第一章 空间几何体
高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
(完整word版)人教A版高中数学必修2知识点

必修2知识点归纳第一章 空间几何体1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
简单组合体的构成形式:一种是由简单几何体拼接而成,例如课本图1.1-11中(1)(2)物体表示的几何体; 一种是由简单几何体截去或挖去一部分而成,例如课本图1.1-11中(3)(4)物体表示的几何体。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
1、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。
(1)定义:正视图:光线从几何体的前面向后面正投影得到的投影图; 侧视图:光线从几何体的左面向右面正投影得到的投影图; 俯视图:光线从几何体的上面向下面正投影得到的投影图。
几何体的正视图、侧视图和俯视图统称为几何体的三视图。
(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''xOy∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;一般地,原图的面积是其直观图面积的22倍,即22S S 原图直观=4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R lr S ⋅⋅+⋅⋅=ππ侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体;()13V h S S S S =+⋅+下下台体上上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。
高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h为棱柱的高) 2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
必修2_第一章__空间几何体

必修2第一章空间几何体〖1.1〗空间几何体的结构(1)空间几何体的概念我们只考虑物体的形状和大小,不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.我们高中学习的空间几何体主要有多面体与旋转体两大类. (2)多面体的概念一般地,我们把由若干个平面多边形围成的几何体叫做多面体•高中学习的多面体主要有棱柱、棱锥、棱台•①棱柱:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱②棱锥:一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.③棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台•(3)旋转体的概念我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体•这条定直线叫做旋转体的轴•①圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱•②圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥•③圆台:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台④球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球•棱柱与圆柱统称为柱体,棱锥与圆锥统称为锥体,棱台与圆台统称为台体(4)简单组合体的构成简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;另一种是由简单几何体截去或挖去一部分而成•〖1.2〗空间几何体的三视图与直观图(1)中心投影与平行投影我们把光由一点向外散射形成的投影,叫做中心投影;我们把在一束平行光线照射・・■・・■■・・■!■■■!■■ 丿下形成的投影,叫做平.行投影.._.在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影.我们可以用平行投影的方法,画出空间几何体的三视图和直观图.