卢瑟福背散射分析 Rutherford Backscattering Spectrometry (RBS)

合集下载

卢瑟福背散射(RBS)在材料表征中的应用

卢瑟福背散射(RBS)在材料表征中的应用

1、运动学因子 运动学因子K
定性分析的质量分辨率 定性分析的质量分辨率: K称为运动学因子
动力学因子K在入射 角度为180o时与靶原 子质量的关系(入射 离子为粒子)。
从右图中可以看出,随着靶的原子质量 的增加,dK/dMr逐渐减小。这说明,利 用RBS测定轻元素时,其质量分辨率高; 测定重元素时,其质量分辨率低。(注 意:探测器的能量分辨率,动力学因子 都对质量分辨率有影响)。
W.K. Zhu, J.W. Mayer and M.A. Nicolet, Backscattering Spectrometry, Academic Press, 1978.
卢瑟福背散射能谱分析
RBS分析的优点: 1、提供深度信息。可以提供成分和深度的信息。一般的深度分析分 辨率为 150 Å左右;比较精细的分析包括细致的样品和探测器准直 可以达到 50 Å的分辨率 Å的分辨率。 2、比较适合于薄膜分析。RBS对于薄膜分析非常有用,可以程序化 地分析厚度在微米 纳米级的薄膜 地分析厚度在微米-纳米级的薄膜。 3、快速分析。一般情况下,RBS分析可以在10分钟左右完成。 4、高灵敏度。RBS 对于重元素非常敏感,可以精确测定单层薄膜的 信息;对于轻元素敏感度差一些。 5、计算简单。RBS能谱比较容易解释。目前各种计算和模拟软件都 比较成熟。如:RUMP、Simnra等等。 较成熟 如 等等
J.W. J W Mayer and E E. Rimini ed., ed Ion Beam Handbook for Materials Analysis, Academic Press, 1977.
4、阻止截面 阻止截面
能量损失dE/dx随着靶的元素组成和密度变化而变化,因而对于具体的靶难 以查到其dE/dx值。为此引入了阻止截面的概念。 dE/dx包括了高速的入射离子穿过其路径上原子的电子云时的能量损失,以 及在路径上与靶的原子核发生大量小角度碰撞时的能量损失 所以 d /d 及在路径上与靶的原子核发生大量小角度碰撞时的能量损失。所以,dE/dx 可以看作是入射离子通过其路径上的靶原子时所可能发生的全部能量损失 过程的一种平均值。也可以解释为暴露于离子束之下的每个靶原子独立贡 献的共同结果。 献的共同结果 假设靶的厚度为x,靶原子密度为N,则在此x厚度中损失的能量E正比于 将其 数 : Nx,将其比例系数定义为阻止截面

卢瑟福背散射分析(RBS)

卢瑟福背散射分析(RBS)



d d d
2.2.2 背散射微分截面—含量分析
• 探测系统的计数与平 均截面的关系为:
N s N p N 0 dx
返 回
2.2.3能损因子—深度分析
• 背散射中入射离子与靶物质的作用过程机制图:
2.2.3能损因子—深度分析
• 在入射路程中
E E0
x / cos1 0
– ΔE与x的关系是可化简为:
dE k 1 dE x x E x dx E0 cos1 dx kE0 cos 2
表面能近似
• 则在表面能近似下能损因子S定义如下:
k 1 dE dE x x S dx E0 cos1 dx kE0 cos 2
– 说明:表面能近似适用于薄靶,靶厚一般要小 于10000埃,近似误差大概在5%左右(对于 alpha粒子)
数值积分法
• 该方法是建立在表面能近似的基础上的, 对于厚靶,进行切片处理,对每一个薄片 采用表面能近似,再进行积分,这样处理 会提高精度,
– 例:2M alpha粒子入射到Si上,厚度8000埃

