物理实验报告用分光计和透射光栅测光波波长修订版

合集下载

大学物理实验教案用透射光栅测定光波波长

大学物理实验教案用透射光栅测定光波波长

大学物理实验教案实验名称:用透射光栅测定光波波长 实验目的:1、理解光栅衍射的基本原理与特点;2、掌握分光仪、光栅的调节要求与方法,掌握各步调节的目的和实现的判据;3、认识光栅光谱的分布规律,并能正确判别衍射光谱的级次;4、利用光栅测定光栅常量、光波波长。

实验仪器:分光计 透射光栅双面反射镜 汞灯 实验原理:若以单色平行光束垂直照射光栅,通过每个狭缝的光都会发生衍射,这些衍射光又在一些特殊方向上被透镜会聚于焦平面上一点后,因干涉加强而型成各级亮线,如图1,若衍射角为φ的光束经透镜会聚后互相加强,则角φ必须满足关系式,...)3,2,1,0(,sin =±=k k d k λϕ即光程差必须等于光波长的整数倍。

式中λ为单色光波长,k 是亮条纹级次,ϕk 为k 级谱线如果入射光是复色光,由于各色光的波长各不相同,则由公式(41-1)可以看出,其衍射角k ϕ也各不相同,经过光栅后,复色光被分解为单色光。

在中央0=k ,0=k ϕ 位置处,各色光仍将重叠在一起,形成0级亮条纹。

而在中央亮条纹两侧,各种波长的单色光产生各自对应的谱线,同级谱线组成一个光带,这些光带的整体叫做衍射光谱。

如图所示,它们对称地分布在中央亮条纹的两侧。

1、 测量光栅常数用汞灯光谱中的绿线(546.07nm λ=)作为已知波长测量光栅常数d 。

测量公式sin kk d λϕ=2、 测量波长用上面求出的光栅常数,测量光谱线的波长。

测量公式sin kd kϕλ=3. 光栅的角色散角色散是光栅的重要参数,它表示单位波长间隔内两单色谱线之间的角距离。

汞灯光谱中双黄线的波长差之差λ∆=2.06nm ,两条谱线偏向角之差ϕ∆和两者波长之差λ∆之比:λϕ∆∆=D 对光栅方程微分可有ϕλϕcos d kD =∆∆=由上式可知,光栅光谱具有如下特点:光栅常数d 越小,色散率越大;高级数的光谱比低级数的光谱有较大的色散率。

实验内容1、光栅的调节(1)调节分光计,使望远镜对准无穷远,望远镜轴线与分光计中心轴线相垂直,平行光管出射平行光。

物理实验教案:用透射光栅测定光栅常数和光波波长

物理实验教案:用透射光栅测定光栅常数和光波波长
(2)调节步骤 ①参照图 1,简要的介绍分光计的基本构造以及各部件的功能和调节方法; ②目测粗调“三垂直”; ③调叉丝对目镜聚焦:打开电源,让照明小灯照亮望远镜视场。旋转目镜同时眼 睛从目镜中观察,直至看到叉丝变清晰,此时叉丝正好位于目镜的焦平面上;
④调望远镜对无穷远聚焦;
图 1 分图光2 计分光计

题 用透射光栅测定光栅常数和光波波长
1、用透射光栅测定光栅常数、光波波长和光栅角色散;
教 学 目 的 2、加深对光栅分光原理的理解;
3、进一步熟悉分光计的使用方法。
重 难 点 1、用透射光栅测定光栅常数和光波波长;
2、分光计的调节和使用。
教 学 方 法 实验室教学,讲授、讨论、实验操作相结合。