(2)空间几何体的三视图三视图分为从前往后看得到的正视图(主视图)、从左往右看得到的侧视图(左视图)、从上往下看得到的俯视图.(3)空间几何体的直观图我们常用斜二测画法画几何体的直观图,斜二测画法是一种特殊的平行投影画法.画直观图时掌握原有图形中横向长度不变,纵向长度变成一半,竖向长度不变,横向与纵向的直角变成45°.〖1.3〗空间几何体的表面积与体积(1)柱体、锥体、台体的表面积柱体、锥体、台体的表面积是由底面积与侧面积两部分组成.①棱柱表面积:是由两个全等多边形的底面积与多个平行四边形的侧面积组成.②棱锥表面积:是由一个多边形的底面积与多个三角形的侧面积组成.③棱台表面积:是由两个相似多边形的底面积与多个梯形的侧面积组成.④圆柱表面积:是由两个全等圆的底面积与侧面展开图为矩形的侧面积组成. S表2 r2 2 rl (其中r为底面圆半径,I为母线长).⑤圆锥表面积:是由一个圆的底面积与侧面展开图为扇形的侧面积组成.S表r2 rl (其中r为底面圆半径,I为母线长),且侧面展开图扇形的中心角⑥圆台表面积:是由两个相似圆的底面积与侧面展开图为扇环的侧面积组成.S表r2r2(r r)l (其中r为上底面圆半径,r为下底面圆半径,I为母线长).⑦球表面积:S表4 R2(其中R为球半径).(2)柱体、锥体、台体的体积①柱体: 包括棱柱与圆柱. V柱体Sh (S为底面积,h为柱体高)②锥体: 包括棱锥与圆锥. V锥体gh3(S为底面积,.SS S)hh为锥体高)③台体: 包括棱台与圆台. V台体-(S3(S , S分别为上、下底面面积,h为台体高)④球体:4 3V球 4 R.第二章点、直线、平面之间的位置关系〖2.1〗空间点、直线、平面之间的位置关系(1)平面的基本性质:公理1,公理2,公理3及其推论1, 2, 3①公理1 :如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.②公理2:如果两个平面有一个公共点,那么它们还有其它公共点,这些公共点的集合是一条直线.③公理3 :经过不在同一条直线上的三点有且只有一个平面.(2)公理的运用 ① 证明共面问题证明共面问题,一般有两种证法,一是由某些元素确定一个平面,再证明其余元素在这个平面内.二是分别由不同元素确定若干个平面,再证明这些平面重合. 通常证明这些点都在两个平面的交线上, 即先确定出某两点 再证明第三点是两个平面的公共点, 那它当然必在两个平面先证两条直线交于一点, 再证明第三条直线经过这点, 把问 题转化为证明点在直线上的问题. (3)空间两条直线的位置关系① 空间两条不重合的直线有三种位置关系:相交、平行、异面. ② 公理4 :平行于同一条直线的两条直线平行. ③ 等角定理:对应边平行且方向相同的两个角相等. (4)异面直线① 定义:不同在任何 一个平面内的两条直线是异面直线. ② 证明异面直线的方法 依据定义采用反证法,假设共面. ③ 求异面直线所成角的方法平移法:通过平移直线,把异面问题转化为共面问题来解决(主要通过中位线、平行 四边形来平移直线).(5) 直线与平面的位置关系①直线在平面内②直线与平面相交③直线与平面平行注意:直线和平面相交、直线和平面平行统称为直线在平面外,记作 |(6) 平面与平面的位置关系①两个平面平行 ②两个平面相交.公理1 公理2 推论1:经过一条直线和这条直线外一点有且只有一个平面. 推论2:经过两条相交直线有且只有一个平面. 公理3推论3:经过两条平行直线有且只有一个平面.推论1 推论2 推论3② 证明三点共线问题 证明空间三点共线问题, 在某两个平面的交线上, 的交线上.③ 证明三线共点问题 证明空间三线共点问题,『2.2〗直线、平面平行的判定及其性质判定:①ba②a性质:①aa baa bb门//性质:①a ab ②ac a判定:①a , bap|b A(1直线与平面平行的判定与性质定理(2)平面与平面平行的判定与性质定理a //下鱼制造b下鱼制造『2.3〗直线、平面垂直的判定及其性质,a b flb,a(2)三垂线定理及其逆定理(不必掌握)定理:POPA^ AaA a OAa OA a PA(1)直线与平面垂直的判定与性质定理m , nb a④b a bbb②aPA逆定理:PAp|下鱼制造② A a, A aa实际是以该直线为轴的一个旋转,通过对翻折问题的研究,可以进一步发展空间想象能力. ②求翻折问题的基本方法是: 先比较翻折前后的图形, 弄清哪些量和位置关系在翻折过程中不变,哪些已发生变化,然后将不变的条件集中到立体几何中, 将问题归结为一个条件与结论均明朗化的立几问题.