证明微积分基本公式
dx微积分所有公式,微积分24个基本公式

dx微积分所有公式,微积分24个基本公式dx表示x变化无限小的量,其中d表示“微分”,是“derivative(导数)”的第一个字母。
当一个变量x,越来越趋向于一个数值a时,这个趋向的过程无止境的进行,x与a的差值无限趋向于0,就说a是x的极限。
这个差值,称它为“无穷小”,它是一个越来越小的过程,一个无限趋向于0的过程,它不是一个很小的数,而是一个趋向于0的过程。
扩展资料:注意微分的几何意义:设δx是曲线y = f(x)上的点m的在横坐标上的增量,δy是曲线在点m对应δx在纵坐标上的增量,dy是曲线在点m的切线对应δx在纵坐标上的增量。
f(x0)在表示曲线y=f(x)在切点m(x0,f(x0))处切线的斜率。
(1)微积分的基本公式共有四大公式:1.牛顿-莱布尼茨公式,又称为微积分基本公式2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分4.斯托克斯公式,与旋度有关(2)微积分常用公式:dx sin x=cos xcos x = -sin xtan x = sec2 xcot x = -csc2 xsec x = sec x tan xcsc x = -csc x cot xsin x dx = -cos x + ccos x dx = sin x + ctan x dx = ln |sec x | + ccot x dx = ln |sin x | + csec x dx = ln |sec x + tan x | + c csc x dx = ln |csc x - cot x | + c sin-1(-x) = -sin-1 xcos-1(-x) = - cos-1 xtan-1(-x) = -tan-1 xcot-1(-x) = - cot-1 xsec-1(-x) = - sec-1 xcsc-1(-x) = - csc-1 xdx sin-1 ()=cos-1 ()=tan-1 ()=cot-1 ()=sec-1 ()=csc-1 (x/a)=sin-1 x dx = x sin-1 x++ccos-1 x dx = x cos-1 x-+ctan-1 x dx = x tan-1 x- ln (1+x2)+c cot-1 x dx = x cot-1 x+ ln (1+x2)+c sec-1 x dx = x sec-1 x- ln |x+|+c csc-1 x dx = x csc-1 x+ ln |x+|+c sinh-1 ()= ln (x+) xrcosh-1 ()=ln (x+) x≥1tanh-1 ()=ln () |x| 1sech-1()=ln(+)0≤x≤1csch-1 ()=ln(+) |x| 0dx sinh x = cosh xcosh x = sinh xtanh x = sech2 xcoth x = -csch2 xsech x = -sech x tanh xcsch x = -csch x coth xsinh x dx = cosh x + ccosh x dx = sinh x + ctanh x dx = ln | cosh x |+ c coth x dx = ln | sinh x | + c sech x dx = -2tan-1 (e-x) + c csch x dx = 2 ln || + cduv = udv + vduduv = uv = udv + vdu→ udv = uv - vducos2θ-sin2θ=cos2θcos2θ+ sin2θ=1cosh2θ-sinh2θ=1cosh2θ+sinh2θ=cosh2θdx sinh-1()=cosh-1()=tanh-1()=coth-1()=sech-1()=csch-1(x/a)=sinh-1 x dx = x sinh-1 x-+ ccosh-1 x dx = x cosh-1 x-+ ctanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ c coth-1 x dx = x coth-1 x- ln | 1-x2|+ c sech-1 x dx = x sech-1 x- sin-1 x + c csch-1 x dx = x csch-1 x+ sinh-1 x + c sin 3θ=3sinθ-4sin3θcos3θ=4cos3θ-3cosθ→sin3θ= (3sinθ-sin3θ)→cos3θ= (3cosθ+cos3θ)sin x = cos x =sinh x = cosh x =正弦定理:= ==2r余弦定理:a2=b2+c2-2bc cosαb2=a2+c2-2ac cosβc2=a2+b2-2ab cosγsin (α±β)=sin α cos β ± cos α sin βcos (α±β)=cos α cos β sin α sin β2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β) sin α + sin β = 2 sin (α+β) cos (α-β) sin α - sin β = 2 cos (α+β) sin (α-β) cos α + cos β = 2 cos (α+β) cos (α-β) cos α - cos β = -2 sin (α+β) sin (α-β) tan (α±β)=,cot (α±β)=ex=1+x+++…++ …sin x = x-+-+…++ …cos x = 1-+-+++ln (1+x) = x-+-+++tan-1 x = x-+-+++(1+x)r =1+rx+x2+x3+ -1= n= n (n+1)= n (n+1)(2n+1)= [ n (n+1)]2γ(x) = x-1e-t dt = 22x-1dt = x-1 dtβ(m,n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx转换为 f (ω ) = 解f (t ) = ± jω0t f ( t ) e ? jωt dt f ( t ) e ? j(ω ?ω0 ) t dt = f (ω ? ω0 ) 。
高数同济5.2微积分的基本公式

第五章
微积分的基本公式
一、引例 二、积分上限的函数及其导数 三、牛顿 – 莱布尼兹公式
一、引例
在变速直线运动中, 已知位置函数 之间有关系: 与速度函数
s(t ) v(t )
物体在时间间隔 内经过的路程为
T
T2
1
v(t ) d t s (T2 ) s (T1 )
这种积分与原函数的关系在一定条件下具有普遍性 .
