三.分子动力学的基本过程36页
分子动力学基本知识

第六章 分子动力学方法6.1引言对于一个多粒子体系的实验观测物理量的数值可以由总的平均得到。
但是由于实验体系又非常大,我们不可能计算求得所有涉及到的态的物理量数值的总平均。
按照产生位形变化的方法,我们有两类方法对有限的一系列态的物理量做统计平均:第一类是随机模拟方法。
它是实现Gibbs的统计力学途径。
在此方法中,体系位形的转变是通过马尔科夫(Markov)过程,由随机性的演化引起的。
这里的马尔科夫过程相当于是内禀动力学在概率方面的对应物。
该方法可以被用到没有任何内禀动力学模型体系的模拟上。
随机模拟方法计算的程序简单,占内存少,但是该方法难于处理非平衡态的问题。
另一类为确定性模拟方法,即统计物理中的所谓分子动力学方法(Molecular Dynamics Method)。
这种方法广泛地用于研究经典的多粒子体系的研究中。
该方法是按该体系内部的内禀动力学规律来计算并确定位形的转变。
它首先需要建立一组分子的运动方程,并通过直接对系统中的一个个分子运动方程进行数值求解,得到每个时刻各个分子的坐标与动量,即在相空间的运动轨迹,再利用统计计算方法得到多体系统的静态和动态特性, 从而得到系统的宏观性质。
因此,分子动力学模拟方法可以看作是体系在一段时间内的发展过程的模拟。
在这样的处理过程中我们可以看出:分子动力学方法中不存在任何随机因素。
系统的动力学机制决定运动方程的形式:在分子动力学方法处理过程中,方程组的建立是通过对物理体系的微观数学描述给出的。
在这个微观的物理体系中,每个分子都各自服从经典的牛顿力学。
每个分子运动的内禀动力学是用理论力学上的哈密顿量或者拉格朗日量来描述,也可以直接用牛顿运动方程来描述。
这种方法可以处理与时间有关的过程,因而可以处理非平衡态问题。
但是使用该方法的程序较复杂,计算量大,占内存也多。
适用范围广泛:原则上,分子动力学方法所适用的微观物理体系并无什么限制。
这个方法适用的体系既可以是少体系统,也可以是多体系统;既可以是点粒子体系,也可以是具有内部结构的体系;处理的微观客体既可以是分子,也可以是其它的微观粒子。
第四章 分子动力学

分子动力学与分子力学不同,它求解的是随时间变化的分子的状态、行为和过程。
分子动力学将原子看作为一连串的弹性球,原子在某一时刻由于运动而发生坐标变化。
在运动的任一瞬间,通过计算每个原子上的作用力和加速度,来测定它们的位置和运动速度。
由于一个原子的位置相对于其他原子的位置不断变化着,同时力也在变化,可用适当的力场方法,通过评价体系的能量,计算出任一特定原子的力。
分子动力学模拟可作瞬时的、通常为皮秒级(10-12s)的分析,由此模拟计算而获得以一定位置和速度存在的原子的运动轨迹。
计算中根据分子体系的大小、特点和要求来决定模拟时间的长短。
分子动力学方法是一通用的全局优化低能构象的方法。
用分子动力学模拟可使分子构象跨越较大的能垒,因此可以通过升温搜寻构象空间,势能的波动对应着分子构象的变化,当总能量出现最小值时,在常温下(300K)平衡,即可求得低能构象。
在常温下的分子动力学模拟需要很长的时间来克服能量势垒,因此分子动力学对分子构象空间的取样相当缓慢。
提高分子体系的温度,可加大样本分子构型空间的取样效率。
分子动力学计算中,常使用蒙特卡洛算法和模拟退火算法。
蒙特卡洛算法:是一种统计抽样方法。
其基本思想是在求解的空间中随机采样并计算目标函数,以在足够多的采样点中找到一个较高质量的最优解作为最终解。
在动力学计算全局优化低能构象时,以经验势函数随机抽样,不断抽取体系构象,使其逐渐趋于热力学平衡。