③ 把平面图形翻折成空间图形后的有关计算问题,必须抓住在翻折过程中点、 线、面之间的位置关系、数量关系中,哪些是变的,哪些不变,特别要抓住不变量. 一般地, 在同一个半平面内的几何元素之间的关系是不变的, 涉及到两个半平面内的几何元素之间的关系是变的.④ 另外,在解题中还须注意:因折叠所形成的是一个二面角图形, 而大多数问题都与 这个二面角有关,所以必须以折叠前后的一些不变垂直关系为依据, 找出或作出二面角的平面角.⑤ 在处理几何体(翻折后)中线面之间的关系时,要充分利用折叠前平面图形,在平 面图形中,各元素的数量关系和位置关系易于观察和计算.(5) 几何体的展开 几何体的展开,是平面图形翻折的逆过程,常用此法求两点间的最短距离.(3) 平面与平面垂直的判定与性质定理②依定义,二面角的平面角90性质:①, ba ,a b(4)处理翻折的基本方法①将平面图形沿直线翻折成立体图形,。
高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。
空间点线面之间位置关系知识点总结

高中空间点线面之间位置关系知识点总结第一章空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。
4.斜二测法:在坐标系'''x o y中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。
重点记忆:直观图面积=原图形面积(三)空间几何体的表面积与体积1、空间几何体的表面积①棱柱、棱锥的表面积:各个面面积之和②圆柱的表面积③圆锥的表面积2S rl rππ=+④圆台的表面积22S rl r Rl Rππππ=+++⑤球的表面积24S Rπ=⑥扇形的面积公式213602n RS lrπ==扇形(其中l表示弧长,r表示半径)2、空间几何体的体积①柱体的体积V S h=⨯底②锥体的体积13V S h=⨯底③台体的体积1)3V S S h=+⨯下上(④球体的体积343V Rπ=第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
必修2第1章空间几何体
洋2贮乐新知1:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,如面ABCD ;相邻两个面的公共边叫多面体的棱,如棱AB ;棱与棱的公共点叫多面体的顶点,如顶点、课前准备(预习教材P2~ P4,找出疑惑之处)引入:小学和初中我们学过平面上的一些几何图形如直线、三角形、长方形、圆等等,现实生活中,我们周围还存在着很多不是平面上而是“空间”中的物体,它们占据着空间的一部分,比如粉笔盒、足球、易拉罐等.如果只考虑这些物体的形状和大小,那么由这些物体抽象出来的空间图形叫做空间几何体.它们具有千姿百态的形状,有着不同的几何特征,现在就让我们来研究它们吧!二、新课导学探探索新知探究1:多面体的相关概念问题:观察下面的物体,注意它们每个面的特点,以及面与面之间的关系.你能说出它们相同点吗?新知2:由一个平面图形绕它所在平面内的一条定直线旋转所形成的圭寸闭几何体叫旋转体,这条定直线叫旋转体的轴.如下图的旋转体:A.具体如下图所示:1. 感受空间实物及模型,增强学生的直观感知;2. 能根据几何结构特征对空间物体进行分类;3. 理解多面体的有关概念;4. 会用语言概述棱柱、棱锥、棱台的结构特征亠学习过程§ 1.1.1棱柱、棱锥、棱台的结构探究2:旋转体的相关概念问题:仔细观察下列物体的相同点是什么?轴新知6:有一个面是多边形,其余各个面都是有一 个公共顶点的三角形,由这些面所围成的几何体叫 做棱锥(pyramid ).这个多边形面叫做棱锥的 底面或 底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公 共边叫做棱锥的侧棱•顶点到底面的距离叫做棱锥 的高;棱锥也可以按照底面的边数分为三棱锥(四 面体)、四棱锥…等等,棱锥可以用顶点和底面各顶 点的字母表示,如下图中的棱锥S ABCDE .新知3: —般地,有两个面互相平行,其余各面都 是四边形,并且每相邻两个四边形的公共边都互相 平行,由这些面所围成的几何体叫做 棱柱(prism ). 棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的 侧面;相邻侧面的公共边 叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱 的顶点•(两底面之间的距离叫棱柱的高)试试1:你能指出探究 3中的几何体它们各自的 底、侧面、侧棱和顶点吗?