刹车, 问从开始刹
)
刹车后汽车减速行驶 , 其速度为
当汽车停住时,
2 2
即
得
5 t2 2
故在这段时间内汽车所走的距离为
s v(t ) d t (10 5t ) d t 10 t
0 0
2 0 10 (m)
练习1 计算 2 1 sin 2 x dx .
0
例3.
证明
只要证
在 证:
内为单调递增函数 .
F ( x) 0
x 0
x f ( x) f (t ) d t f ( x) t f (t ) d t
0
x
0 f (t ) d t
x 2
2
f ( x) ( x t ) f (t ) d t
x
0 f (t ) d t
2
2 sin x cos x dx cos x sin x 02 0.
0
?
原式 2 sin x cos x dx
0 4 0
sin x cos x 0 cos x sin x 2
cos x sin x dx 2 sin x cos x dx
选修2-2——微积分基本定理

1.6 微积分基本定理1.问题导航(1)微积分基本定理的内容是什么? (2)定积分的取值符号有哪些? 2.例题导读 通过P 53例1,学会利用微积分基本定理求简单定积分的步骤和方法,通过P 53例2的学习,理解定积分的几何意义和定积分的取值符号.1.微积分基本定理(1)内容:一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x=F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.(2)表示:为了方便,常常把F (b )-F (a )记成F (x )⎪⎪⎪b a ,即⎠⎛ab f (x )d x =F (x )⎪⎪⎪ba =F (b )-F (a ). 2.定积分的符号由定积分的意义与微积分基本定理可知,定积分的值可能取正值也可能取负值,还可能是0.(1)当对应的曲边梯形位于x 轴上方时(如图1),定积分的值取正值,且等于曲边梯形的面积.(2)当对应的曲边梯形位于x 轴下方时(如图2),定积分的值取负值,且等于曲边梯形的面积的相反数.(3)当位于x 轴上方的曲边梯形面积等于位于x 轴下方的曲边梯形面积时(如图3),定积分的值为0,且等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积..1.判断(正确的打“√”,错误的打“×”)(1)微积分基本定理中,被积函数f (x )是原函数F (x )的导数.( )(2)应用微积分基本定理求定积分的值时,为了计算方便通常取原函数的常数项为0.( )(3)应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.( )答案:(1)√ (2)√ (3)√2.若a =⎠⎛01(x -2)d x ,则被积函数的原函数为( )A .f (x )=x -2B .f (x )=x -2+C C .f (x )=12x 2-2x +CD .f (x )=x 2-2x答案:C3.⎠⎛0πsin x d x =________.解析:⎠⎛0πsin x d x =-cos x ⎪⎪⎪π0=(-cos π)-(-cos 0)=2.答案:21.应用微积分基本定理求定积分的注意事项(1)微积分基本定理沟通了定积分与导数的关系,揭示了被积函数与函数的导函数之间的互逆运算关系,为计算定积分提供了一个简单有效的方法——转化为计算函数F (x )在积分区间上的增量.(2)用微积分基本定理求定积分的关键是找到满足F ′(x )=f (x )的函数F (x )再计算F (b )-F (a ).(3)利用微积分基本定理求定积分,有时需先化简被积函数,再求定积分. 2.常见函数的定积分公式(1)⎠⎛ab C d x =Cx ⎪⎪⎪ba (C 为常数). (2)⎠⎛ab x n d x =1n +1x n +1⎪⎪⎪ba (n ≠-1).(3)⎠⎛a b sin x d x =-cos x ⎪⎪⎪ba .(4)⎠⎛ab cos x d x =sin x ⎪⎪⎪ba . (5)⎠⎛ab 1xd x =ln x ⎪⎪⎪ba (b >a >0). (6)⎠⎛a b e x d x =e x⎪⎪⎪ba. (7)⎠⎛ab a x d x =a x ln a ⎪⎪⎪ba(a >0且a ≠1).利用微积分基本定理求定积分求下列定积分的值. (1)⎠⎛12(x +1)(x -2)d x ;(2)⎠⎛14x (1+x )d x ;(3)∫π20sin 2x d x ;(4)⎠⎛24x 2-x +1x -1d x . [解] (1)⎠⎛12(x +1)(x -2)d x=⎠⎛12(x 2-x -2)d x=⎝⎛⎭⎫13x 3-12x 2-2x ⎪⎪⎪21 =⎝⎛⎭⎫13×23-12×22-2×2-⎝⎛⎭⎫13×13-12×12-2×1 =-76.(2)⎠⎛14x (1+x )d x=⎠⎛14(x +x )d x =⎝⎛⎭⎫23x 32+12x 2⎪⎪⎪41=⎝⎛⎭⎫23×432+12×42-⎝⎛⎭⎫23×132+12×12=736. (3)∫π2sin 2x d x =∫π21-cos 2x2d x =12∫π20(1-cos 2x )d x =12⎝⎛⎭⎫x -12sin 2x ⎪⎪⎪π2=π4. (4)⎠⎛24x 2-x +1x -1d x =⎠⎛24x (x -1)+1x -1d x =⎠⎛24⎝ ⎛⎭⎪⎫x +1x -1d x =⎝⎛⎭⎫12x 2+ln (x -1)⎪⎪⎪42 =⎝⎛⎭⎫12×42+ln 3-⎝⎛⎭⎫12×22+ln 1=6+ln 3.