(完整word版)证明微积分基本公式
微积分基本公式与计算

微积分基本公式与计算微积分是数学中的一个分支,研究的是函数的变化、变化率和积分运算。
微积分的基本公式是指在微积分的基础知识中常用的、基础性的公式和计算方法。
下面将介绍微积分中的基本公式与计算方法。
1.导数公式导数是函数在其中一点上的变化率,描述了函数沿着自变量的变化速率。
常用的导数公式如下:(1)常数函数的导数为0:d(c)/dx = 0,其中c为常数。
(2)幂函数的导数为幂次与系数的乘积:d(x^n)/dx = nx^(n-1),其中n为实数。
(3)指数函数的导数为函数自身与底数的乘积:d(a^x)/dx = ln(a) * a^x,其中a为底数。
(4)对数函数的导数为导数值与函数自身的倒数的乘积:d(log_a(x))/dx = 1/(x * ln(a)),其中a为对数的底数。
2.求导法则求导法则是指求导数时常用的一些运算规则。
常用求导法则如下:(1)和差法则:d(u ± v)/dx = du/dx ± dv/dx,其中u和v是两个函数。
(2)乘积法则:d(uv)/dx = u * dv/dx + v * du/dx,其中u和v是两个函数。
(3)商法则:d(u/v)/dx = (v * du/dx - u * dv/dx) / v^2 ,其中u和v是两个函数,v≠0。
(4)链式法则:如果函数y = f(u)和u = g(x)有关系,那么y对x 的导数可以表示为:dy/dx = dy/du * du/dx。
3.积分公式积分是导数的逆运算,是计算函数在一个区间上面积的方法。
常用的积分公式如下:(1)不定积分的基本公式:∫f(x)dx = F(x) + C,其中F'(x) = f(x),C为常数。
(2)定积分的基本公式:∫[a, b]f(x)dx = F(b) - F(a),其中F'(x) = f(x)。
(3)换元积分法:根据函数的复合结构,选择适当的变量替换,使得被积函数简化,然后再进行积分。
(完整word)高数微积分公式+三角函数公式考研

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xxd ee dx = ⑽()ln xxd a aadx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
微积分公式大全

微积分公式大全1.极限与连续1.1 极限的定义:对于函数$f(x)$,当$x$趋向于$a$时,如果对于任意给定的$\epsilon > 0$,总存在与$a$不相等的$x$使得当$0 < ,x-a,< \delta$时,$,f(x) - L, < \epsilon$,我们就说函数$f(x)$在$x=a$处的极限为$L$,记作$\lim_{x \to a}f(x)=L$。
1.2基本极限公式:a) $\lim_{x \to a}c = c$,其中$c$为常数;b) $\lim_{x \to a}x = a$;c) $\lim_{x \to a}x^n = a^n$,其中$n$为正整数;d) $\lim_{x \to a} \sin x = \sin a$;e) $\lim_{x \to a} \cos x = \cos a$;f) $\lim_{x \to a} \tan x = \tan a$,其中$a \neq\frac{\pi}{2} + \pi k$,$k$为整数;g) $\lim_{x \to a} \ln x = \ln a$,其中$a > 0$。
1.3极限的运算法则:a) $\lim_{x \to a}[f(x) \pm g(x)] = \lim_{x \to a}f(x) \pm \lim_{x \to a}g(x)$;b) $\lim_{x \to a} kf(x) = k \lim_{x \to a}f(x)$,其中$k$为常数;c) $\lim_{x \to a} f(x)g(x) = \lim_{x \to a}f(x) \cdot\lim_{x \to a}g(x)$;d) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a}f(x)}{\lim_{x \to a}g(x)}$,其中$\lim_{x \to a}g(x) \neq 0$;e) $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a}f(x)]^n$,其中$n$为正整数。
《微积分公式大全》word版

2! 3!
n!
sin x = x- x3 + x5 - x7 +…+ (1)n x 2n1 + …
3! 5! 7!
(2n 1)!
cos x = 1- x2 + x4 - x6 +…+ (1)n x2n + …
2! 4! 6!