你能试着按照某种标准 将探究3中的棱柱分类吗?新知4:①按底面多边形的边数来分,底面是三角 形、四边形、五边形…的棱柱分别叫做 三棱柱、四棱柱、五棱柱… 探究5:棱台的结构特征问题:假设用一把大刀能把金字塔的上部分平行地 切掉贝U 切掉的部分是什么形状 ?剩余的部分呢?②按照侧棱是否和底面垂直,棱柱可分为 斜棱柱(不垂直)和 直棱柱(垂直).新知7:用一个平行于棱锥底面的平面去截棱锥, 底面与截面之间的部分形成的几何体叫做棱台(frustum of a pyramid ).原棱锥的底面和截面分别叫做棱台的下底面和上底面.其余各面是棱台的 侧面, 相邻侧面的公共边叫 侧棱,侧面与两底面的公共点 叫顶点俩底面间的距离叫 棱台的高.棱台可以用上、 下底面的字母表示,分类类似于棱锥.新知5:我们用表示底面各顶点的字母表示棱柱, 如图⑴中这个棱柱表示为棱柱 ABCD — ABCD .,它具有什么样的几何特征呢?试试2:探究3中有几个直棱柱?几个斜棱柱?棱 柱怎么表示呢?问题:你能归纳下列图形共同的几何特征吗傢2贮乐试试3:请在下图中标出棱台的底面、侧面、侧棱、顶点,并指出其类型和用字母表示出来•探知识拓展1. 平行六面体:底面是平行四边形的四棱柱;2. 正棱柱:底面是正多边形的直棱柱;3. 正棱锥:底面是正多边形并且顶点在底面的射影是底面正多边形中心的棱锥;4. 正棱台:由正棱锥截得的棱台叫做正棱台反思:根据结构特征,从变化的角度想一想,棱柱、棱台、棱锥三者之间有什么关系?探典型例题例由棱柱的定义你能得到棱柱下列的几何性质吗?①侧棱都相等,侧面都是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形•仿照棱柱,棱锥、棱台有哪些几何性质呢?探自我评价你完成本节导学案的情况为().A.很好B.较好C. 一般D.较差探当堂检测(时量:5分钟满分:10分)计分:1. 一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成().A .棱锥B .棱柱C.平面D.长方体2. 棱台不具有的性质是().A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点三、总结提升探学习小结1.多面体、旋转体的有关概念; 棱柱},面体},D={直四棱柱},则().E={棱柱}, F={直平行六A. A B C D F EB. A C B F D EC.C A B D F E3.已知集合A={正方体}, B={长方体}, C={正四2.棱柱、棱锥、棱台的结构特征及简单的几何性质D.它们之间不都存在包含关系4.长方体三条棱长分别是AA 11 AB12, AD 4 , 则从A 点出发,沿长方体的表面到C '的最短矩离是.5. ___________________________________ 若棱台的上、下底面积分别是25和81,高为4, 则截得这棱台的原棱锥的高为 ______________________________________ .1. 已知正三棱锥 S-ABC 的高S01h,斜高(侧面三角 形的高)SM1 n ,求经过 SO 的中点且平行于底面的 截面△ A i B i C i 的面积.•分.....学习目标1. 感受空间实物及模型,增强学生的直观感知;2. 能根据几何结构特征对空间物体进行分类;3. 能概述圆柱、圆锥、圆台台体、球的结构特征;4. 能描述一些简单组合体的结构.丄 学习过程•in ■ ■ ■ ■ j J ■ ■ ■ 11 J ■ ■ ■ U、课前准备(预习教材P 5~ P 7,找出疑惑之处)2. 在边长a 为正方形 ABCD 中,E 、F 分别为AB 、 BC 的中点,现在沿 DE 、DF 及EF 把厶ADE 、△ CDF 和厶BEF 折起,使 A 、B 、C 三点重合,重合 后的点记为P .问折起后的图形是个什么几何体?复习:① ___________________________________ 叫多面体, __________________________________________________ 叫旋转体.②棱柱的几何性质: ___________是对应边平行的全等 多边形,侧面都是 ____________ ,侧棱 ______ 且 ____ ,平 行于底面的截面是与 __________ 全等的多边形;棱锥的 几何性质:侧面都是 _________ ,平行于底面的截面与底面 ______ ,其相似比等于 ______________ .引入:上节我们讨论了多面体的结构特征,今天我 们来探究旋转体的结构特征.1课后作业§ 1.1.2圆柱、圆锥、圆台、球及 简单组合体的结构特征它每个面的面积是多少?AE B。