2
2.2.1 运动学因子—质量分析
• 令δ=π-θ, δ为一小量,且M2>>M1,则对K因子公式 求M2的偏导数并化减得:
M 1 ( 4 2 ) E0 E1 k E0 2 M 2 M 2 M2
由上式得出要提高质量分辨率:
1.增大入射离子能量
2.利用大质量的入射离子
3.散射角尽可能大
返 回
2.2.2 背散射微分截面—含量分析
• 卢瑟福散射截面公式为: (参见下式,详细推 导参见褚圣麟《原子物理学》P12或王广厚 《粒子同固体物质的相互作用》P8和P105)

卢瑟福背散射谱法

卢瑟福背散射谱法

卢瑟福背散射谱法
卢瑟福背散射谱法
英文名称:Rutherford back scattering spectroscopy 定义:以兆电子伏特级的高能氢元素离子通过针形电极(探针)以掠射方式射入试样,大部分离子由于试样原子核的库仑作用产生卢瑟福散射,改变了运动方向而形成背散射。

测量背散射离子的能量、数量,分析试样所含有元素、含量和晶格的方法。

卢瑟福背散射光谱(RBS)是一种离子散射技术,用于薄膜成份分析。

RBS在量化而不需要参考标准方面是独一无二的。

在RBS测量中,高能量(MeV)He+离子指向样品,这样给定角度下背向散射He离子产生的能量及分布情况被记录下来。

因为每种元素的背向散射截面已知,就有可能从RBS谱内获得定量深度剖析(薄膜要小于1毫米厚).
1、RBS分析的理想用途
薄膜组成成份/厚度
区域浓度测定
薄膜密度测的(已知厚度)
2、RBS分析的相关产业
航天航空国防显示器半导体通信
3、RBS分析的优势
非破坏性成分分析无标准定量分析整个晶圆分析(150, 200, 300 mm)以及非常规大样品导体和绝缘体分析氢元素测量
4、RBS分析的局限性
大面积分析(~2 mm)
有用信息局限于top ~1 μm。

卢瑟福散射公式的推导及谈α粒子散射实验的应用意义毕业论文

卢瑟福散射公式的推导及谈α粒子散射实验的应用意义毕业论文

卢瑟福散射公式的推导及谈α粒子散射实验的应用意义摘要1909年卢瑟福和他的助手盖革(H.Geiger)及学生马斯登(E.Marsden)在做α粒子和薄箔散射实验时观察到绝大部分α粒子几乎是直接穿过铂箔,但偶然有大约1/8000α粒子发生散射角大于90°。

这一实验结果当时在英国被公认的汤姆逊原子模型根本无法解释。

在汤姆逊模型中正电荷分布于整个原子,根据对库仑力的分析,α粒子离球心越近,所受库仑力越小,而在原子外,原子是中性的,α粒子和原子间几乎没有相互作用力。

在球面上库仑力最大,也不可能发生大角度散射。

卢瑟福等人经过两年的分析,于1911年提出原子的核式模型,原子中的正电荷集中在原子中心很小的区域内,而且原子的全部质量也集中在这个区域内。

原子核的半径近似为10,约为原子半径的千万分之一。

α粒子散射实验是物理学史上具有里程碑意义的重要实验之一,评为“最美丽”的十大物理实验之三。

由α散射实验现象确立了原子的核式结构,为现代物理的发展奠定了基石。

从20世纪60年代中后期首先应用卢瑟福背散射于月球表面元素成分分析至今,成为成为一种常规的杂质成分、含量及深度分布、膜厚度分析手段。

本文首先介绍原子的的大小和质量,然后介绍原子有核模型提出的历史过程和α粒子散射实验的过程,根据α粒子散射实验中不可忽视的大角度散射引出卢瑟福原子模型,运用相关数学手段和理论力学的基本知识具体详细的推导出库伦散射公式和卢瑟福散射公式,指出了行星模型的意义和困难,并阐述了α粒子散射实验实际应用意义和α粒子试验仪在天体物理中的应用,在最后对相关数学手段和理论力学的相关知识进行了详细的介绍。