(2n)!
ln <1+x> = x- x2 + x3 - x4 +…+ (1)n x n1 + …
微积分公式
Dx sin x=cos x cos x = -sin x tan x = sec2 x cot x = -csc2 x sec x = sec x tan x csc x = -csc x cot x
sin x dx = -cos x + C cos x dx = sin x + C tan x dx = ln |sec x | + C cot x dx = ln |sin x | + C sec x dx = ln |sec x + tan x | + C csc x dx = ln |csc x – cot x | + C
2 sin α cos β = sin <α+β> + sin <α-β>
2 cos α sin β = sin <α+β> - sin <α-β>
2 cos α cos β = cos <α-β> + cos <α+β>
2 sin α sin β = cos <α-β> - cos <α+β>
微积分公式

微积分公式微积分是数学中计算变化率和求解曲线面积的学科。
它通过研究求解方程来使用数学工具来分析和描述实际现象。
微积分有许多公式,下面是一些常见的公式:1、导数基本公式:如果f(x)是定义在x上的连续函数,那么f(x)的导数为:f′(x)=limh→0[f(x+h)-f(x)/h]2、极限公式:设f(x)是定义在某一点x=a处的连续函数,如果那么当x趋近于a时,f(x)的极限hy→0f(x)的存在限limx→af(x)=L,那么极限公式就是:limx→af(x)=L3、渐近线公式:如果y=f(x)是关于x之间连续相关的函数,当x取极限时,渐近线公式为y=limx→∞f(x)=L4、复合函数求导法则:如果y=f(u)和u=g(x)是连续函数,则dy/dx=dy/du×du/dx,其中du/dx 为求dg(x)/dx。
5、高阶导数:如果y=f(x)是关于x的连续函数,它的第n阶导数dnfdxn=f′(x)=limh→0[f(x+h)-f(x)/h]n-16、微积分定理:即定积分定理,如果f(x)是定义在[a,b]上的连续函数,且f′(x)是定义在[a,b]上的可积函数,则F(x)=∫ f(x)dx在区间[a,b]上极限存在,且F(x)=lim A→BA f(x)dx=F(b)-F(a)7、李雅普诺夫准则:称为最大-最小法则,如果f′(x)>0,则在区间[a,b]内f(x)为递增函数;如果f′(x)<0,则在区间[a,b]内f(x)为递减函数;如果f′(x)=0,则在[a,b]上可能存在极值。
8、Rolle定理:如果函数f(x)在[a,b]上连续有界且f(a)=f(b),其导数在[a,b]上连续,那么该函数f(x)在[a,b]上必定存在一个极值点,此极值点的坐标可以通过公式c=(a+b)/2来确定。
总的来说,微积分的公式十分的丰富,这些公式是学习和使用微积分的基础。
只有熟练运用这些公式,才能更好的理解并使用微积分。
(完整word版)积分公式

2.基本积分公式表(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=-cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=-cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C注.(1)不是在m=-1的特例.(2)=ln|x|+C,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x.事实上,对x>0,(ln|x|)' =1/x;若x<0,则(ln|x|)' =(ln(-x))' =.(3)要特别注意与的区别:前者是幂函数的积分,后者是指数函数的积分.下面我们要学习不定积分的计算方法,首先是四则运算.3.不定积分的四则运算根据微分运算公式d(f(x)±g(x))=d f(x)±d g(x)d(kf(x))=k d f(x)我们得不定积分的线性运算公式(1)∫[f(x)±g(x)]d x=∫f(x)d x±∫g(x)d x(2)∫kf(x)d x=k∫f(x)d x,k是非零常数.现在可利用这两个公式与基本积分公式来计算简单不定积分.例2.5.4求∫(x3+3x++5sin x-4cos x)d x解.原式=∫x3d x+∫3x d x+7∫d x+5∫sin x d x-4∫cos x d x=+7ln|x|-5cos x-4sin x+C .注.此例中化为五个积分,应出现五个任意常数,它们的任意性使其可合并成一个任意常数C,因此在最后写出C即可.例2.5.5求∫(1+)3d x解.原式=∫(1+3+3x+)d x=∫d x+3∫d x+3∫x d x+∫d x=x+3+C=x+2x++C .