时 4 学时
U AD2 S D2
5
(iD2 D2 )2
i 1Βιβλιοθήκη 5(5 1)U BD2
仪 3
1 23
U D2
U2 AD 2
U
2 BD 2
UD2
(
D2 D2
)2U2D
2
D2 D2
kU
2 iD1左
iD1左(2) iD1左(-2)
2 iD1右
iD1右(2) iD1右(-2)
iD1
+ iD1左
iD1右
2
5
iD1
D1
i 1
5
D1
d
sin D1 k
2 iD2左
iD2左(2) iD2左(-2)
2 iD2右
iD2右(2) iD2右(-2)
一、实验仪器 分光计、平面透射光栅、手持照明放大镜,双面镜、日光灯、电源等。
二、实验原理 1、分光计的结构和工作原理(略) 2、测量原理 用平面透射光栅得到日光灯白光的夫朗和费衍射条纹,其中可以清晰的得到汞光

利用透射光栅测定光波波长

利用透射光栅测定光波波长

3—13利用透射光栅测定光波波长透射光栅是平面衍射光栅的一种。

平面衍射光栅,简称光栅,是利用多缝衍射原理使光发生色散的一种光学元件,它实际上是一组数目极多、平行等距、紧密排列的等宽狭缝。

通常分为透射光栅和平面反射光栅。

透射光栅是用金刚石刻刀在平面玻璃上刻许多平行线制成的,被刻划的线是光栅中不透光的间隙。

而平面反射光栅则是在磨光的硬质合金上刻许多平行线。

实验室中通常使用的光栅是由上述原刻光栅复制而成的,一般每毫米约250~600条线。

60年代以来,随着激光技术的发展又制出了全息光栅。

由于光栅衍射条纹狭窄细锐,分辨本领比棱镜高,所以常用光栅作摄谱仪、单色仪等光学仪器的分光元件,来测定谱线波长、研究光谱的结构和强度等,另外光栅还应用于计量、光通信和信息处理等方面。

一、[实验仪器]分光计、平面透射光栅、汞灯二、[实验原理]若以波长为λ的单色平行光垂直照射在光栅平面上,则透过各狭缝的光因衍射将向各个方向传播,经透镜会聚后相互干涉,并在透镜焦平面上某些位置形成细而亮的明条纹。

明条纹由光栅方程决定λθk d =sin (1)式中b a d +=为光栅常数,a 为光栅每条狭缝的宽度,b 为刻痕宽度,k 为明条纹的级数() 2,1,0±±=k ,θ是第k 级明条纹的衍射角,如图3—13—1所示。

如果入射光不是单色光,由光栅方程可以看出,对于同一级谱线,复色光的波长不同,因而其衍射角θ也各不相同,于是复色光将被分解,而在中央0=k ,0=θ处,复色光仍然重叠在一起,形成中央明条纹。

在中央明条纹两侧对称地分布着() 2,1,0±±=k 级光谱,各级光谱都按波长的大小依次排成一组彩色谱线,称为光栅光谱,如图3—13—1所示。

若已知光栅常数d ,用分光计测出第k 级光谱中某一明条纹的衍射角θ,则可根据光栅方程计算出该明条纹所对应的单色光的波长。

反之,若已知入射光的波长,用分光计测出衍射角θ,即可求出光栅常数。

光栅测波长实验报告

光栅测波长实验报告

竭诚为您提供优质文档/双击可除光栅测波长实验报告篇一:光栅衍射实验报告4.10光栅的衍射【实验目的】(1)进一步熟悉分光计的调整与使用;(2)学习利用衍射光栅测定光波波长及光栅常数的原理和方法;(3)加深理解光栅衍射公式及其成立条件。

【实验原理】衍射光栅简称光栅,是利用多缝衍射原理使光发生色散的一种光学元件。

它实际上是一组数目极多、平行等距、紧密排列的等宽狭缝,通常分为透射光栅和平面反射光栅。

透射光栅是用金刚石刻刀在平面玻璃上刻许多平行线制成的,被刻划的线是光栅中不透光的间隙。

而平面反射光栅则是在磨光的硬质合金上刻许多平行线。

实验室中通常使用的光栅是由上述原刻光栅复制而成的,一般每毫米约250~600条线。

由于光栅衍射条纹狭窄细锐,分辨本领比棱镜高,所以常用光栅作摄谱仪、单色仪等光学仪器的分光元件,用来测定谱线波长、研究光谱的结构和强度等。

另外,光栅还应用于光学计量、光通信及信息处理。

1.测定光栅常数和光波波长光栅上的刻痕起着不透光的作用,当一束单色光垂直照射在光栅上时,各狭缝的光线因衍射而向各方向传播,经透镜会聚相互产生干涉,并在透镜的焦平面上形成一系列明暗条纹。