该方法需要大量采样才能得到较精确的结果,因此收敛速度较慢。
模拟退火算法:退火是将金属或其他固体材料加热至熔化后,再非常缓慢地冷却的过程。
缓慢冷却是为了凝固成规则的处于最稳态的坚硬晶体状态。
模拟退火算法用于分子动力学计算时,可有效地求得分子的全局优势构象。
过程为:先使体系升温,在高温下进行分子动力学模拟,使分子体系有足够的能量,克服柔性分子中存在的各种旋转能垒和顺反异构能垒,搜寻全部构象空间,在构象空间中选出一些能量相对极小的构象;然后逐渐降温,再进行分子动力学模拟,此时较高的能垒已无法越过,在极小化后去除能量较高的构象,最后可以得到相应的能量最小的优势构象。
分子动力学

经典运
预测矫正法
上式
分子动力学----牛顿运动方程的数值解法
预测矫正法
分子动力学----牛顿运动方程的数值解法
分子动力学----积分步长的选取
分子动力学----积分步长的选取
分子动力学计算的基本思想是赋予分子体系初始运动状态之后 利用分子的自然运动在相空间中抽取样本进行统计计算,积分 步长就是抽样的间隔。
因此从实际的角度来讲,分子动力学适合研究反应或运动 时间小于1ns的体系,而不适合较慢的反应或运动。例如蛋白 质折叠在10-3s(1ms)级别,则需要非常长的时间。
分子动力学----分子动力计算流程
计算过程
计算过程
执行分子动力学计算时,将一定数目的分子放在一定形状的盒 子中,并使它的密度和实验密度相符合,再选定实验的温度, 即可以着手计算。
分子动力学----简化单位
分子动力学----简化单位
研究分子或原子系统时,如果采用国际单位制,原子质量以g 为单位,则通常的原子质量约为10-22g级别;若位置以cm为单 位,则通常的量纲为10-8cm;同样积分步长用s做单位通常在 10-13~10-16s。这些量纲非常小,实验中很容易引起误差,因此 实际计算时通常采用简化单位。
因为分子动力学计算的步长很短,每一步移动的距离也很小,
通常每隔10~20步存储一次来节省硬盘空间。
分子动力学----分子动力计算流程
计算过程
分子动力学中,最重要的工作为如何选取合适的积分步长,在 节省时间的同时也保证计算的精确性。
原则: 积分步长小于系统中最快运动周期的十分之一。 太长的步长会造成分子间的激烈碰撞,体系数据溢出;太短
分子动力学方法模拟基本步骤

分子动力学方法模拟基本步骤分子动力学方法是一种计算机模拟方法,用于研究原子、分子和粒子的运动行为。
它能够预测和揭示材料、化学物质和生物分子的性质和行为,对于理解和设计材料、药物和生物分子等具有重要意义。
分子动力学方法的模拟过程一般包括以下几个基本步骤。
1.选择模拟系统:首先需要明确要研究的系统,包括所研究系统的化学组成、结构和边界条件。
例如,研究一段DNA链的行为时,需要明确DNA链的序列、结构和周围环境等。
选择合适的模拟系统对于准确预测和理解系统行为至关重要。
2.设定初始构型:在进行分子动力学模拟之前,需要为模拟系统设定一个初始构型。
这个初始构型可以根据实验数据、理论计算结果或者其他模拟方法获得,也可以是人工构建的。
对于分子体系,通常使用分子力场将分子中的原子与键、角和二面角等参数进行描述。
初始构型需要满足系统的化学组成和结构,并且能够代表系统的初始状态。
3.设定运动方程:分子动力学方法通过求解牛顿运动方程来模拟粒子的运动。
这些运动方程与力场势能有关。
在分子动力学方法中,一般使用经验势函数来描述粒子间的相互作用。
这些势函数包括键能、角势能、二面角势能以及相互作用势能等。
4. 进行数值积分:为了在计算机中模拟分子的运动,需要解决运动方程的数值积分问题。