关键词:α粒子散射实验;库仑散射公式;卢瑟福散射公式;行星模型;原子稳定性AbstractIn 1909,Rutherford and his assistant Geiger (H. Geiger) and students Marsden (E. Marsden) doing α particles and thin foil scattering experiments observed that most of the α-particles is almost directly through the platinum foil But occasionally, about 1/8000α particles in the scattering angle greater than 90 °. The results of this experiment was to be accepted in the United Kingdom Thomson atomic model could not explain. Chiang Kai-shek in the Thomson model of charge distribution in the atom, based on the analysis of Coulomb force, α par ticles from the hot core closer, suffered the smaller Coulomb force, and in the atom, the atom is neutral, α particles and atoms almost no interaction. Coulomb force in the largest sphere, large angle scattering can not occur. Rutherford, who after two years of analysis, in 1911 proposed the nuclear atom-type model, the positive charge concentration of atoms at the atomic center of a very small area, and the atoms of all the quality of focus within the region. Radius of the nucleus is approximately 10, approximately ten-millionth of atomic radius. α-particle scattering experiment is a milestone in the history of physics in one of the important experiments, as the "most beautiful" of the top ten physics experiments III. Established by the α scattering behavio r of atoms and nuclear structure, the development of modern physics have laid a foundation. 60 years from the late 20th century, first applied Rutherford backscattering elemental composition analysis on the lunar surface so far as to become a routine impurity content and depth distribution, film thickness analysis tool. This paper describes the size and quality of the atom, then introduces a nuclear atom model proposed by the historical process and α-particle scattering process, according to α-particle scattering experiment can not be ignored in the large angle scattering leads to Rutherford atomic model, the use of relevant mathematics tools and basic knowledge of theoretical mechanics specific detailed Coulomb scattering formula is derived and the Rutherford scattering formula, that the planetary model of the significance and difficulties, and described the practical application of α-particle scattering experiment significance and α particle tester in astrophysics application of mathematical methods in the final of the relevant knowledge and theoretical mechanics, a detailed description.Keywords:Alpha particle Scattering experiments; Coulomb scattering formula; Rutherford formula; planetary model; Atomic stability目录绪论-------------------------------------------------------- 1第一章背景知识-------------------------------------------- 31.1 电子的发现------------------------------------------------------- 3 1.2 电子的电荷和质量-------------------------------------------------- 4 1.3 阿伏伽德罗常数---------------------------------------------------- 4 1.4 原子的大小------------------------------------------------------- 4第二章原子核式结构理论提出的历史过程----------------------- 62.1 汤姆孙在发现电子后提出的原子结构设想------------------------------ 6 2.2 开尔文原子模型---------------------------------------------------- 6 2.3 汤姆孙的葡萄干—布丁原子模型-------------------------------------- 7 2.4 勒那德的原子模型-------------------------------------------------- 7 2.5 长岗的土星原子模型------------------------------------------------ 8 2.6 尼克尔森的初始物质原子结构--------------------------------------- 9第三章α粒子散射实验及大角度散射现象的思考--------------- 103.1 α粒子散射实验--------------------------------------------------- 10 3.2 大角度散射现象引出的思考和核式模型的由来------------------------- 11第四章库伦散射公式及卢瑟福散射公式的推导------------------ 144.1 库伦散射公式----------------------------------------------------- 14 4.2 卢瑟福散射公式--------------------------------------------------- 16第五章卢瑟福理论的实验验证------------------------------- 185.1 卢瑟福散射公式的拓展--------------------------------------------- 18 5.2 卢瑟福理论的实验验证--------------------------------------------- 19 5.3 关于小角与180°处的卢瑟福公式----------------------------------- 21第六章α粒子散射实验的应用意义--------------------------- 226.1 对于α粒子散射实验的回顾和一些说明------------------------------ 22 6.2 用α粒子散射实验估计原子核大小--------------------------------- 22 6.3 α粒子散射实验的新应用——卢瑟福背散射分析---------------------- 24 6.4 粒子散射实验给我们今天留下的财富 ----------------------------- 24第七章行星模型的意义和困难-------------------------------- 267.1 行星模型的意义--------------------------------------------------- 26 7.2 行星模型的困难--------------------------------------------------- 26参考文献--------------------------------------------------- 28附录------------------------------------------------------- 29附录A 中心力---------------------------------------------------- 29附录B 极坐标------------------------------------------------------ 30附录C 两体问题--------------------------------------------------- 33绪论原子物理学是研究原子结构,运动规律及相互作用的物理学的一个分支,主要研究:原子的电子结构、原子光谱、原子之间或与其他物质的碰撞过程和相互作用。