如图1所示,设光栅常数d=Ab的光栅g,有一束平行光与光栅的法线成i角的方向,入射到光栅上产生衍射。

从b点作bc垂直于入射光cA,再作bD垂直于衍射光AD,AD与光栅法线所成的夹角为?。

如果在这方向上由于光振动的加强而在F处产生了一个明条纹,其光程差cA+AD必等于波长的整数倍,即:d?sin??sini??m?(1)在光栅法线两侧时,(1)式括号内取负号。

如果入射光垂直入射到光栅上,即i=0,则(1)式变成:图1光栅的衍射式中,?为入射光的波长。

当入射光和衍射光都在光栅法线同侧时,(1)式括号内取正号,dsin?m?m?(2)这里,m=0,±1,±2,±3,…,m为衍射级次,?m第m级谱线的衍射角。

图2衍射光谱的偏向角示意图图3光栅衍射光谱2.用最小偏向角法测定光波波长如图2所示,波长为?的光束入射在光栅g上,入射角为i,若与入射线同在光栅法线n一侧的m级衍射光的衍射角为沪,则由式(1)可知d?sin??sini??m?(3)若以△表示入射光与第m级衍射光的夹角,称为偏向角,i(4)显然,△随入射角i而变,不难证明??i时△为一极小值,记作?,称为最小偏向角。

分光计实验报告现象

分光计实验报告现象

一、实验目的本次实验旨在通过使用分光计对光栅进行测量,得出准确的光栅常数,并能够掌握使用分光计及其相关测量技术。

通过观察光栅的衍射光谱,掌握用分光计和透射光栅测光波波长的方法。

二、实验原理1. 光栅原理:光栅是一种分光元件,它可以将不同波长的光分开并形成明亮细窄的谱线。

光栅分透射光栅和反射光栅两类,本实验采用透射光栅。

2. 光栅方程:当一束平行光垂直地投射到光栅平面上时,透过每一狭缝的光都会发生单缝衍射,同时透过所有狭缝的光又会彼此产生干涉。

光栅衍射光谱的强度由单缝衍射和缝间干涉两因素共同决定。

3. 衍射角:凡衍射角满足以下条件的衍射光在该衍射角方向上将会得到加强而产生明条纹,其它方向的光将全部或部分抵消。

4. 光波波长:当测出第k级明纹的衍射角,光栅常数d已知,就可用光栅方程计算出待测光波波长。

三、实验仪器1. 分光计2. 透射光栅3. 钠光灯4. 白炽灯四、实验内容与步骤1. 调节分光计(1)调整望远镜:使望远镜聚焦于无穷远,观察望远镜中的分划板刻度线清晰。

(2)调整平行光管:使平行光管发出平行光,观察望远镜中的分划板刻度线。

(3)调整望远镜光轴垂直主轴:使望远镜光轴与平行光管光轴垂直。

2. 测量光栅常数(1)将透射光栅固定在载物台上。

(2)调整望远镜光轴与光栅平面垂直。

(3)观察光栅衍射光谱,记录第k级明纹的衍射角。

(4)根据光栅方程计算光栅常数。

3. 测量光波波长(1)调整钠光灯,使其发出单色光。

(2)调整望远镜光轴与光栅平面垂直。

(3)观察光栅衍射光谱,记录第k级明纹的衍射角。

(4)根据光栅方程和已知的光栅常数计算光波波长。

五、实验现象与分析1. 光栅常数测量实验中,我们通过调节望远镜光轴与光栅平面垂直,观察光栅衍射光谱,记录第k级明纹的衍射角。

根据光栅方程计算得到光栅常数。

实验结果显示,光栅常数与理论值相符,说明实验方法正确。

2. 光波波长测量实验中,我们通过调整钠光灯,使其发出单色光,观察光栅衍射光谱,记录第k级明纹的衍射角。

用透射光栅测定光波波长(教材版)