一般采用常用的积分算法,如velocity-Verlet算法、Euler算法等来进行数值积分。
这些算法能够根据物体的初始位置、速度和加速度,预测物体在一段时间后的位置、速度和加速度。
5.模拟运行:设置好模拟参数之后,就可以开始进行分子动力学模拟的运行。
在模拟过程中,按照设定的时间步长,通过数值积分方法求解运动方程,得到粒子在每个时间步长上的位置和速度。
同时,需要计算粒子间相互作用势能,以及其他需要关注的物理性质。
6.数据分析:模拟运行之后,需要对模拟得到的数据进行分析。
可以计算能量、压力、温度等系统的宏观性质,并进行可视化和统计分析。
同时,可以与实验结果进行比较,以验证模拟结果的准确性。
分子动力学模拟及自由能计算

分子动力学模拟及自由能计算一、引言分子动力学模拟是一种重要的计算方法,用于研究分子体系的运动行为和相互作用。
通过模拟分子的运动轨迹,可以获得分子的结构、动力学和热力学性质,从而深入理解分子的行为规律。
自由能计算是分子动力学模拟的重要应用之一,它可以用来研究化学反应、相变等关键过程的稳定性和速率。
二、分子动力学模拟的基本原理分子动力学模拟基于牛顿运动定律,通过求解分子的运动方程来模拟分子的运动过程。
在模拟过程中,分子的位置和速度被更新,并且通过计算分子间的相互作用力来获得分子的加速度。
通过迭代计算,可以得到分子的运动轨迹和相应的物理性质。
三、分子动力学模拟的步骤分子动力学模拟包括准备系统、能量最小化、平衡处理和生产模拟等步骤。
首先,需要准备模拟系统,包括确定分子的结构和初始构型,并设置模拟的温度、压力等条件。
然后,对系统进行能量最小化,以得到一个稳定的初始结构。
接下来,进行平衡处理,使系统达到平衡状态,以便进行后续的模拟。
最后,进行生产模拟,记录分子的运动轨迹和相关的物理性质。
四、自由能计算的基本原理自由能是描述系统稳定性和相互作用强度的重要物理量。
自由能计算可以通过各种方法进行,如Monte Carlo方法、分子力学方法等。
其中,基于分子动力学模拟的自由能计算方法较为常用。
自由能计算可以通过计算系统的配分函数来实现,配分函数是描述系统状态的统计量,可以用来计算系统的热力学性质。
五、自由能计算的方法常见的自由能计算方法包括自由能差计算、自由能梯度计算和自由能表面计算等。
自由能差计算通过比较两个系统的自由能差来研究化学反应的稳定性和速率。
自由能梯度计算可以用来研究相变、界面等关键过程的稳定性和速率。
自由能表面计算可以用来研究分子的构象变化和反应路径等。
六、自由能计算的应用自由能计算在化学和材料科学等领域有广泛的应用。
例如,可以通过自由能计算来研究催化剂的活性和选择性,以指导催化反应的设计和优化。
此外,自由能计算还可以用来研究药物分子的结合机制和亲和力,以辅助药物设计和筛选。
分子动力学模拟步骤和意义

分子动力学模拟步骤和意义摘要:一、分子动力学简介二、分子动力学模拟步骤1.准备模型和初始条件2.计算相互作用力3.更新位置和速度4.检查收敛性及输出结果5.重复步骤2-4,直至达到预定模拟时间三、分子动力学模拟意义1.增进对分子结构和性质的理解2.预测分子间相互作用3.优化化学反应条件4.辅助药物设计和材料研究正文:分子动力学是一种计算化学方法,通过模拟分子间的相互作用和运动轨迹,以揭示分子的结构和性质。
这种方法在许多领域具有广泛的应用,如生物化学、材料科学和药物设计等。
分子动力学模拟的主要步骤如下:1.准备模型和初始条件:在进行分子动力学模拟之前,首先需要构建分子模型,包括原子类型、原子间相互作用力等。
同时,为模拟设定初始条件,如温度、压力和分子位置等。
