。
5. 根据计算得到的力和速度,重新计算分子的位置和速度。
这通过使用牛顿运动学公式得到。
6. 重复步骤4和5,直至模拟结束或达到设定的模拟时间,得到分子结构和其运动的相关信息。
二、分子动力学模拟的应用领域分子动力学模拟在许多领域中得到了广泛的应用,以下列举几个例子:1. 材料设计与性能优化。
通过在计算机中模拟、预测物质的性质和反应,可以用于设计新的材料,提高材料的性能和品质,减少生产成本,优化生产工艺等。
2. 药物研发与医学应用。
分子动力学模拟可用于模拟分子与蛋白质的相互作用,以研究药物在体内产生的效果和活性,从而设计更安全和有效的药物。
3. 天然资源的研究与利用。
运用分子动力学模拟对天然物质进行研究,如植物中的天然化合物,有助于推广利用天然资源提高生产效益。
4. 环境保护与能源研究。
利用分子动力学模拟计算大气、水体和岩石等的化学反应,有助于预测大气污染、水污染和化学品泄漏等环境问题的产生和发展趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 铁基块体非晶合金‐纳米晶转变的动力学模拟过程 3.1 Discover模块3.1.1 原子力场的分配在使用Discover模块建立基于力场的计算中,涉及几个步骤。
主要有:选择力场、指定原子类型、计算或指定电荷、选择non‐bond cutoffs。
在这些步骤中,指定原子类型和计算电荷一般是自动执行的。
然而,在某些情形下需要手动指定原子类型。
原子定型使用预定义的规则对结构中的每个原子指定原子类型。
在为特定的系统确定能量和力时,定型原子使工作者能使用正确的力场参数。
通常,原子定型由Discover使用定型引擎的基本规则来自动执行,所以不需要手动原子定型。
然而,在特殊情形下,人们不得不手动的定型原子,以确保它们被正确地设置。
图 3-11)计算并显示原子类型:点击Edit→Atom Selection,如图3‐1所示图3-2弹出对话框,如图3‐2所示从右边的…的元素周期表中选择Fe,再点Select,此时所建晶胞中所有Fe原子都将被选中,原子被红色线圈住即表示原子被选中。
再编辑集合,点击Edit →Edit Sets,如图3‐3、3‐4所示。
图3-3图3-4弹出对话框见图3‐4,点击New...,给原子集合设定一个名字。
这里设置为Fe,则3D视图中会显示“Fe”字样,再分配力场:在工具栏上点击Discover按钮,从下拉列表中选择Setup,显示Discover Setup对话框,选择Typing选项卡,见图3‐5。
图3-5在Forcefield types里选择相应原子力场,再点Assign(分配)按钮进行原子力场分配。
注意原子力场中的价态要与Properties Project里的原子价态(Formalcharge)一致。
3.1.2力场的选择1)Energy,见图3‐6。
图3-6力场的选择:力场是经典模拟计算的核心,因为它代表着结构中每种类型的原子与围绕着它的原子是如何相互作用的。
对系统中的每个原子,力场类型都被指定了,它描述了原子的局部环境。
力场包括描述属性的不同的信息,如平衡键长度和力场类型对之间的电子相互作用。
常见力场有COMPASS、CVFF和PCFF。
Select下拉菜单中有三个选项:①COMPASS 力场:COMPASS 力场是第一个把以往分别处理的有机分子体系的力场与无机分子体系的力场统一的分子力场。
COMPASS 力场能够模拟小分子与高分子,一些金属离子、金属氧化物与金属。
在处理有机与无机体系时,采用分类别处理的方式,不同的体系采用不同的模型,即使对于两类体系的混合,仍然能够采用合理的模型描述。
②CVFF力场:CVFF 力场全名为一致性价力场(consistant valence force field),最初以生化分子为主,适应于计算氨基酸、水及含各种官能团的分子体系。
其后,经过不断的强化,CVFF 力场可适用于计算多肽、蛋白质与大量的有机分子。
此力场以计算系统的结构与结合能最为准确,亦可提供合理的构型能与振动频率。
③PCFF力场:PCFF为一致性力场,增加一些金属元素的力参数,可以模拟含有相应原子的分子体系,其参数的确定除大量的实验数据外,还需要大量的量子力学计算结果。
3.1.3 非键的设置打开Non‐bond选项卡,见图3‐7。
图3-7非键作用力包括范德华力和库伦力。
这里将两者都选上,为的是后期做minimizer优化原子位置时精确度更高,因为考虑了作用力因素多,即两者都考虑了。
Summation method(模拟方法):①Atom Based:atom based基于原子的总量,包括一个原子的截断距离,一个原子的缓冲宽度距离;为直接计算法,即直接计算原子对之间的非键相互作用,当原子对超出一定距离(截断半径cutoff distance)时,即认为原子对之间相互作用为零(注:cutoff distance指范德瓦尔斯作用力和库仑力的范围,比如:设定截断半径为5,则表示已分子或原子中心为圆心,以5为半径作圆,半径以外的作用力都不考虑)。
此方法计算量较小,但是可能导致能量和其导数的不连续性。
当原子对间距离在Cut Off半径附近变化时,由于前一步考虑了原子对之间的相互作用,而后一步不考虑,由此会导致能量发生跳跃。
当然,对于较小的体系,则可以设置足够大的Cutoff半径来保证所有的相互作用都被考虑进来。
见图3‐8。
图3-8②Group Based:group based基于电子群的,总量中包括一个原子的截断距离,一个原子的缓冲宽度距离;大多数的分子力场都包括了每个原子之间点电荷的库仑相互作用。
甚至在电中性的物种中也存在点电荷,例如水分子。
点电荷实际上反映了分子中不同原子的电负性。
在模拟中,点电荷一般是通过电荷平衡法(charge equilibrium)评价或者力场定义的电荷来分配的。