注.∫d x与∫1d x是相同的,其中1可省略.例2.5.6求解.原式===-x+arctan x+C .注.被积函数是分子次数不低于分母次数的分式,称为有理假分式.先将其分出一个整式x2-1,余下的分式为有理真分式,其分子次数低于分母的次数.例2.5.7求.解.原式==∫csc2x d x-∫sec2x d x=-cot x-tan x+C .注.利用三角函数公式将被积函数化简成简单函数以便使用基本积分公式.例2.5.8求.解.原式==+C .为了得到进一步的不定积分计算方法,我们先用微分的链锁法则导出不定积分的重要计算方法−−换元法.思考题.被积函数是有理假分式时,积分之前应先分出一个整式,再加上一个有理真分式,一般情形怎样实施这一步骤?4.第一换元法(凑微分法)我们先看一个例子:例2.5.9求.解.因(1+x2)' =2x,与被积函数的分子只差常数倍数2,如果将分子补成2x,即可将原式变形:原式=(令u=1+x2)=(代回u=1+x2).注.此例解法的关键是凑了微分d(1+x2).一般地在F'(u)=f(u),u=ϕ(x)可导,且ϕ' (x)连续的条件下,我们有第一换元公式(凑微分):u=ϕ (x) 积分代回u=ϕ (x)∫f[ϕ(x)]ϕ' (x)d x=∫f[ϕ(x)]dϕ(x)=∫f(u)d u=F(u)+C=F[ϕ(x)]+C其中函数ϕ(x)是可导的,且F(u)是f(u)的一个原函数.从上述公式可看出凑微分法的步骤:凑微分————→换元————→积分————→再换元ϕ' (x)d x=dϕ(x) u=ϕ(x) 得F(u)+C得F[ϕ(x)]+C注.凑微分法的过程实质上是复合函数求导的链锁法则的逆过程.事实上,在F'(u)=f(u)的前提下,上述公式右端经求导即得:[F[ϕ(x)]+C]' =F '[ϕ(x)]ϕ' (x)=f[ϕ(x)]ϕ' (x)这就验证了公式的正确性.例2.5.10求∫(ax+b)m d x.(m≠-1,a≠0)解.原式=(凑微分d(ax+b))=(换元u=ax+b)=(积分)=. (代回u=ax+b)例2.5.11求.解.原式=(凑微分d(-x3)=-3x2d x)===(换元u=-x3).注.你熟练掌握凑微分法之后,中间换元u=ϕ(x)可省略不写,显得计算过程更简练,但要做到心中有数.例2.5.12求∫tan x d x.解.原式==-ln|cos x|+C .同理可得∫cot x d x=ln|sin x|+C .例2.5.13求(a>0).解.原式==.例2.5.14求(a>0).解.原式==.例2.5.15求.解.原式====.例2.5.16∫sec x d x.解.原式=(换元u=sin x)===(代回u=sin x)===ln|sec x+tan x|+C .公式:∫sec x d x=ln|sec x+tan x|+C .例.2.5.17求∫csc x d x .解.原式===ln|csc x-cot x|+C .公式:∫csc x d x=ln|csc x-cot x|+C .凑微分法是不定积分换元法的第一种形式,其另一种形式是下面的第二换元法.5.第二换元法不定积分第一换元法的公式中核心部分是∫f[ϕ(x)]ϕ'(x)d x=∫f(u)d u我们从公式的左边演算到右边,即换元:u=ϕ(x).与此相反,如果我们从公式的右边演算到左边,那么就是换元的另一种形式,称为第二换元法.即若f(u),u=ϕ(x),ϕ'(x)均连续,u=ϕ(x)的反函数x=ϕ-1(u)存在且可导,F(x)是f[ϕ(x)]ϕ'(x)的一个原函数,则有∫f(u)d u=∫f[ϕ(x)]ϕ'(x)d x=F(x)+C=F[ϕ-1(u)]+C .第二换元法常用于被积函数含有根式的情况.例2.5.18求解.令(此处ϕ(t)=t2).于是原式===(代回t= -1(x)=) 注.你能看到,换元=t的目的在于将被积函数中的无理式转换成有理式,然后积分.第二换元法除处理形似上例这种根式以外,还常处理含有根式,,(a>0)的被积函数的积分.例2.5.19求. (a>0)解.令x=a sec t,则d x=a sec t tan t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .到此需将t代回原积分变量x,用到反函数t=arcsec,但这种做法较繁.下面介绍一种直观的便于实施的图解法:作直角三角形,其一锐角为t及三边a,x,满足:sec t=由此,原式=ln|sec t+tan t|+C1==.注.C1是任意常数,-ln a是常数,由此C=C1-ln a仍是任意常数.(a>0)例2.5.20求.解.令x=a tan t,则d x=a sec2t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .图解换元得原式=ln|sec t+tan t|+C1=.