(1)当被积函数为两个函数的乘积(分式)时,一般要先化简被积函数将其转化为和的形式,便于求得函数F (x ),再计算定积分,具体步骤如下:第一步:求被积函数f (x )的一个原函数F (x ); 第二步:计算函数的增量F (b )-F (a ).(2)利用微积分基本定理求定积分的关键是找出被积函数的原函数,若被积函数的原函扫一扫 进入91导学网()微积分基本定理1.(1)若⎠⎛01(kx +1)d x =2,则k 的值为( )A .1B .2C .3D .4解析:选B.⎠⎛01(kx +1)d x =⎝⎛⎭⎫12kx 2+x ⎪⎪⎪10=12k +1=2. ∴k =2.(2)⎠⎛12x -1x2d x =________. 解析:⎠⎛12x -1x 2d x =⎠⎛12⎝⎛⎭⎫1x -1x 2d x =⎝⎛⎭⎫ln x +1x ⎪⎪⎪21=⎝⎛⎭⎫ln 2+12-()ln 1+1=ln 2-12. 答案:ln 2-12求分段函数的定积分求下列定积分的值. (1)⎠⎛-12|x -1|d x ;(2)⎠⎛-12e |x |d x ;(3)若f (x )=⎩⎪⎨⎪⎧x 2,x ≤0cos x -1,x >0求∫π2-1f (x )d x .[解] (1)⎠⎛-12|x -1|d x=⎠⎛-11|x -1|d x +⎠⎛12|x -1|d x=⎠⎛-11(-x +1)d x +⎠⎛12(x -1)d x=⎝⎛⎭⎫-12x 2+x ⎪⎪⎪1-1+⎝⎛⎭⎫12x 2-x ⎪⎪⎪21=2+12=52.(2)⎠⎛-12e |x |d x =⎠⎛-10e |x |d x +⎠⎛02e |x |d x=⎠⎛-10e -x d x +⎠⎛02e x d x=-e -x ⎪⎪⎪0-1+e x ⎪⎪⎪2=e -1+e 2-1=e 2+e -2.(3)∫π2-1f (x )d x =⎠⎛-1f (x )d x +∫π20f (x )d x =⎠⎛-1x 2d x +∫π20(cos x -1)d x=13x 3⎪⎪⎪-1+(sin x -x )⎪⎪⎪π2=13+⎝ ⎛⎭⎪⎫1-π2=43-π2.求分段函数的定积分(1)由于分段函数在各区间上的函数式不同,所以被积函数是分段函数时,常常利用定积分的性质(3),转化为各区间上定积分的和计算.(2)当被积函数含有绝对值时,常常去掉绝对值号,转化为分段函数的定积分再计算.2.(1)设f (x )=⎩⎪⎨⎪⎧x 2,0≤x <1,2-x ,1<x ≤2,则⎠⎛02f (x )d x =( )A.23B.34C.45D.56 解析:选D.⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x=13x 3⎪⎪⎪10+⎝⎛⎭⎫2x -12x 2⎪⎪⎪21 =13+12=56. (2)⎠⎛0π|cos x |d x =________.解析:⎠⎛0π|cos x |d x =∫π20|cos x |d x +∫ππ2|cos x |d x=∫π20cos x d x +∫ππ2(-cos x )d x=sin x ⎪⎪⎪π20-sin x ⎪⎪⎪⎪ππ2=1+1=2.答案:2(3)计算⎠⎛02|x 2-x |d x .解:∵|x 2-x |=⎩⎪⎨⎪⎧-x 2+x ,0≤x ≤1,x 2-x ,1<x ≤2,∴⎠⎛02|x 2-x |d x =⎠⎛01(-x 2+x )d x +⎠⎛12(x 2-x )d x=⎝⎛⎭⎫-13x 3+12x 2⎪⎪⎪10+⎝⎛⎭⎫13x 3-12x 2⎪⎪⎪21 =16+56=1.微积分基本定理的综合应用(1)已知x ∈(0,1],f (x )=⎠⎛01(1-2x +2t )d t ,则f (x )的值域是________.[解析] ⎠⎛01(1-2x +2t )d t =[(1-2x )t +t 2]⎪⎪⎪10 =2-2x ,即f (x )=-2x +2,因为x ∈(0,1],所以f (1)≤f (x )<f (0),即0≤f (x )<2,所以函数f (x )的值域是[0,2).[答案] [0,2)(2)已知⎠⎛01[(3ax +1)(x +b )]d x =0,a ,b ∈R ,试求ab 的取值范围.[解] ⎠⎛01[(3ax +1)(x +b )]d x=⎠⎛01[3ax 2+(3ab +1)x +b ]d x=⎣⎡⎦⎤ax 3+12(3ab +1)x 2+bx ⎪⎪⎪10 =a +12(3ab +1)+b =0,即3ab +2(a +b )+1=0.法一:由于(a +b )2=a 2+b 2+2ab ≥4ab .所以⎝⎛⎭⎪⎫-3ab +122≥4ab ,即9(ab )2-10ab +1≥0,得(ab -1)(9ab -1)≥0,解得ab ≤19或ab ≥1.所以ab 的取值范围是⎝⎛⎦⎤-∞,19∪[1,+∞). 法二:设ab =t ,得a +b =-3t +12,故a ,b 为方程x 2+3t +12x +t =0的两个实数根,所以Δ=(3t +1)24-4t ≥0,整理得9t 2-10t +1≥0,即(t -1)(9t -1)≥0,解得t ≤19或t ≥1.