用透射光栅测定光波波长(教材版)

用透射光栅测定光波的波长实验目的1、加深对光栅分光原理的理解;2、用透射光栅测定光栅常量,光波波长和光栅角色散;3、了解分光汁的结构,学习正确调节和使用分光计的方法。

实验仪器分光计,平面透射光栅,汞灯,单缝(宽度可调)实验原理1. 分光计的结构分光计主要由平行光管、望远镜、载物台和读数装置四部分组成,其结构如图1所示。

平行光管用来发射平行光,望远镜用来接收平行光,载物台用来放置三棱镜、平面镜、光栅等物体,读数装置用来测量角度。

图1 分光计结构图149°+22ˊ→149°22ˊ 149°30ˊ+14ˊ→149°44ˊ图 2 角游标的读数示例分光计上有许多调节螺丝,它们的代号、名称和功能见下表:代号名称功能1 平行光管光轴水平调节螺丝调节平行光管光轴的水平方位(水平面上方位调节)2 平行光管光轴高低调节螺丝调节平行光管光轴的倾斜度(铅直面上方位调节)3 狭缝宽度调节手轮调节狭缝宽度(0.02~2.00mm)4 狭缝装置固定螺丝松开时,调平行光;调好后锁紧,以固定狭缝装置5 载物台调平螺丝(3只)台面水平调节(本实验中,用来调平面镜和三棱镜折射面平行于中心轴。

)6 载物台固定螺丝松开时,载物台可单独转动、升降,锁紧后,使载物台与游标盘固联7 叉丝套筒固定螺丝松开时,叉丝套筒可自由伸缩、转动(物镜调焦);调好后锁紧,以固定叉丝套筒8 目镜调焦轮目镜调焦用(调节8,可使视场中叉丝清晰)9 望远镜光轴高低调节螺丝调节望远镜光轴的倾斜度(铅直面上方位调节)10 望远镜光轴水平调节螺丝(在图后侧)调节望远镜光轴的水平方位(水平面上方位调节)11 望远镜微调螺丝(在图后侧)在锁紧13后,调11可使望远镜绕中心轴微动12 刻度盘与望远镜固联螺丝松开l2,两者可相对转动;锁紧12,两者固联,才能一起转动13 望远镜止动螺丝(在图后侧)松开13,可用手大幅度转动望远镜;锁紧13,微调螺丝11才起作用14 游标盘微调螺丝锁紧l5后,调l4可使游标盘作小幅度转动15 游标盘止动螺丝松开15,游标盘能单独作大幅度转动;锁紧15,微调螺丝14才起作用分光计的读数装置由刻度盘和游标盘两部分组成。

南昌大学分光计调整及光栅测量实验报告

南昌大学分光计调整及光栅测量实验报告

南昌大学分光计调整及光栅测量实验报告南昌大学物理实验报告课程名称:大学物理实验I(下)实验名称:分光计调整及光栅常数测量学院:专业班级:学生姓名:学号:实验地点:基础实验室大楼311 座位号:实验时间:2016-12-3第12周星期五8、9、10节用透射光栅测量光栅常数,光波波长。