卢瑟福背散射分析

卢瑟福背散射分析

Ke wo d :R t e o d h c satr g u fc y r n ls ;T i l a ay i y t s u r r k ct l S ra e a e ay i h f a en l a s hnf m n l s i s
卢瑟福背散射分析是 固体表面层和薄膜 的简 便、 定量 、 可靠、 非破坏性分析方法 , 是诸多的离子束 分 析技术 中应 用 最 为 广 泛 的 一 种微 分 析 技 术 。从 2 世纪 6 年代中后期首先应用卢瑟福背散射于月 0 0 球表面元素成分分析至今 , 已发展成熟 , 成为一种常 规的杂质成分 、 含量及深度 分布 、 膜厚度分析手段 , 在材料 、 电子 、 微 薄膜 物 理 、 能源 等 领域 进 行 交叉 学 科 的研 究 中 , 着重 要 的作 用 。 有 本 文将 对卢瑟 福背散 射谱 学 ( tefr ak RuhrodB c-
赵 国庆
( 复旦卢 瑟福 背散 射 分析 的基 本 原理 作 了概要 的介 绍 。论 述 了背散 射 分析 的 最佳 实验 条
件、 质量分辨率和分析灵敏度 。列举 了卢瑟福背散射分析在材料表 面层和薄膜研 究中的应用例子 关键词: 瑟福 背散 射 ;表 面层分析 ;薄膜分析 卢
入射原子





() 离子与靶原子 的弹性碰撞 a
1 基 本 原 理
卢 瑟福 背 散射 分 析 的原理 很 简单 。一 束 Me V
能量的离子( 通常用 e H 离子) 入射 到靶样 品上, 与 靶原子( 原子核) 发生弹性碰撞 ( 见图 l)其中有部 a, 分离 子从背 向散射 出来 。用半 导体 探测器攫l 量这些 背散射离子的能量, 就可确定靶原子的质量 , 以及发 生 碰撞的靶原子在样 品中所处的深度位置; 从散射

卢瑟福散射

卢瑟福散射

离子能量低于靶原子发生核反应阈能条件下, 入射离子 和靶原子核之间发生弹性碰撞而被散射。 通过测定散射 离子的能谱, 即可对样品中所含元素作定性、 定量和 深度分析。 散射还与晶体的好坏有关, 通过测定沟道 谱可以对样品的晶体性进行判断, 进行缺陷测定等等。
RBS分析原理示意图
靶样品 加速器
入射
Θ=165° 信号放大 分析和记 录仪器 Au-Si半导体α谱仪 RBS分析设备包括离子源、加速装置、离子束筛 选装置、 聚焦装置、样品室、 探测器等等。离 子束产生后经过加速、 筛选和聚焦后达到样品 上被散射,经过探测器得到RBS谱。 Z1M1 计 数 Z3M3 Z2M2
能量Eb
RBS分析原理示意图
RBS的探测和能量分析装置
离子源(358型双等离子体离子源)
双等离子体离子源由空心阴极、中间电极、阳极、 永磁铁、散热片等部分组成。磁铁在中间电极和 阳极之间产生聚焦磁场, 中间电极、阳极和离子 源的纯铁外壳形成离子源的磁场回路。氧气由进 气孔进入离子源腔体, 使离子源内部气压保持在 适当范围。从阴极发射的电子引起气体放电, 放 电产生的离子从阴极向阳极运动的过程中, 首先 在中间电极端部受到机械“ 压缩” , 随后在中 间电极和阳极之间的磁场作用下产生聚焦, 经阳 极孔飞出, 最后由抽取电极引出, 进入后续的离 子光学系统。空心阴极不断提供放电过程中所需 电子, 中间电极电位介于阴极和阳极之间, 在自 给栅偏的作用下, 会保证放电持续稳定。散热片 释放电离过程中产生的热量, 以维持束流稳定。