公式:.例2.5.21求(a>0).解.令x=a sin t,则d x=a cos t d t,于是原式===+C.图解换元得:原式=+C=+C .除了换元法积分外,还有一个重要的积分公式,即分部积分公式.思考题.在第二换元法公式中,请你注意加了一个条件“u=ϕ(x)的反函数x=ϕ1-(u)存在且可导”,你能否作出解释,为什么要加此条件?6.分部积分公式我们从微分公式d(uv)=v d u+u d v两边积分,即∫d(uv)=∫v d u+∫u d v由此导出不定积分的分部积分公式∫u d v=uv -∫v d u下面通过例子说明公式的用法.例2.5.22求∫x2ln x d x解.∫x2ln x d x=(将微分dln x算出)==.例2.5.23求∫x2sin x d x.解.原式=∫x2d(-cos x) (凑微分)=-x2cos x-∫(-cos x)d(x2) (用分部积分公式)=-x2cos x+∫2x cos x d x=-x2cos x+2∫x dsin x(第二次凑微分)=-x2cos x+2[x sin x-∫sin x d x] (第二次用分部积分公式)=-x2cos x+2x sin x+2cos x+C .例2.5.24求∫e x sin x d x.解.∫e x sin x d x=∫sin x d e x (凑微分)=e x sin x-∫e x dsin x(用分部积分公式)=e x sin x-∫e x cos x d x(算出微分)=e x sin x-∫cos x d e x(第二次凑微分)=e x sin x-[e x cos x-∫e x dcos x] (第二次用分部积分公式)=e x(sin x-cos x)-∫e x sin x d x(第二次算出微分)由此得:2∫e x sin x d x=e x(sin x-cos x)+2C因此∫e x sin x d x=(sin x-cos x)+C .注.(1)此例中在第二次凑微分时,必须与第一次凑的微分形式相同.否则若将∫e x cos x d x凑成∫e x dsin x,那将产生恶性循环,你可试试.(2)积分常数C可写在积分号∫一旦消失之后.例2.5.25求∫arctan x d x解.此题被积函数可看作x0arctan x,x0d x=d x,即适合分部积分公式中u=arctan x,v=x.故原式=x arctan x - ∫x d(arctan x) (用分部积分公式)=x arctan x - d x(算出微分)=x arctan x - (凑微分)=x arctan x - ln(1+x2)+C .小结.(1)分部积分公式常用于被积函数是两种不同类型初等函数之积的情形,例如x3arctan x,x3ln x 幂函数与反正切或对数函数x2sin x,x2cos x幂函数与正弦,余弦x2e x幂函数与指数函数e x sin x,e x cos x 指数函数与正弦,余弦等等.(2)在用分部积分公式计算不定积分时,将哪类函数凑成微分d v,一般应选择容易凑的那个.例如arctan x d,ln x d我们已学习了不定积分的几种常用方法,除了熟练运用这些方法外,在许多数学手册中往往列举了几百个不定积分公式,它们不是基本的,不需要熟记,但可以作为备查之用,称为积分表.思考题.你仔细观察分部积分公式,掌握其中使用的规律,特别是第一步凑微分时如何选择微分.7.积分表的使用除了基本积分公式之外,在许多数学手册中往往列举了几百个补充的积分公式,构成了积分表.下面列出本节已得到的基本积分公式.(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=- cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=- cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C(14)∫tan x d x=-ln|cos x|+C(15)∫cot x d x=ln|sin x|+C(16)=(a>0)(17)=(a>0)(18)(a>0)(19)=(a>0)(20)∫sec x d x=ln|sec x+tan x|+C(21)∫csc x d x=ln|csc x-cot x|+C利用积分表中的公式,可使积分计算大大简化.积分表的使用方法比较简单,现举一例说明之.例2.5.26求解.从积分表中查得公式则将a=3,b=-1,c=4代入上式并添上积分常数C即得解答:=.。
常用微积分公式大全

常用微积分公式大全微积分是数学的一个重要分支,它研究了函数的导数、积分以及它们之间的关系。