熟悉分光计的使用方法。

二、实验原理:.分光计光线入射到光学元件上,由于反射或折射等作用,使光线产生偏离,分光计就是用来测量入射光与出射光之间偏离角度的一种仪器。

要测定此角,必须满足两个条件:入射光与出射光均为平行光;入射光、出射光以及反射面或折射面的法线都与分光计的刻度盘平行。

为此,分光计上装有能造成平行光的平行光管、观察平行光的望远镜及放置光学元件的载物台,它们都装有调节水平的螺钉。

为了读出测量时望远镜转过的角度,配有与望远镜连接在一起的刻度盘,如图4-1所示。

各部分别介绍如下:读数装置。

在底座19的中央固定一中心轴,度盘22和游标盘21套在中⑶望远镜。

阿贝自准直望远镜8安装在支臂14上,支臂和转座20固定在一起套在度盘上。

当松开制动螺钉16时,转座和度盘可以相对转动,当旋紧此制钉,转座和度盘一起旋转。

旋紧制动架18与底座上的制动螺钉17时,借助于此和制动架4与游标盘的制动螺钉25时,借助于立柱23的调节螺钉24可以对载物台进行微调。

放松载物台锁紧螺钉时,载物台可根据需要升高或降低。

调到所需位置后,再把锁紧螺钉锁紧。

载物台有三只调平螺钉6,可用来调节载物台面,使之与旋转主轴垂直。

照明。

外接6.3V电源,插头插在底座的插座上,经导电环通到转座的插座上,望远镜系统的照明器插头与之相接,这样可以避免望远镜系统旋转时电线.光栅光栅是由许多等宽度a(透光部分)、等间距b(不透光部分)的平行缝组成的一种分光元件。

当波长为λ的单色光垂直照射在光栅面上时,则透过各狭缝的光线因衍射将向各方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一系列间距不同的明条纹。

普通物理实验-分光计和光栅

普通物理实验-分光计和光栅

四、棱镜折射率的测量
min时,n
sin
1 2
( min
sin 1 A
A)
2
➢ 将三棱镜放置到载物台上,转动望远镜寻找彩色线光谱;
➢ 以测量绿光的最小偏向角为例:固定望远镜,转动游标盘,使绿
光向偏向角减小的方向移动,千万别移出视野;固定游标盘,转
动望远镜,使绿光移到视野中央;再固定望远镜,转动游标盘,
细调:二分之一调节法
望远
镜调视节望远镜调节螺丝
野中
调节离自己最近的平 台调节螺丝
(3).将平面镜转过90°, 如图所示放置。转动游标盘(连载 物台),使平面镜某一面(A面或B面)正对望远镜,在 中找出绿十字像,然后单独调节载物台下的水平调节螺钉 a,使平面镜反射回来的绿十字像位于分划板上交叉点上。 这样载物台平面法线基本上与分光计旋转主轴重合。 注意: ①、平面镜须拿起以后转过90°放置,不得在载物平台上转动。 ②、若在平面镜中找不到反射回来的绿十字像,只须耐心调节载物台下的水平调节螺 钉a即可。
2
彩光读数 φ2左 φ2右
白光读数 φ1左 φ1右
计算最小 偏向角度
δmin
折射率n (保留小数 点后四位)
画出光谱相对位置
黄1 7.8333 187.7667
50.9583
黄2 绿 蓝
7.7833 7.4333 6.6500
187.7500 187.4167 186.6167
58.75 00
238. 7667
404.9 435.6
578.1 579.8
用度、分表示
表3
表3:汞灯光谱的研究
dsinφk=kλ
衍射-1级
衍射+1级
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理实验报告用分光计和透射光栅测光波波长
Document number:PBGCG-0857-BTDO-0089-PTT1998
物理实验报告《用分光计和透射光栅测光波波长》
【实验目的】
观察光栅的衍射光谱,掌握用分光计和透射光栅测光波波长的方法。

【实验仪器】
分光计,透射光栅,钠光灯,白炽灯。

【实验原理】
光栅是一种非常好的分光元件,它可以把不同波长的光分开并形成明亮细窄的谱线。

光栅分透射光栅和反射光栅两类,本实验采用透射光栅,它是在一块透明的屏板上刻上大量相互平行等宽而又等间距刻痕的元件,刻痕处不透光,未刻处透光,于是在屏板上就形成了大量等宽而又等间距的狭缝。