d
深度分辨率
THANK YOU
RBS: Rutherford Backscattering Spectrometry
PART 1

rbs卢瑟福背散射光谱

rbs卢瑟福背散射光谱

rbs卢瑟福背散射光谱
RBS(Rutherford Backscattering Spectroscopy)是一种自然科
学中的研究技术,利用高能束流(例如离子束)与试样碰撞而产生的背散射来分析样品的物理和结构性质。

而RBS卢瑟福
背散射光谱则是一种利用RBS技术进行表面成分分析的方法。

RBS技术的原理是,在束流与样品碰撞过程中,离子束与样
品中原子核之间发生散射作用,散射角度与碰撞的原子核的质量和能量有关。

其中卢瑟福背散射是一种特殊的散射过程,背散射指的是入射粒子从样品背面发生散射,而不是穿透样品。

通过测量入射粒子的背散射角度和能量变化,可以得到样品中原子核的信息,如原子核的质量、浓度和分布等。

因此,RBS 卢瑟福背散射光谱可以用于研究样品的表面成分、薄膜厚度、晶体结构和晶格缺陷等信息。

RBS卢瑟福背散射光谱在材料科学、固态物理、核物理等领
域有广泛的应用,常用于研究材料薄膜、半导体器件、涂层材料等的成分分析和特性表征。

卢瑟福背散射(RBS)测量数据的拟合

卢瑟福背散射(RBS)测量数据的拟合

本科毕业论文(设计)论文(设计)题目:卢瑟福背散射(RBS)测量数据的拟合学院:理学院专业:电子科学与技术班级:电技071学号:************学生姓名:***指导教师:***2011年 6 月14 日贵州大学本科毕业论文(设计)诚信责任书本人郑重声明:本人呈交和毕业论文(设计),是在导师的指导下独立进行研究所完成。

毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均已注明出处。

特此声明。

论文(设计)作者签名:日期:目录摘要 (III)Abstract (IV)第一章绪论 (1)1.1 卢瑟福散射实验的简介 (1)1.2 卢瑟福散射实验的原理 (1)1.2.1库仑散射偏转角公式 (1)1.2.2卢瑟福散射公式 (3)1.3 卢瑟福散射实验的验证方法 (5)1.4 卢瑟福散射实验的装置 (6)1.4.1 散射真空室的结构 (6)1.4.2 电子学系统结构 (6)1.4.3 步进电机及其控制系统 (7)第二章卢瑟福背散射分析介绍 (8)2.1 卢瑟福背散射概述 (8)2.2 卢瑟福背散射基本原理 (9)2.2.1 运动学关系 (9)2.2.2 能量损失 (11)2.2.3 散射截面 (12)2.2.4 质量分辨率 (14)2.2.5 深度分辨率 (16)2.2.6 分析灵敏度 (16)2.2.7 背散射产额和能谱 (17)2.3 卢瑟福背散射(RBS)实验设备 (18)2.3.1 真空系统与靶室 (19)2.3.2 数据获取系统 (20)2.4 卢瑟福背散射(RBS)数据处理 (21)2.5 卢瑟福背散射(RBS)最佳试验条件选择和样品要求 (22)2.5.1 卢瑟福背散射(RBS)最佳试验条件选择 (22)2.5.2 卢瑟福背散射(RBS)样品要求 (23)第三章卢瑟福背散射的应用及拟合 (24)3.1 卢瑟福背散射应用的简介 (24)3.2 薄膜分析 (24)3.2.1 厚度测定 (24)3.2.2 组分分析 (26)3.2.3 薄膜反应、界面原子迁移 (27)3.3 杂质分析 (27)3.3.1 表面杂质浓度分析 (27)3.3.2 离子注入杂质层分析 (28)3.4 在其他方面的应用 (29)3.4.1 离子能量损失和能量歧离测量 (29)3.4.2 与沟道技术配合,研究单晶样品 (29)第四章卢瑟福背散射的发展 (30)4.1 用重离子弹性反冲轻质元素 (30)4.2 高能量入射离子的非卢瑟福散射 (30)4.3 杂质原子精确定位的沟道技术 (30)第五章结语 (31)参考文献 (32)致谢 (33)附录 (34)卢瑟福背散射(RBS)测量数据的拟合摘要本文对卢瑟福背散射分析的基本原理作了概要的介绍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