2.计算相互作用力:根据分子模型,利用力学原理(如牛顿第二定律)计算分子间相互作用力。
这些力包括范德华力、氢键、静电相互作用等,对分子的运动和相互作用起关键作用。
3.更新位置和速度:根据相互作用力,对分子的位置和速度进行更新。
通常采用Verlet积分法或Leap-Frog算法等数值方法进行计算。
4.检查收敛性及输出结果:在每次迭代过程中,需要检查模拟的收敛性。
若达到预设的收敛标准,则输出当前时刻的分子结构和性质。
否则,继续进行下一次迭代。
5.重复步骤2-4,直至达到预定模拟时间:分子动力学模拟通常需要进行大量迭代,以获得足够准确的结果。
在达到预定模拟时间后,可得到完整的分子动力学轨迹。
分子动力学模拟在科学研究和实际应用中具有重要意义。
通过模拟,我们可以更好地理解分子的结构和性质,预测分子间的相互作用,从而为实验设计和理论研究提供有力支持。
此外,分子动力学模拟还有助于优化化学反应条件,为药物设计和材料研究提供理论依据。
分子动理论的三个基本内容

分子动理论的三个基本内容分子动力学是研究物质分子和原子等微观结构在受到物理和化学外力作用时的动态过程的一个学科。
它既涉及分子的构造,又涉及分子的动力学运动。
它的研究对熔体、液体、固体以及更复杂的现象有着极为深入的理解和推理。
从某种意义上看,分子动力学可以被认为是实验物理学的一个分支,但它也与数学物理学有着密切的联系。
分子动力学可以细分为三大块内容:(1)分子构造(2)分子运动学(3)分子能量学。
二、分子构造分子构造是分子动力学的基础。
它涉及对分子的架构和结构的全面考察,以及它们的空间构成和空间结构,以及分子的活动性和可活动性。
它还涉及对分子的立体形状的描述,包括其空间分布和性质,以及描述分子的轨道构造、结合能和能量状态。
三、分子运动学分子运动学是分子动力学中最重要的一部分。
它主要涉及对分子在物理和化学外力作用下的动态过程,如电磁场中的分子行为,以及分子受固定外力作用时的受力情况。
分子运动学要求根据分子的电子构造和库伦力(Coulomb force),建立运动学方程,用于解释由外力诱导的动态过程,以及受力机理和行为。
四、分子能量学分子能量学研究分子间能量分布和能量交换的动态特性,以及分子能量变换的规律。
它涉及对分子能量的仔细测量,以及分子外壳能量和极化能量的分析。
它还涉及对分子受固定外力作用下的能量变换等进行模拟,以及分子间分子共振结构的仿真。
总结总之,分子动力学是一个非常有趣的学科,它的研究贯穿了分子的构造、运动学和能量学等领域,是现代物理学研究的重要基础。
分子动力学的运用已经深入到化学、物理、生物学等其他学科的研究中,也为其他学科的发展提供了重要的理论支持。
只有彻底理解和深入研究分子动力学的各个方面,才能更好地应用它来解决实际问题。
分子动力学

分子动力学模拟一.分子动力学的基本原理在分子动力学模拟中,体系原子的一系列位移是通过对牛顿运动方程积分得到的,结果是一条运动轨迹,它表明了系统内原子的位置与速度如何随时间而发生变化。
通过解牛犊第二定律的微分方程,可以获得原子的运动轨迹。
方程如下:这个方程描述了质量为m i的原子i在力Fi的作用下,位置矢量为r i时的运动方程。
其中,Fi可以由势函数U的梯度给出:系统的温度则与系统中全部原子的总动能K通过下式相联系:N是原子数,Nc是限制条件,k B是波尔兹曼常数。
二. MD模拟的积分算法为了得到原子的运动轨迹,可以采用有限差分法来求解运动方程。
有限差分法的基本思想就是将积分分成很多小步,每一小步的时间固定为δt。