刻痕和狭缝的宽度之和称为光栅常数,用d 表示。

由光栅衍射的理论可知,当一束平行光垂直地投射到光栅平面上时,透过每一狭缝的光都会发生单缝衍射,同时透过所有狭缝的光又会彼此产生干涉,光栅衍射光谱的强度由单缝衍射和缝间干涉两因素共同决定。

用会聚透镜可将光栅的衍射光谱会聚于透镜的焦平面上。

凡衍射角满足以下条件
k = 0,±1,±2, (10)
的衍射光在该衍射角方向上将会得到加强而产生明条纹,其它方向的光将全部或部分抵消。

式(10)称为光栅方程。

式中d为光栅的光栅常数,θ为衍射角,λ为光波波长。

当k=0时,θ= 0得到零级明纹。

当k = ±1,±2 …时,将得到对称分立在零级条纹两侧的一级,二级… 明纹。

实验中若测出第k级明纹的衍射角θ,光栅常数d已知,就可用光栅方程计算出待测光波波长λ。

【实验内容与步骤】
1.分光计的调整
分光计的调整方法见实验1。

2.用光栅衍射测光的波长
(1)要利用光栅方程(10)测光波波长,就必须调节光栅平面使其与平行光管和望远镜的光轴垂直。

先用钠光灯照亮平行光管的狭缝,使望远镜目镜中的分划板上的中心垂线对准狭缝的像,然后固定望远镜。

将装有光栅的光栅支架置于载物台上,使其一端对准调平螺丝a ,一端置于另两个调平螺丝b、c的中点,如图12所示,旋转游标盘并调节调平螺丝b 或c ,当从光栅平面反射回来的“十”字像与分划板上方的十字线重合时,如图13所示,固定游标盘。

· · · ·
图12 光栅支架的位置图13 分划板
(2)调节光栅刻痕与转轴平行。

用钠光灯照亮狭缝,松开望远镜紧固螺丝,转动望远镜可观察到0级光谱两侧的±1、±2 级衍射光谱,调节调平螺丝a (不得动b、c)使两侧的光谱线的中点与分划板中央十字线的中心重合,即使两侧的光谱线等高。

重复(1)、(2)的调节,直到两个条件均满足为止。

(3)测钠黄光的波长
① 转动望远镜,找到零级像并使之与分划板上的中心垂线重合,读出刻度盘上对径方向上的两个角度θ0和θ0/,并记入表4 中。

② 右转望远镜,找到一级像,并使之与分划板上的中心垂线重合,读出刻度盘上对径方向上的两个角度θ右和θ右/,并记入表4中。

③ 左转望远镜,找到另一侧的一级像,并使之与分划板上的中心垂线重合,读出刻度盘上对径方向上的两个角度θ左和θ左/,并记入表4中。

3.观察光栅的衍射光谱。

将光源换成复合光光源(白炽灯)通过望远镜观察光栅的衍射光谱。

【注意事项】
1.分光计的调节十分费时,调节好后,实验时不要随意变动,以免重新调节而影响实验的进行。

2.实验用的光栅是由明胶制成的复制光栅,衍射光栅玻璃片上的明胶部位,不得用手触摸或纸擦,以免损坏其表面刻痕。

3.转动望远镜前,要松开固定它的螺丝;转动望远镜时,手应持着其支架转动,不能用手持着望远镜转动。

【数据记录及处理】
表4 一级谱线的衍射角
零级像位置
左传一级像
位置
偏转角
右转一级像
位置
偏转角
偏转角平均值
光栅常数
钠光的波长λ0 = 589·3 nm
根据式(10) K=1,λ= d sin 1=
相对误差
【思考题】
1.什么是最小偏向角如何找到最小偏向角
2.分光计的主要部件有哪四个分别起什么作用
3.调节望远镜光轴垂直于分光计中心轴时很重要的一项工作是什么如何才能确保在望远镜中能看到由双面反射镜反射回来的绿十字叉丝像
4.为什么利用光栅测光波波长时要使平行光管和望远镜的光轴与光栅平面垂直
5.用复合光源做实验时观察到了什么现象,怎样解释这个现象。

相关文档
最新文档