所以ab 的取值范围是⎝⎛⎦⎤-∞,19∪[1,+∞). [互动探究] 本例(1)中原已知条件改为f (t )=⎠⎛01(1-2x +2t )d x ,则f (t )=________.解析:f (t )=⎠⎛01(1-2x +2t )d x=[(1+2t )x -x 2]⎪⎪⎪1=2t . 答案:2t含有参数的定积分问题的处理办法与注意点 (1)含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.(2)计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.3.(1)设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0<1,则x 0的值为________.解析:⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =13ax 3+cx ⎪⎪⎪10 =a 3+c =ax 20+c ,又0≤x 0<1,∴x 0=33. 答案:33(2)已知f (a )=⎠⎛01(2ax 2-a 2x )d x ,求f (a )的最大值.解:∵⎠⎛01(2ax 2-a 2x )d x=⎝⎛⎭⎫23ax 3-12a 2x 2⎪⎪⎪1=23a -12a 2, ∴f (a )=23a -12a 2=-12⎝⎛⎭⎫a 2-43a +49+29 =-12⎝⎛⎭⎫a -232+29.∴当a =23时,f (a )有最大值为29.数学思想 利用函数的奇偶性巧解定积分问题已知⎠⎛-11(x 3+ax +3a -b )d x =2a +6,且f (t )=⎠⎛0为偶函数,求a ,b .[解] ∵f (x )=x 3+ax 为奇函数, ∴⎠⎛-11(x 3+ax )d x =0.∴⎠⎛-11(x 3+ax +3a -b )d x =⎠⎛-11(x 3+ax )d x +⎠⎛-11(3a -b )d x=0+(3a -b )[1-(-1)]=6a -2b . ∴6a -2b =2a +6,即2a -b =3.① 又f (t )=⎣⎡⎦⎤x 44+a 2x 2+(3a -b )x ⎪⎪⎪t0 =t 44+at 22+(3a -b )t 为偶函数, ∴3a -b =0.②由①②,得a =-3,b =-9. [感悟提高](1)在求对称区间上的定积分时,应该首先考虑函数性质与积分的性质,使解决问题的方法尽可能简便.(2)奇、偶函数在区间[-a ,a ]上的定积分:①若奇函数y =f (x )的图象在[-a ,a ]上连续,则⎠⎛-aaf (x )d x=0. ②若偶函数y =g (x )的图象在[-a ,a ]上连续,则⎠⎛-aag (x )d x =2⎠⎛0a g (x )d x ,如本例为偶函数,可用该结论计算.1.下列各式中,正确的是( )A.⎠⎛ab F ′(x )d x =F ′(b )-F ′(a )B.⎠⎛a b F ′(x )d x =F ′(a )-F ′(b )C.⎠⎛ab F ′(x )d x =F (b )-F (a ) D.⎠⎛ab F ′(x )d x =F (a )-F (b )答案:C2.⎠⎛12(e x -1)d x =________.解析:⎠⎛12(e x-1)d x =(e x-x )⎪⎪⎪21=(e 2-2)-(e 1-1) =e 2-e -1.答案:e 2-e -13.求定积分∫π20cos 2xsin x +cos xd x 的值.解:∫π20cos 2xsin x +cos xd x=∫π20cos2x -sin 2x cos x +sin xd x=∫π20(cos x -sin x )d x=()sin x +cos x ⎪⎪⎪π2=⎝ ⎛⎭⎪⎫sin π2+cos π2-()sin 0+cos 0=0.[A.基础达标]1.⎠⎛1e 1xd x 的值为( ) A .1 B .2 C .ln 2D .e 2解析:选A.⎠⎛1e 1x d x =ln x ⎪⎪⎪e1=ln e -ln 1=1.2.⎠⎛1e x d x 的值为( )A .eB .e -1 C.1eD .1解析:选B.⎠⎛01e x d x =e x ⎪⎪⎪10=e 1-e 0=e -1. 3.已知⎠⎛1m (2x -1)d x =2,则m 的值为( )A .5B .4C .3D .2解析:选D.∵⎠⎛1m (2x -1)d x =(x 2-x )⎪⎪⎪m1=m 2-m =2, ∴m 2-m -2=0,∴m =-1(舍去)或m =2.4.⎠⎛23x x -1d x =( ) A .5+ln 2 B .5-ln 2 C .1+ln 2 D .1-ln 2解析:选C.⎠⎛23xx -1d x =⎠⎛23x -1+1x -1d x=⎠⎛23⎝ ⎛⎭⎪⎫1+1x -1d x =[]x +ln (x -1)⎪⎪⎪32 =(3+ln 2)-(2+ln 1)=1+ln 2.5.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B.