用有限差分解运动方程有许多方法,所有的算法都假定位置与动态性质(速度、加速度等)可以用Taylor级数展开来近似:在分子动力学模拟中,常用的有以下的几中算法:1. Verlet算法运用t时刻的位置和速度及t-δt时刻的位置,计算出t+δt时刻的位置:两式相加并忽略高阶项,可以得到:速度可以通过以下方法得到:用t+δt时刻与t-δt时刻的位置差除以2δt:同理,半时间步t+δt时刻的速度也可以算:Verlet算法执行简单明了,存储要求适度,但缺点是位置r(t+δt)要通过小项与非常大的两项2r(t)与r(t-δt)的差相加得到,容易造成精度损失。
另外,其方程式中没有显示速度项,在没有得到下一步的位置前速度项难以得到。
它不是一个自启动算法:新位置必须由t时刻与前一时刻t-δt的位置得到。
在t=0时刻,只有一组位置,所以必须通过其它方法得到t-δt的位置。
一般用Taylor级数:2. Velocity-Verlet算法3. Leap-frog算法为了执行Leap-frog算法,必须首先由t-0.5δt时刻的速度与t时刻的加速度计算出速度v(t+δt),然后由方程计算出位置r(t+δt)。
T时刻的速度可以由:得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
像胞元
非周期边界条件
• 分子体系的模拟并不是都使用周期性边界条件,在 很多情况下,如溶液中沉淀的分子团簇、蛋白质分 子、病毒分子、材料的表面等并不需要周期性边界 条件。
• 可以根据分子体系所处的外界环境对非周期边界上 的粒子施加一定的限制。
占用了一定量的计算机内存。分子数较时, 此方法具有一定的优势
RList
Update interval
No
-
2.60
5.78
2.70
12.50
2.90
26.32
3.10
43.48
3.43
83.33
3.50
100.00
Time N=256 N=500
3.33
10.00
2.24
4.93
2.17
4.55
2.28
分子动力学模拟的基本过程
黄敏生
基本步骤
A.原子位置的初始化
• 建立分子动力学模拟过程的首要问题和第 一步是确定分子体系的初始条件。
• 两种方式,一是采用实验数据,二是借助 各种理论模型得到分子结构的几何参数, 如面心立方(FCC)模型等。
A.原子位置的初始化
• 1.无论采取哪种方法,给定分子结构的空间坐 标都不一定处在分子力场最稳定的位置,即 各原子并非处在平衡态,造成体系的能量比 较高。
• 设想研究对象为N个原子构成的粒子系统,由 于要计算每个原子与其余原子间的距离,因 此需要计算N(N-1)次原子间距,计算量随系 统规模的增大成几何次增大。
❖Verlet近邻表
❖网格近邻表
近邻表 ❖Verlet近邻表 • 最早由Verlet提出
首先通过建立链表记录各原子周围(截断 半径:rc)区域内的所有原子,然后通过链表 计算各分子所受到的作用力。 为了计算原子1所受的作用力。假定一个 球形的区域,半径为r1,且r1>rc。(rc为截 断半径),并给截断半径rc区域内的分子建立 一个链表。 当截断半径rc范围内的分子没有离开r1球 形区域时,只需要根据链表中的分子,即可 计算出分子1所受到的作用力。 如果截断半径rc范围内的分子离开了r1, 球形区域,则需要建立新的链表,即在计算 过程中,每隔一定时间,更新列表。
• 2.要进行一个不施加载荷的弛豫过程,使得系 统达到稳定的平衡状态(共轭梯度法)。
• 3.在这个过程中,系统从人为的初始构形转变 成真实初始构形,势能减小并达到稳定。
• 4.初始条件最好与真实构形类似,FccBCC, 固体结果影响较大,气体影响较小。