2
2.2.1 运动学因子—质量分析
• 令δ=π-θ, δ为一小量,且M2>>M1,则对K因子公式 求M2的偏导数并化减得:
M1 (4 2 ) E0 E1 k E0 2 M 2 M 2 M2
由上式得出要提高质量分辨率:
1.增大入射离子能量
2.利用大质量的入射离子
结束
2.2.1 运动学因子—质量分析
运动学因子的 定义: K=E1/E0, 其中E0是入射 粒子能量,E1 是散射粒子能 量。
2.2.1 运动学因子—质量分析
实验室坐标系中的K因子的表达式为(详细的推导参见 王广厚--《粒子同固体物质相互作用》P102):
2 2 M 1 sin M 1 cos 1 M M2 2 E1 K M1 E0 1 M2 1
• 采用表面能近似误差为5% • 采用数值积分法误差为0.2%
返 回
质量分辨
• 在K因子的推导中曾得出这样一个结论:
M 2 E1 M 2 M1 (4 2 ) E0
2
• 增大散射角
• 增大入射粒子质量 • 增大入射粒子能量 • 提高探测系统的分辨
返回
含量分辨
• 由于散射粒子计数N正比于散射截面σ,故 截面越大,计数越多,分辨越好
• 由上式可得:
E kE0 E1 k
x / cos1 0
2.2.3能损因子—深度分析
• 上面导出了ΔE与深度x的关系式,由于式子比较复杂, 故在实际的应用中采用多种近似方法,(参见王广 厚《粒子同固体物质的相互作用》 P111)
– 表面能近似—适用于薄靶或厚靶的近表面区
– 平均能量近似—适用于厚靶 – 能量损失比法—适用于薄靶,对厚靶也适用,但精度差 – 数值积分法—适用于薄靶和厚靶
2.1 背散射研究的发展史
1909年,盖革(H. Geiger) 和马斯顿(E. Marsden)观 察到了α粒子散射实验现象 1911年,卢瑟福(Lord Ernest Rutherford)揭示了该 现象,并确立了原子的核式 结构模型 1957年,茹宾(Rubin)首次 利用质子和氘束分析收集在 滤膜上的烟尘粒子的成份 1967年,美国的测量员5号空 间飞船发回月球表面土壤的 背散射分析结果
– 在某一深度处的背散射产额:
• H(E1)= Npσ(E)ΩNδkE/S(E)
单元素厚靶
– δkE=( S(kE)/ S(E1))δE1 – H(E1)= – Npσ(E)ΩN {S(kE)/[ S(E1) S(E)]}δE1
返回
2.2 卢瑟福背散射分析的原理
RBS是利用带电粒子与靶核间的大角度库仑 散射的能谱和产额确定样品中元素的质量 数、含量及深度分布。该分析中有三个基 本点,即:
运动学因子—质量分析 背散射微分截面—含量分析 能损因子—深度分析
2.3最佳实验条件的选取
• 由背散射的原理可导出最佳的实验条件:
– 质量分辨 – 含量分辨 – 深度分辨
计数
返回
单元素厚靶
• 表面产额
– 取δE为探测系统每一道对应的能量, δx为对应 于能量间隔的靶厚度,
– 则表面层的产额为:
• H=Npσ(E0)ΩNδx/cosθ1 • 为简化,令θ1 =0 • H=Npσ(E0)ΩNδx,利用表面能近似结论 • H=Npσ(E0)ΩNδE/S(E0)
单元素厚靶
– 轻基体上的重元素有很好的分辨 – 重基体上的轻元素分辨差
返回
深度分辨
• 由表面能近似可值不同深度x1和x2处散射 的粒子能量差ΔE=S Δx,