∵⎠⎛01f (x )d x =⎠⎛01x 2d x +⎠⎛01⎣⎡⎦⎤2⎠⎛01f (x )d x d x=13x 3⎪⎪⎪10+⎣⎢⎡⎦⎥⎤2⎠⎛01f (x )d x x ⎪⎪⎪10=13+2⎠⎛01f (x )d x , ∴⎠⎛01f (x )d x =-13.故选B.6.已知f (x )=⎩⎪⎨⎪⎧x ,(x ≤0)e x ,(x >0)则⎠⎛-12f (x )d x =________.解析:∵f (x )=⎩⎪⎨⎪⎧x ,(x ≤0)e x ,(x >0).∴⎠⎛-12f (x )d x =⎠⎛-10x d x +⎠⎛02e x d x=12x 2⎪⎪⎪0-1+e x ⎪⎪⎪2=-12+e 2-1=e 2-32.答案:e 2-327.设f (x )=kx +b ,若⎠⎛01f (x )d x =2,⎠⎛12f (x )d x =3.则f (x )的解析式为________.解析:由⎠⎛01(kx +b )d x =2,得⎝⎛⎭⎫12kx 2+bx ⎪⎪⎪1=2, 即12k +b =2,① 由⎠⎛12(kx +b )d x =3,得⎝⎛⎭⎫12kx 2+bx ⎪⎪⎪21=3, 即(2k +2b )-⎝⎛⎭⎫12k +b =3.∴32k +b =3,② 由①②联立得,k =1,b =32,∴f (x )=x +32.答案:f (x )=x +328.⎠⎛03x 2-4x +4d x =________.解析:⎠⎛03x 2-4x +4d x =⎠⎛03(x -2)2d x=⎠⎛03|x -2|d x=⎠⎛02|x -2|d x +⎠⎛23|x -2|d x=⎠⎛02(2-x )d x +⎠⎛23(x -2)d x=⎝⎛⎭⎫-12x 2+2x ⎪⎪⎪20+⎝⎛⎭⎫12x 2-2x ⎪⎪⎪32=2+12=52. 答案:529.计算⎠⎛02x1+x 2d x .解:∵f (x )=1+x 2的导函数为f ′(x )=x 1+x 2. ∴⎠⎛02x 1+x 2d x =1+x 2⎪⎪⎪20=5-1. 10.若f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176.求⎠⎛12f (x )xd x 的值. 解:设f (x )=kx +b ,k ≠0,则⎠⎛01(kx +b )d x =⎝⎛⎭⎫k 2x 2+bx ⎪⎪⎪10=k 2+b =5.① ⎠⎛01xf (x )d x =⎠⎛01(kx 2+bx )d x =⎝⎛⎭⎫kx 33+bx 22⎪⎪⎪10=k 3+b 2=176,② 联立①②可得⎩⎪⎨⎪⎧k =4.b =3. ∴f (x )=4x +3.则⎠⎛12f (x )x d x =⎠⎛124x +3x d x =⎠⎛12⎝⎛⎭⎫4+3x d x =(4x +3ln x )⎪⎪⎪21 =(8+3ln 2)-(4+3ln 1)=4+3ln 2.[B.能力提升]1.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1解析:选B.S 1=⎠⎛12x 2d x =13x 3⎪⎪⎪21=73, S 2=⎠⎛121x d x =ln x ⎪⎪⎪21=ln 2, S 3=⎠⎛12e x d x =e x ⎪⎪⎪21=e 2-e =e(e -1)>e>73, 所以S 2<S 1<S 3,故选B.2.若函数f (x ),g (x )满足⎠⎛-11f (x )g (x )d x =0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数: ①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2. 其中为区间[-1,1]上的正交函数的组数是( )A .0B .1C .2D .3解析:选C.对于①,⎠⎛-11sin 12x ·cos 12x d x=⎠⎛-1112sin x d x =12⎠⎛-11sin x d x =12(-cos x )⎪⎪⎪1-1=12(-cos 1+cos 1)=0. 故①为区间[-1,1]上的一组正交函数;对于②,⎠⎛-11(x +1)(x -1)d x =⎠⎛-11(x 2-1)d x =⎝⎛⎭⎫13x 3-x ⎪⎪⎪1-1=13-1-⎝⎛⎭⎫-13+1 =23-2=-43≠0, 故②不是区间[-1,1]上的一组正交函数;对于③,⎠⎛-11x ·x 2d x =⎠⎛-11x 3d x =⎝⎛⎭⎫14x 4⎪⎪⎪1-1=0. 故③为区间[-1,1]上的一组正交函数,故选C.3.若⎠⎛0t cos θd θ=32,且t ∈(0,2π),则t 的值为________. 解析:∵⎠⎛0t cos θd θ=sin θ⎪⎪⎪t 0 =sin t =32, ∵t ∈(0,2π),∴t =π3或23π. 答案:π3或23π 4.已知f (x )=⎩⎪⎨⎪⎧x -1,x ≤11-ln x x 2,x >1,则⎠⎛0e f (x )d x =________. 解析:∵f (x )=⎩⎨⎧x -1,x ≤11-ln x x 2,x >1, ∴⎠⎛0e f (x )d x =⎠⎛01(x -1)d x +⎠⎛1e 1-ln x x 2d x =⎝⎛⎭⎫12x 2-x ⎪⎪⎪10+ln x x ⎪⎪⎪e 1=-12+1e =2-e 2e. 答案:2-e 2e5.