2.2第一章 空间几何体
第一章 空间几何体(一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。
2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:对于棱长为a正四面体的问题可将它补成一个边长为a 22的正方体问题。
高一_数学_下_第一章_空间几何体_讲解
1. 常见公式正方体的表面积S a =62;正方体的体积V a =3;长方体的表面积S ab bc ca =++2();长方体的体积V abc =; 棱柱的体积V Sh =;棱锥的体积V Sh =13; 棱台的体积V S SS S h =++13('');圆柱的表面积S r rh =+222ππ; 圆柱的体积V Sh r h ==π2; 圆锥的侧面积S rl =π; 圆锥的体积V Sh r h ==13132π; 圆台的侧面积S r r l =+π('); 圆台的体积V S SS S h r rr r h =++=++131322('')('')π; 球的表面积S R =42π; 球的体积V R =433π。
2. 割补思想在多面体体积问题中的体现 有时为了计算某些多面体的体积,往往将多面体分割成两个或多个特殊的多面体(如三棱锥),然后使用公式分别计算;有时也将多面体补成特殊的多面体(如正方体、长方体或三棱锥等),然后使用公式分别计算出补成的多面体的体积和补添部分的体积,做差可得要求多面体的体积。
3. 等体积法用来解决点到直线的距离构造一个三棱锥。
所求的点到平面的距离为三棱锥的高,设为h ,与之相对应的底面面积可求,此三棱锥的另一组底面面积及高也可求,便可以利用体积相等,得到一个关于h 的方程。
通过解方程就可以计算出点到平面的距离。
【解题方法指导】例1. 已知如图所示,正方体ABCD A B C D -1111中,E 、F 、G 分别为AB 、BB 1、BC 上的点,BE=BG=2,BF=3,AA 1=4。
求三棱锥D 1—EFG 的体积。
D C11H思路:为求三棱锥的体积,我们往往先找一个易于计算的底面,再考虑它上面的高,三棱锥D EFG 1-的四个面中没有一个面与正方体的面重合,进一步分析后发现,△EFG 为等腰三角形,由已知条件可以求出它的三边的长,可进而求出面积,但底面EFG 上的高既不好作也不好算,于是考虑进行等积变形,使△EFG 不变,而将点D 1,在与平面EFG 平行的直线上平移,将D 1平移到一个特殊的位置。
高一数学课件—第一章 空间几何体
解析 作出图形的轴截面如图所示,点 O 即为该球的 球心,线段 AB 即为长方体底面的对角线,长度为 a2+2a2 = 5a,线段 BC 即为长方体的高,长度为 a,线段 AC 即为 长方体的体对角线,长度为 a2+ 5a2= 6a,则球的半径 R=A2C= 26a,所以球的表面积 S=4πR2=6πa2.
ห้องสมุดไป่ตู้
2.做一做(请把正确的答案写在横线上) (1)表面积为 4π 的球的半径是____1____.
4π (2)直径为 2 的球的体积是____3____. (3)(教材改编,P28,T3)已知一个球的体积为43π,则此球 的表面积为___4_π___.
3.(教材改编,P27,例 4)若球的过球心的圆面圆周长是 c,
解 由三视图可知该几何体的下部是棱长为 2 的正方 体,上部是半径为 1 的半球,该几何体的表面积为
S=12×4π×12+6×22-π×12=24+π. 该几何体的体积为 V=23+12×43π×13=8+23π.
拓展提升
(1)由三视图求球与其他几何体的简单组合体的表面积 和体积,关键要弄清组合体的结构特征和三视图中数据的含 义.
A.4π B.8π C.12π D.20π
解析 由该几何体的三视图知,它是由一个球和一个圆 柱组成,S 表=S 球+S 圆柱=4π×12+π×22×2+2π×2×2=4π +8π+8π=20π.
3.三个球的半径之比为 1∶2∶3,那么最大球的表面积 是其余两个球的表面积之和的( )
A.1 倍 B.2 倍 C.95倍 D.74倍
(2)半径和球心是球的关键要素,把握住这两点,计算球 的表面积或体积的相关题目也就易如反掌了.