– 即: Δx= ΔE/S由此式可知,要使Δx尽可能的 小,应从两方面着手 :
• 提高探测系统的分辨,即减小ΔE • 增大S
– 采用重离子入射 – 采用倾角入射,即增大θ1 θ2
2.4实验设备
• 一台小型加速器,目前实验式采用 2X1.7MeV串列加速器(如图)
2.4实验设备
• 电子学探测系统
2.5背散射能谱和产额
• 薄靶
– 单元素 – 多元素
• 厚靶
– 单元素 – 多元素
2.6 RBS技术的应用
• 表面层厚度的分析 • 杂质的深度分布 • 应用于阻止本领测定 • 利用共振背散射探测重基体上得轻元素
• 在出射路程中
E1 kE
0
dE dx x dx in dE dx x dx out
x / cos 2 dE dE dx x dx 0 dx x dx in out
x / cos 2
3.散射角尽可能大
返 回
2.2.2 背散射微分截面—含量分析
• 卢瑟福散射截面公式为: (参见下式,详细推 导参见褚圣麟《原子物理学》P12或王广厚 《粒子同固体物质的相互作用》P8和P105)
M 1 cos 1 M sin 2 2 1/ 2 M 1 1 sin M2
• 这里只介绍表面能近似和数值积分法
表面能近似
• 由于薄靶和厚靶的近表面 区是一薄层,故近似认为 其能损值为一常量
– 入射路径上取:
dE dE dx x dx x in E0
– 出射路径上取:
dE dE dx x dx x out kE0
– 说明:表面能近似适用于薄靶,靶厚一般要小 于10000埃,近似误差大概在5%左右(对于 alpha粒子)
数值积分法
• 该方法是建立在表面能近似的基础上的, 对于厚靶,进行切片处理,对每一个薄片 采用表面能近似,再进行积分,这样处理 会提高精度,
– 例:2M alpha粒子入射到Si上,厚度8000埃
返回
单元素薄靶
• 下图为单元素薄靶的背散射图
薄靶背散射图 1200 800 400 0 350 370 390 410 道数 430 450 470
返回
计数
多元素薄靶
• 下图为单元素薄靶的背散射图
多元素薄靶 1200 800 400 0 300 320 340 360 道数 380 400 420
– ΔE与x的关系是可化简为:
dE k 1 dE x x E x dx E0 cos1 dx kE0 cos 2
表面能近似
• 则在表面能近似下能损因子S定义如下:
k 1 dE dE x x S dx E0 cos1 dx kE0 cos 2


d d d
2.2.2 背散射微分截面—含量分析
• 探测系统的计数与平 均截面的关系为:
Ns N p N0dx
返 回
2.2.3能损因子—深度分析
• 背散射中入射离子与靶物质的作用过程机制图:
2.2.3能损因子—深度分析
• 在入射路程中
E E0
x / cos1 0
Lanzhou University
卢瑟福背散射分析
Rutherford Backscattering Xiaodong E-mail: zhangxd@
Department of Modern Physics in Lanzhou University
2 1/ 2
d L 1 4 d 0
2
Z1 Z 2 e 2 E sin 2 L
2
2

2
2.2.2 背散射微分截面—含量分析
• 因为探测器所张的立体角是有限的,故取平均散 射截面: (其定义式如下)
1
相关文档
最新文档