已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2,求a 、b 、c 的值.解:由f (-1)=2,得a -b +c =2,①又f ′(x )=2ax +b ,∴f ′(0)=b =0,② 而⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =⎝⎛⎭⎫13ax 3+cx ⎪⎪⎪10 =13a +c =-2,③ 联立①②③得a =6,c =-4.6.设f (x )是一次函数,且⎠⎛01f (x )d x =1,求证:⎠⎛01f 2(x )d x >1. 证明:设f (x )=kx +b (k ≠0,b ,k 为常数).⎠⎛01f (x )d x =⎠⎛01(kx +b )d x =⎝⎛⎭⎫k 2x 2+bx ⎪⎪⎪10=k 2+b , 即k 2+b =1,k =2(1-b ). ⎠⎛01f 2(x )d x =⎠⎛01(kx +b )2d x =⎠⎛01(k 2x 2+2kbx +b 2)d x =⎝⎛⎭⎫13k 2x 3+kbx 2+b 2x ⎪⎪⎪10=13k 2+kb +b 2 =43(1-b )2+2b (1-b )+b 2=13(b -1)2+1>1. 即⎠⎛01f 2(x )d x >1得证.。
微积分—基本积分公式

微积分—基本积分公式微积分中的基本积分公式是指一些常见函数的不定积分的规律性表达式,方便我们计算积分。
在这篇文章中,我们将介绍一些常见的基本积分公式,并给出它们的简单证明。
一、常数函数与幂函数的积分1. ∫x^n dx = (x^(n+1))/(n+1) + C,其中n≠-1这个公式可以通过对积分求导验证。
二、三角函数的积分1. ∫sin(x) dx = -cos(x) + C这个公式可以通过对积分求导验证。
2. ∫cos(x) dx = sin(x) + C这个公式可以通过对积分求导验证。
三、指数函数与对数函数的积分1. ∫e^x dx = e^x + C这个公式可以通过对积分求导验证。
2. ∫a^x dx = (a^x)/(ln(a)) + C,其中a>0且a≠1这个公式可以通过对积分求导验证。
3. ∫1/x dx = ln,x, + C,其中x≠0这个公式可以通过对积分求导验证。
四、三角函数的一些特殊积分1. ∫sin^2(x) dx = (1/2)(x - sin(x)cos(x)) + C这个公式可以通过对积分求导验证。
2. ∫c os^2(x) dx = (1/2)(x + sin(x)cos(x)) + C这个公式可以通过对积分求导验证。
3. ∫tan(x) dx = -ln,cos(x), + C这个公式可以通过对积分求导验证。
五、一些常见函数的积分1. ∫sec^2(x) dx = tan(x) + C这个公式可以通过对积分求导验证。
2. ∫csc^2(x) dx = -cot(x) + C这个公式可以通过对积分求导验证。
3. ∫sec(x)tan(x) dx = sec(x) + C这个公式可以通过对积分求导验证。
4. ∫csc(x)cot(x) dx = -csc(x) + C这个公式可以通过对积分求导验证。
以上是一些常见的基本积分公式,它们在计算积分时非常有用。
但需要注意的是,在实际运用过程中,有时会遇到需要一些代数或三角变换才能使用这些公式的情况。
微积分的基本公式1

只要证
F(x)0
x
x
证:
F(x)
xf
(x)0 f(t)dtf(x)0tf(t)dt 0xf (t)dt 2
x
f(x)0(xt)
x
0
f
(t)dt
f(t)dt
2
f (x) (x)f()x0
x
0
f
(t)dt 2
(0x)
F(x)在 ( 0, )内为单调.增函数
于 0 | F ( 是 x ) | |x x f ( t ) d t | x x |f ( t ) |d t M x
x
x
由夹逼 x的 定 任 ,即 理 意 F 可 及 (x)性 C 得 (点 a [,b ].)
由 F (x x ) F (x )x xf( t)d t, x
如果 f(x)C(a [,b])则 , 由积分,中 得值定
x x
F ( x x ) F ( x ) f( t) d t f() x , x (在 x与 xx之) 间
故 liF m (x x ) F (x ) lifm () x
x 0 x
例1. 求 lim
1 et2 dt
cosx
0
x 0
x2
0
解: 原式 limeco2sx(sinx) 1
x0
2x
2e
例2. 确定常数 a , b , c 的值, 使
xl i0mxlanx1(st2i)nxdtc(c0). b
0 0
解: x 0 时 a x s, x i n 0 ,c0, b0.
取xb, 则得b 到 f( t) d t b f( x ) d x F ( b ) F ( a ).
微积分基本公式和基本定理

x
sec2
xdx
tan
x
C
(9)
d sin
x
2
x
csc 2
xdx
cot
x
C
(10) sec x tan xdx sec x C
(11) csc x cot xdx csc x C
(12) ex dx ex C (13) a xdx a x C
ln a
(14) sh xdx ch x C
2
xdx.