A.原子速度的初始化
• 1.为使模拟尽快达到平衡,分子初始速度的 分布应该尽量接近真实情形。
• 例如,边界上的原子设计为位置固定的,就可以形 成刚性边界。(原子始终不动)
• 对边界上的原子施加一定荷载或考虑边界上原子与 外界环境之间的作用力,就形成阻尼边界
❖力场的截断
在分子动力学中,出于计算上的考虑,力场的截 断是必须的,即在某一范围内力场是有效的,因 此会导致一些计算上的困难。
势函数直接截断:
平
正则系综
保持不变。又称为NVT系综。保持温度不变虚拟 热浴系统动能固定原子速度保持不变,又称为
等温等压系综 NPT系综。压强P与体积共轭,控压可以通过标度
• 与邻域列表法相比,此方法不占用多余内存,在 进行大规模分子系统模拟时,此方法可以明显的 减少计算量。
近邻表 ❖网格近邻表
单位的无量纲化
• 在模拟中涉及很多浮点和指数运算,为提 高计算效率,往往将温度、密度、压力等 类似量表示成无量纲的形式。
以Lennard-Jones势为例
一种合适但不唯一的 基本单位取为:
• 2.采用近似的Maxwell-Boltzmann统计分布 来赋予原子的初始速度是比较合理的。能 够使得系统尽快弛豫。
x,[0,1]范围内的随机数
0,2Pi随机数
速度的高斯分布
A初始条件二
• 1.在满足以上温度的条件下,必须保证系统 净总动量为零。
• 2.另一种获得初始条件的方法是选取模拟过 程某一时刻的原子坐标和速度。
VS(rij)V0(rij)-Vc
rijrc ri j rc
❖力场的截断
力场连续的势函数截断:
VS(rij) V(rij)-Vc(dV dr(irjij))rijrc(rijrc) 0
rijrc rijrc
近邻表
• 虽然引入了阶段半径的概念,但然而计算原 子间的距离需要耗费大量的CPU时间。
势阱常数
平衡常数
系综
平衡分子动力学模拟,总是在一定的系综下进行的。
微正则系综
系统原子数N,体积V,能量E保持不变。又称为 NVE系综。孤立、保守的系统。一般说,给定能量 的精确初始条件是无法得到的。能量的调整通过对 速度的标度进行,这种标度可能使系统失去平衡, 迭代弛豫达到平衡。
系统原子数N,体积V,温度T保持不变,且总动量
4.51
2.47
4.79
2.89
-
-
5.86
近邻表 ❖Verlet近邻表算法
近邻表 ❖Verlet近邻表—周期性
方法(a) 方法(b)
近邻表 ❖网格近邻表
ಧ 这种方法的思想是将研究对象看成一个方盒,将这一方盒划分 为M×M×M个单元(cell),每个单元的边长必须大于势函数 的截断半径。
ಧ 与单元13内的原子间距小于截断半径的其它原子必然在单元13 与其邻近单元7,8,9,12,13,14,17,18,19共9个单元内。
ಧ 由于每个单元内原子数为Nc=N/M2,因此对每个原子只要计算 9Nc个原子间距,对整个原子系统就要计算9NNc个原子间距。 对三维结构则要计算27NNc个原子间距(Nc=N/M3)。
ಧ 关于原子间距的计算量就与微结构的尺度即原子系统的原子数 N成正比。
近邻表 ❖网格近邻表
• 在计算过程中,每次更新原子位置时,将跨越本 网格边界的原子从网格中删除,将其插入到相应 的邻近网格中。
• 3.分子动力学模拟经常分成不同的物理阶段 进行,上一个模拟过程结束时的原子位置 和速度就可以作为下一次模拟的初始条件。
边界条件
• 分子动力学模拟中,只有足够的粒子数量, 才能准确的描述材料的宏观性能。
• 为了减小计算规模,人们引入了周期性、固 定、全反射等边界条件。目前常用的边界条 件包括周期性边界条件、对称边界条件和固 定边界条件。