微积分公式是求导和积分的基本工具,以下是一些常用的微积分公式:1.基本导数法则:-导数和差法则:(f+g)'=f'+g'-常数倍法则:(c*f)'=c*f'-乘积法则:(f*g)'=f'*g+f*g'-商法则:(f/g)'=(f'*g-f*g')/g^22.基本函数的导数:-非常数次幂:(x^n)'=n*x^(n-1)- 幂函数:(a^x)' = ln(a) * a^x-自然指数函数:(e^x)'=e^x- 对数函数:(log_a x)' = 1 / (x ln(a))3. 链式法则:如果 y = f(u) 和 u = g(x) 是可导函数,那么复合函数 y = f(g(x)) 的导数为 dy/dx = (dy/du) * (du/dx)4.高阶导数:如果f'(x)存在,则f''(x)表示f'(x)的导数,称为f(x)的二阶导数。
同理,f''(x)的导数称为f(x)的三阶导数,以此类推。
5.基本积分法则:- 恒等积分:∫(c dx) = c*x + C- 幂函数积分:∫(x^n dx) = (1/(n+1)) * x^(n+1) + C- 自然指数函数积分:∫(e^x dx) = e^x + C- 对数函数积分:∫(1/x dx) = ln,x, + C6. 替换法则:如果∫(f(g(x)) g'(x) dx) 可以被积分,则∫(f(u) du) = ∫(f(g(x)) g'(x) dx)7. 定积分:∫[a,b] f(x) dx 表示函数 f(x) 在区间 [a,b] 上的定积分,表示曲线围成的面积。
8.收敛性和发散性:如果一个定积分存在有限的数值,那么它是收敛的;如果一个定积分没有有限的数值,那么它是发散的。
高数微积分基本公式大全

高数微积分基本公式大全1.导数的基本公式:-基本导数:(常数)' = 0, (x^n)' = nx^(n-1), (e^x)' = e^x, (a^x)' = a^xln(a), (ln(x))' = 1/x, (sin(x))' = cos(x),(cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x), (sec(x))' = sec(x)tan(x), (csc(x))' = -csc(x)cot(x).-乘法法则:(uv)' = u'v + uv'.-除法法则:(u/v)' = (u'v - uv') / v^2.-链式法则:(f(g(x)))' = f'(g(x)) * g'(x).2.不定积分的基本公式:-基本积分:∫(k) dx = kx + C, ∫(x^n) dx =(1/(n+1))x^(n+1) + C, ∫(e^x) dx = e^x + C, ∫(1/x) dx =ln(|x|) + C, ∫(sin(x)) dx = -cos(x) + C, ∫(cos(x)) dx =sin(x) + C.-分部积分:∫(uv') dx = uv - ∫(u'v) dx.-特殊积分:∫(1/(1+x^2)) dx = arctan(x) + C,∫(1/(sqrt(1-x^2))) dx = arcsin(x) + C.3.微分方程的基本公式:-一阶线性微分方程:dy/dx + P(x)y = Q(x),解为y = e^(-∫P(x)dx) * (∫Q(x)e^(∫P(x)dx)dx + C).-齐次方程:dy/dx = f(y/x),令v = y/x,化为可分离变量的形式求解.-常系数线性齐次微分方程:ay'' + by' + cy = 0,其特征方程为ar^2 + br + c = 0,解为y = C1e^(r1x) + C2e^(r2x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义(定积分)
设函数f (x )是定义在闭区间[a ,b ]上的连续函数,用n + 1个分点
a = x 0 < x 1 < x 2 < … < x n – 1 < x n = b
把闭区间[a ,b ]划分成n 个小区间
[x 0,x 1],[x 1,x 2],…,[x i – 1,x i ],…,[x n – 1,x n ]
记各小区间[x i – 1,x i ](i = 1,2,…,n )的长度为Δx i = x i - x i – 1,在各小区间[x i – 1,x i ]内任取一点ξi ,取函数值f (ξi )与小区间长度Δx i 的乘积f (ξi )Δx i ,作和式
n n i i n i i i
x f x f x f x f x f Δ)(Δ)(Δ)(Δ)(Δ)(22111ξξξξξ+++++=∑=
称为函数f (x )在区间[a ,b ]上的积分和。
记各小区间的最大长度为d = max{Δx i },如果对于区间
[a ,b ]任意的划分和点ξi 在[x i – 1,x i ]上的任意取法,当d → 0时,积分和的极限存在,则称此极限为函数f (x )在区间[a ,b ]上的定积分,简称积分,记为
∑⎰=→=n
i i i d b