2
2
0
0
例9
证
明2 e
1 4
2 e x2 xdx 2e2 .
0
第二节
第三章
微积分基本公式与基本定理
一、微积分基本公式 二、微积分基本定理 三、不定积分
一、微积分基本公式
在变速直线运动中, s(t) v(t) 物体在时间间隔
内经过的路程为 vT2 (t)d t s(T2 ) s(T1 ) T1
例10
1 et2 dt
求
lim
x0
cos x
x2
.
解 d 1 et2dt d cos x et2dt,
dx cos x
dx 1
ecos2 x (cos x) sin x ecos2 x ,
1 et2 dt
lim
x0
cos x
x2
lim sin x ecos2 x
x0
2x
1. 2e
ln
x
C
x 0时 ( ln x ) [ ln(x) ] 1
(4)
1
dx x
2
arctan
x
C
x
或 arccot x C
牛顿-莱布尼茨公式

• 牛顿-莱布尼兹公式(Newton-Leibniz formula),通常也 被称为微积分基本定理,揭示了定积分与被积函数的原函 数或者不定积分之间的联系。[1] • 牛顿-莱布尼茨公式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增 量。牛顿在1666年写的《流数简论》中利用运动学描述了 这一公式,[2] 1677年,莱布尼茨在一篇手稿中正式提出了 这一公式。[1] 因为二者最早发现了这一公式,于是命名 为牛顿-莱布尼茨公式。
原函数存在定理
• 原函数是指已知函数f(x)是一个定义在某区间的函 数,如果存在可导函数F(x),使得在该区间内的 任一点都 举例dF(x)=f(x)dx。 则在该区间内就称函数F(x)为函数f(x)的原函数。
原函数的定义
• 已知函数f(x)是一个定义在某区间的函数,如果存 在可导函数F(x),使得在该区间内的任一点都有 • 若F'(x)=f(x),dF(x)=f(x)dx,则在该区间内就称函 数F(x)为函数f(x)的原函数。 • 例:sinx是cosx的原函数。
公式应用
• 牛顿-莱布尼茨公式简化了定积分的计算,利用该公式可 以计算曲线的弧长,平面曲线围成的面积以及空间曲面围 成的立体体积,这在实际问题中有广泛的应用,例如计算 坝体的填筑方量。[1] • 牛顿-莱布尼茨公式在物理学上也有广泛的应用,计算运 动物体的路程,计算变力沿直线所做的功以及物体之间的 万有引力。[1] • 牛顿-莱布尼茨公式促进了其他数学分支的发展,该公式 在微分方程,傅里叶变换,概率论,复变函数等数学分支 中都有体现。
不等式证明
• 积分不等式是指不等式中含有两个以上积分的不等式,当 积分区间相同时,先合并同一积分区间上的不同积分,根据 被积函数所满足的条件,灵灵活运用积分中值定理,以达到 证明不等式成立的目的。 • 在证明定积分不等式时, 常常考虑运用积分中值定理, 以便 去掉积分符号, 如果被积函数是两个函数之积时, 可考虑用 积分第一或者第二中值定理。对于某些不等式的证明, 运 用原积分中值定理只能得到“≥”的结论, 或者不等式根本 不能得到证明。而运用改进了的积分中值定理之后, 则可 以得到“>”的结论, 或者成功的算中, 如果 含有定积分式, 常常可以运用 定积分的相关知识, 比如积分 中值定理等, 把积分
牛顿布莱尼公式推导

1牛顿布莱尼茨公式牛顿-莱布尼兹公式,又称为微积分基本定理,其内容是:若函数f(x)在闭区间[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且从a到b的定积分(积分号下限为a上限为b):∫f(x)dx=F(b)-F(a)其意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法.2牛顿布莱尼茨公式证明过程证明:设:F(x)在区间(a,b)上可导,将区间n等分,分点依次是x1,x2,…xi…x(n-1),记a=x0,b=xn,每个小区间的长度为Δx=(b-a)/n,则F(x)在区间[x(i-1),xi]上的变化为F(xi)-F(x(i-1))(i=1,2,3…)当Δx很小时,F(x1)-F(x0)=F’(x1)*ΔxF(x2)-F(x1)=F’(x2)*Δx……F(xn)-F(x(n-1))=F’(xn)*Δx所以,F(b)-F(a)=F’(x1)*Δx+ F’(x2)*Δx+…+ F’(xn)*Δx当n→+∞时,∫(a,b)F’(x)dx=F(b)-F(a)3牛顿布莱尼茨公式意义牛顿-莱布尼茨公式的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。
它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。
牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。
它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。
牛顿-莱布尼茨公式是积分学理论的主干,利用牛顿一莱布尼茨公式可以证明定积分换元公式,积分第一中值定理和积分型余项的泰勒公式。
牛顿-莱布尼茨公式还可以推广到二重积分与曲线积分,从一维推广到多维。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义(定积分)
设函数f (x )是定义在闭区间[a ,b ]上的连续函数,用n + 1个分点
a = x 0 < x 1 < x 2 < … < x n – 1 < x n = b
把闭区间[a ,b ]划分成n 个小区间
[x 0,x 1],[x 1,x 2],…,[x i – 1,x i ],…,[x n – 1,x n ]