当评价点电荷时,一定要小心不要在使用Cutoff技术时引入错误的单极项。
要了解到这一点,可以参看如下事实:两个单极,当只有1e.u.电荷时,在10A的位置上其相互作用大约为33Kcal;而对于由单位单极分离1A所形成的两个偶极,相同距离其相互作用能不超过0.3Kcal/mol。
很明显,忽略单极‐单极相互作用会导致错误的结果,而忽略偶极‐偶极相互作用则是适度的近似。
然而,如果单极相互作用处理不清的话,仍然会出问题。
当non‐bond Cutoff使用基于原子‐原子基组时,就可能发生,会人为将偶极劈裂为两个“假”的单极(当一个偶极原子在Cutoff内,另一个在其外)。
这就不是忽略了相对较小的偶极‐偶极相互作用,而是人为引入了作用较大的单极‐单极相互作用。
为了避免这种人为现象,Materials Studio引入了在Charge Groups之上的Cutoff。
一个“Charge Group”是一个小的原子基团,其原子彼此接近,净电荷为0或者接近于0。
在实际应用中,Charge Group一般是常见的化学官能团,例如羰基、甲基或者羧酸基团的净电荷接近于中性Charge Group。
Charge Group之间的距离为一个官能团中心到另一个官能团中心的距离R,Cutoff设置与Atom Based 相类似。
③Ewald Summation:Ewald是在周期性系统内计算Non‐bond的一种技术。
Ewald是计算长程静电相互作用能的一种算法。
Ewald加和方法比较合适于结晶固体。
原因在于无限的晶格内,Cutoff方法会产生较大的误差。
然而,此方法放也可以用于无定形固体和溶液体系。
Ewald计算量较大,为o(N^3/2),体系较大时,会占用较多的内存并花费较长的时间【《分子模拟—从算法到应用》】。
④cell multipole cell based:只能用于基于指定数量层。
一般情况下,基于Atom适合于孤立体系,对于周期性体系计算量较小,但是准确性较差;基于Group适合于周期性和非周期性体系,计算的准确性好一些,计算量最小;Ewald适合于周期性能体系,计算最为准确,但计算量最大。
图3-9本次模拟选择 Atom Based模拟方法,弹出对话框,见图3‐9。
Cutoff distance(截断距离):指的是范德瓦尔斯作用力和库仑力的范围。
Buffer width:缓冲宽度距离。
Setup其他选项保留默认设置即可。
3.1.4 结构优化在工具栏上点击Discover按钮,然后选择Minimizer。
或者从菜单栏选择Modules | Discover | Minimizer,见图3‐10。
显示Discover Minimizer对话框,可以进行几何结构优化计算。
注:优化前(Min),先查看所有原子是否都已分配力场,如果没有,可以手动添加,在Properties Explorer中双击Forcefield type,然后修改力场类型即可。
其次在Min之前,需要把晶体结构所有原子重新固定。
minimizer只是对结构进行优化,以达到能量最小化。
在作动力学(dynamics)之前最好minimizer一下,因为如果不minimizer计算收敛时间会比较长,能量波动会比较大,而且计算有可能出错。
图3-10优化方法Mathod:最陡下降法(Steepest Descent)、共轭梯度法(Conjugate Gradient)、牛顿方法(Newton)和综合法(Smart Minimizer)。
Convergence level:收敛精度水平。
Maximum iteration:最大迭代数。
Optimize cell选中的话表示优化晶胞参数和原子位置。
MS Discover 结构优化原理分子的势能一般为键合(键长、键角、二面角、扭转角等)和非键合相互作用(静电作用、范德华作用等)能量项的加和,总势能是各类势能之和,如下式:总势能 = 范德华非键结势能 + 键伸缩势能 + 键角弯曲势能 + 双面角扭曲势能 + 离平面振动势能 + 库伦静电势能 + ...除了一些简单的分子以外,大多数的势能是分子中一些复杂形势的势能的组合。
势能为分子中原子坐标的函数,由原子不同的坐标所得到的势能构成势能面(Potential Energy Surface,PES)。
势能越低,构象越稳定,在系统中出现的机率越大;反之,势能越高,构象越不稳定,在系统中出现的机率越小。
通常势能面可得到许多极小值的位置,其中对应于最低能量的点称为全局最小值(Global Energy Minimum),相当于分子最稳定的构象。
由势能面求最低极小值的过程称为能量最小化(Energy Minimum),其所对应的结构为最优化结构(Optimized Structure),能量最小化过程,亦是结构优化的过程。
通过最小化算法进行结构优化时,应避免陷入局部最小值(local minimum),也就是避免仅得到某一构象附近的相对稳定的构象,而力求得到全局最小值,即实现全局优化。
分子力学的最小化算法能较快进行能量优化,但它的局限性在于易陷入局部势阱,求得的往往是局部最小值,而要寻求全局最小值只能采用系统搜寻法或分子动力学法。
在Materials Studio的Discover模块中,能量最小化算法有以下四种:①最陡下降法(Steepest Descent),为一经典的方法,通过迭代求导,对多变量的非线性目标函数极小化,按能量梯度相反的方向对坐标添加位移,即能量函数的负梯度方向是目标函数最陡下降的方向,所以称为最陡下降法。
此法计算简单,速度快,但在极小值附近收敛性不够好,造成移动方向正交。
最陡下降法适用于优化的最初阶段。
②共轭梯度法(Conjugate Gradient),在求导时,目标函数下降方向不是仅选取最陡下降法所采用的能量函数的负梯度方向,而是选取两个共轭梯度方向,即前次迭代时的能量函数负梯度方向与当前迭代时的能量函数负梯度方向的线性组合。