a x x f x x f 10Δ)(lim d )( 其中⎰为积分号,[a ,
b ]称为积分区间,f (x )称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限。
如果函数f (x )在区间[a ,b ]上的积分存在,则称f (x )在[a ,b ]上可积。
上述定义中的积分限要求a < b ,实际上这个限制可以解除,补充两条规定:
(1)当a = b 时,规定0d )(=⎰a
a x x f ; (2)当a >
b 时,规定⎰⎰-=a
b b a x x f x x f d )(d )(。
可以看出,这两条规定是合理的,其中第一条规定也可以根据第二条推出。
定理1(可积的必要条件)
如果函数f (x )在闭区间[a ,b ]上的可积,则f (x )在[a ,b ]上有界。
定理2(可积的充分条件)
1.如果函数f (x )在闭区间[a ,b ]上的连续,则f (x )在[a ,b ]上可积。
2.如果函数f (x )在闭区间[a ,b ]上的单调,则f (x )在[a ,b ]上可积。
3.如果在闭区间[a ,b ]内除去有限个不连续点外,函数f (x )有界,则f (x )在[a ,b ]上可积。
引理(微分中值定理)
设函数f (x )在闭区间[a ,b ]内连续,在开区间(a ,b )内可导,则至少存在一点ξ∈(a ,b ),成立等式
f (b ) − f (a ) = f'(ξ)(b − a )
以上结论称为微分中值定理,等式称为微分中值公式。
设函数f (x )在闭区间[a ,b ]内连续,则可以证明f (x )在[a ,b ]上可积,于是存在新的函数F (x ),成立微分关系F'(x ) = f (x )或d F (x ) = f (x )d x ,则称F (x )为f (x )的一个原函数。
试利用微分中值定理和定积分的定义证明微积分基本公式
)()()(d )(a F b F x F x x f b
a b
a -==⎰ 这个公式又称为牛顿-莱布尼茨公式。
证明:
因为f (x )在[a ,b ]上可积,f (x )的原函数F (x )存在,即F'(x ) = f (x ),又因为可导函数必定连续,所以F (x )在[a ,b ]内连续,因此F (x )在[a ,b ]内满足微分中值定理的条件。
对于定义中区间[a ,b ]任意的划分,在各小区间[x i – 1,x i ](i = 1,2,…,n )上,函数F (x )也满足微分中值定理的条件,于是必定存在ξi ∈[x i – 1,x i ],成立等式
F (x i ) - F (x i – 1) = F'(ξi )(x i − x i – 1)
即
F (x i ) − F (x i − 1) = f (ξi )Δx i
对于每一个小区间[x i – 1,x i ](i = 1,2,…,n ),以上等式都成立,将各个小区间内的上述等式左右两边分别相加,可以得到
F (x 1) − F (x 0) + F (x 2) − F (x 1) + … + F (x i ) − F (x i – 1) + … + F (x n – 1) − F (x n – 2) + F (x n ) − F (x n – 1) =
f (ξ1)Δx 1 + f (ξ2)Δx 2 + … + f (ξi )Δx i + … + f (ξn – 1)Δx n – 1 + f (ξn )Δx n
即
i n
i i n x f x F x F Δ)()()(10∑==-ξ
令d = max{Δx i } → 0,以上等式两边分别取极限
i n
i i d n d x f x F x F Δ)(lim )]()([lim 1000∑=→→=-ξ 等式的左边F (x n ) − F (x 0) = F (b ) − F (a )是常数,极限显然存在
)()()]()([lim 00
a F
b F x F x F n d -=-→ 等式的右边正是积分和的极限,因为f (x )在[a ,b ]上可积,所以此极限存在,于是根据定积分的定义,f (x )在[a ,b ]上的定积分存在,即
⎰∑==→b
a n i i i d x x f x x f d )(Δ)(lim 10 于是就得到
)()(d )(a F b F x x f b
a -=⎰
这就是微积分基本公式,表明了定积分与原函数之间的联系。
习惯上将F (b ) − F (a )简写成b
a x F )(,于是微积分基本公式可以写成 )()()(d )(a F
b F x F x x f b
a b
a -==⎰ 此外,利用f (x )的不定积分(C 为任意常数)
C x F x x f +=⎰)(d )(
微积分基本公式还可以表示为
()b a
b
a x x f x x f ⎰⎰=d )(d )( 此式表明了定积分与不定积分之间的联系。