记各小区间[x i – 1,x i ](i = 1,2,…,n )的长度为Δx i = x i - x i – 1,在各小区间[x i – 1,x i ]内任取一点ξi ,取函数值f (ξi )与小区间长度Δx i 的乘积f (ξi )Δx i ,作和式
n n i i n i i i
x f x f x f x f x f Δ)(Δ)(Δ)(Δ)(Δ)(22111ξξξξξ+++++=∑=
称为函数f (x )在区间[a ,b ]上的积分和。
记各小区间的最大长度为d = max{Δx i },如果对于区间
[a ,b ]任意的划分和点ξi 在[x i – 1,x i ]上的任意取法,当d → 0时,积分和的极限存在,则称此极限为函数f (x )在区间[a ,b ]上的定积分,简称积分,记为
∑⎰=→=n
i i i d b
a x x f x x f 10Δ)(lim d )( 其中⎰为积分号,[a ,
b ]称为积分区间,f (x )称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限。
如果函数f (x )在区间[a ,b ]上的积分存在,则称f (x )在[a ,b ]上可积。
上述定义中的积分限要求a < b ,实际上这个限制可以解除,补充两条规定:
(1)当a = b 时,规定0d )(=⎰a
a x x f ; (2)当a >
b 时,规定⎰⎰-=a
b b a x x f x x f d )(d )(。
可以看出,这两条规定是合理的,其中第一条规定也可以根据第二条推出。
定理1(可积的必要条件)
如果函数f (x )在闭区间[a ,b ]上的可积,则f (x )在[a ,b ]上有界。
定理2(可积的充分条件)
1.如果函数f (x )在闭区间[a ,b ]上的连续,则f (x )在[a ,b ]上可积。
2.如果函数f (x )在闭区间[a ,b ]上的单调,则f (x )在[a ,b ]上可积。
3.如果在闭区间[a ,b ]内除去有限个不连续点外,函数f (x )有界,则f (x )在[a ,b ]上可积。
引理(微分中值定理)
设函数f (x )在闭区间[a ,b ]内连续,在开区间(a ,b )内可导,则至少存在一点ξ∈(a ,b ),成立等式
f (b ) − f (a ) = f'(ξ)(b − a )
以上结论称为微分中值定理,等式称为微分中值公式。
设函数f (x )在闭区间[a ,b ]内连续,则可以证明f (x )在[a ,b ]上可积,于是存在新的函数F (x ),成立微分关系F'(x ) = f (x )或d F (x ) = f (x )d x ,则称F (x )为f (x )的一个原函数。
试利用微分中值定理和定积分的定义证明微积分基本公式
)()()(d )(a F b F x F x x f b
a b
a -==⎰ 这个公式又称为牛顿-莱布尼茨公式。
证明:
因为f (x )在[a ,b ]上可积,f (x )的原函数F (x )存在,即F'(x ) = f (x ),又因为可导函数必定连续,所以F (x )在[a ,b ]内连续,因此F (x )在[a ,b ]内满足微分中值定理的条件。
对于定义中区间[a ,b ]任意的划分,在各小区间[x i – 1,x i ](i = 1,2,…,n )上,函数F (x )也满足微分中值定理的条件,于是必定存在ξi ∈[x i – 1,x i ],成立等式
F (x i ) - F (x i – 1) = F'(ξi )(x i − x i – 1)
即
F (x i ) − F (x i − 1) = f (ξi )Δx i
对于每一个小区间[x i – 1,x i ](i = 1,2,…,n ),以上等式都成立,将各个小区间内的上述等式左右两边分别相加,可以得到
F (x 1) − F (x 0) + F (x 2) − F (x 1) + … + F (x i ) − F (x i – 1) + … + F (x n – 1) − F (x n – 2) + F (x n ) − F (x n – 1) =
f (ξ1)Δx 1 + f (ξ2)Δx 2 + … + f (ξi )Δx i + … + f (ξn – 1)Δx n – 1 + f (ξn )Δx n
即
i n
i i n x f x F x F Δ)()()(10∑==-ξ
令d = max{Δx i } → 0,以上等式两边分别取极限
i n
i i d n d x f x F x F Δ)(lim )]()([lim 1000∑=→→=-ξ 等式的左边F (x n ) − F (x 0) = F (b ) − F (a )是常数,极限显然存在
)()()]()([lim 00
a F
b F x F x F n d -=-→ 等式的右边正是积分和的极限,因为f (x )在[a ,b ]上可积,所以此极限存在,于是根据定积分的定义,f (x )在[a ,b ]上的定积分存在,即
⎰∑==→b
a n i i i d x x f x x f d )(Δ)(lim 10 于是就得到
)()(d )(a F b F x x f b
a -=⎰
这就是微积分基本公式,表明了定积分与原函数之间的联系。
习惯上将F (b ) − F (a )简写成b
a x F )(,于是微积分基本公式可以写成 )()()(d )(a F
b F x F x x f b
a b
a -==⎰ 此外,利用f (x )的不定积分(C 为任意常数)
C x F x x f +=⎰)(d )(
微积分基本公式还可以表示为
()b a
b
a x x f x x f ⎰⎰=d )(d )( 此式表明了定积分与不定积分之间的联系。