【跟踪训练 1】 (1)两个球的半径相差 1,表面积之差
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
默认标题-2011年7月18日一、选择题(共12小题)1、下列说法中正确的是()A、棱柱的侧面可以是三角形B、正方体和长方体都是特殊的四棱柱C、所有的几何体的表面都能展成平面图形D、棱柱的各条棱都相等2、将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括()A、一个圆台、两个圆锥B、两个圆台、一个圆柱C、两个圆台、一个圆柱D、一个圆柱、两个圆锥3、如图,PA、PB、DE分别与⊙O相切,若∠P=40°,则∠DOE等于()度.A、40B、50C、70D、804、如图所示的直观图是将正方体模型放置在你的水平视线的左上角而绘制的,其中正确的是()A、B、C、D、5、长方体的高等于h,底面积等于S,过相对侧棱的截面面积为S′,则长方体的侧面积等于()√S″2+ℎ2•S B、2√2S″2+2ℎ2•SA、2√S″2+2ℎ2•S D、√S″2+2ℎ2•SC、26、设长方体的对角线长为4,过每个顶点的三条棱中总有两条棱与对角线的夹角为60°,则长方体的体积是()A、27√2B、8√2C、8√3D、167、棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S1、S2、S3,则()A、S1<S2<S3B、S3<S2<S1C、S2<S1<S3D、S1<S3<S28、正四面体的内切球球心到一个面的距离等于这个正四面体高的( )A 、12B 、13C 、14D 、159、若圆台两底面周长的比是1:4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( ) A 、1:16 B 、3:27C 、13:129D 、39:12910、(2004•广东)在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后,剩下的几何体的体积是( )A 、23B 、76C 、45D 、5611、(2005•广东)已知高为3的直棱柱ABC ﹣A 1B 1C 1的底面是边长为1的正三角形(如图),则三棱锥B 1﹣ABC 的体积为( )A 、14B 、12C 、√36D 、√3412、向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系如图,那么水瓶的形状是图中的( )A 、B 、C、D、二、填空题(共4小题)13、下列有关棱柱的说法:①棱柱的所有的面都是平的;②棱柱的所有的棱长都相等;③棱柱的所有的侧面都是长方形或正方形;④棱柱的侧面的个数与底面的边数相等;⑤棱柱的上、下底面形状、大小相等.正确的有_________.14、一个横放的圆柱形水桶,桶内的水占底面周长的四分之一,那么当桶直立时,水的高度与桶的高度的比为_________.15、一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为_________cm2.16、一圆台上底半径为5cm,下底半径为10cm,母线AB长为20cm,其中A在上底面上,B在下底面上,从AB中点M,拉一条绳子,绕圆台的侧面一周转到B点,则这条绳子最短长为_________cm.三、解答题(共6小题)17、画出图中两个几何体的三视图.18、在图中,M、N是圆柱体的同一条母线上且位于上、下底面上的两点,若从M点绕圆柱体的侧面到达N,沿怎么样的路线路程最短?19、倒圆锥形容器的轴截面是正三角形,内盛水的深度为6cm,水面距离容器口距离为1cm,现放入一个棱长为4cm的正方体实心铁块,让正方体一个面与水平面平行,问容器中的水是否会溢出?20、棱长为2cm的正方体容器盛满水,把半径为1cm的铜球放入水中刚好被淹没.然后再放入一个铁球,使它淹没水中,要使流出来的水量最多,这个铁球的半径应该为多大?21、小迪身高1.6m,一天晚上回家走到两路灯之间,如图所示,他发现自己的身影的顶部正好在A路灯的底部,他又向前走了5m,又发现身影的顶部正好在B路灯的底部,已知两路灯之间的距离为10m,(两路灯的高度是一样的)求:(1)路灯的高度.(2)当小迪走到B路灯下,他在A路灯下的身影有多长?22、如图在透明塑料做成的长方体容器中灌进一些水,固定容器的一边将其倾倒,随着容器的倾斜度不同,水的各个表面的图形的形状和大小也不同.试尽可能多地找出这些图形的形状和大小之间所存在的各种规律(不少于3种).答案与评分标准一、选择题(共12小题)1、下列说法中正确的是()A、棱柱的侧面可以是三角形B、正方体和长方体都是特殊的四棱柱C、所有的几何体的表面都能展成平面图形D、棱柱的各条棱都相等考点:棱柱的结构特征。
专题:阅读型。
分析:从棱柱的定义出发判断A、B、D的正误,找出反例否定C,即可推出结果.解答:解:棱柱的侧面都是四边形,A不正确;正方体和长方体都是特殊的四棱柱,正确;所有的几何体的表面都能展成平面图形,球不能展开为平面图形,C不正确;棱柱的各条棱都相等,应该为侧棱相等,所以D不正确;故选B点评:本题考查棱柱的结构特征,考查基本知识的熟练情况,是基础题.2、将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括()A、一个圆台、两个圆锥B、两个圆台、一个圆柱C、两个圆台、一个圆柱D、一个圆柱、两个圆锥考点:旋转体(圆柱、圆锥、圆台)。
专题:分类讨论。
分析:由等腰梯形的结构特点,我们可得等腰梯形较长的边可能是下底也可能是腰,分类讨论后,根据旋转体的定义,我们可以得到两种情况下旋转后得到结合体的组成,分析四个答案,易得到结论.解答:解:等腰梯形较长的边可能是下底也可能是腰当较长的边是下底时,等腰梯形线旋转一周所得的几何体包括,一个圆柱、两个圆锥当较长的边是腰时,等腰梯形线旋转一周所得的几何体包括,一个圆锥,一个圆台再挖掉一个圆锥故选:D点评:本题考查的知识点是旋转体的结构特征,熟练掌握旋转体的定义,熟练掌握旋转体的结构特征是解答本题的关键.3、如图,PA、PB、DE分别与⊙O相切,若∠P=40°,则∠DOE等于()度.A、40B、50C、70D、80考点:弦切角。
专题:证明题。
分析:连接OA、OB、OP,由切线的性质得∠AOB=140°,再由切线长定理求得∠DOE的度数.解答:解:连接OA、OB、OP,∵∠P=40°,∴∠AOB=140°,∵PA、PB、DE分别与⊙O相切,∴∠AOD=∠POD,∠BOE=∠POE,∴∠DOE=12∠AOB=12×140°=70°.故选C.点评:本题考查了弦切角定理和切线长定理,是基础知识,要熟练掌握.4、如图所示的直观图是将正方体模型放置在你的水平视线的左上角而绘制的,其中正确的是()A、B、C、D、考点:空间几何体的直观图。
专题:作图题。
分析:根据把模型放在水平视线的左上角绘制的特点,并且由几何体的直观图画法及主体图形中虚线的使用,得到结果.解答:解:根据把模型放在水平视线的左上角绘制的特点,并且由几何体的直观图画法及主体图形中虚线的使用,知A正确.故选A点评:本题考查空间几何体的直观图,考查直观图的画法,要弄清楚正方形模型所放置的位置,本题是一个最基础的题目.5、长方体的高等于h,底面积等于S,过相对侧棱的截面面积为S′,则长方体的侧面积等于()√S″2+ℎ2•S B、2√2S″2+2ℎ2•SA、2√S″2+2ℎ2•S D、√S″2+2ℎ2•SC、2考点:棱柱、棱锥、棱台的体积。
专题:计算题。
分析:设长方体的底面边长分别为a、b,表示出底面积等于S,过相对侧棱的截面面积为S′,然后求出侧面积.解答:解:设长方体的底面边长分别为a 、b ,过相对侧棱的截面面积S′=ℎ√a 2+b 2①,S=ab ②, 由①②得:(a+b )2=S′2ℎ2+2S , ∴a+b=√S′2ℎ2+2S ,S 侧=2(a+b )h=2h √S′2ℎ2+2S =2√S 2+2ℎ2S . 故选C点评:本题考查长方体的体积,考查空间想象能力,计算能力,是基础题.6、设长方体的对角线长为4,过每个顶点的三条棱中总有两条棱与对角线的夹角为60°,则长方体的体积是( )A 、27√2B 、8√2C 、8√3D 、16考点:棱柱的结构特征。
专题:计算题。
分析:本题可以利用长方体的结构特征,求出三个边的长度,求出体积即可.解答:解:先求出长方体的两条棱长为2、2,设第三条棱长为x ,由22+22+x 2=42得知x=2√2, ∴V=2×2×2√2=8√2.点评:本题考查学生对棱柱的结构的认识和利用,是基础题.7、棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S 1、S 2、S 3,则( )A 、S 1<S 2<S 3B 、S 3<S 2<S 1C 、S 2<S 1<S 3D 、S 1<S 3<S 2考点:棱锥的结构特征。
专题:计算题。
分析:根据“用平行于底面的平面截棱锥所得截面性质”,可利用截得面积之比就是对应高之比的平方,截得体积之比,就是对应高之比的立方(所谓“高”,是指大棱锥、小棱锥的高,而不是两部分几何体的高)求解.解答:解:∵S S 1=(21)2 ∴S 1=14S∵S S 2=21∴S 2=12S ∵(√S S 3)2=21 ∴S 3=1√43S∴S 1<S 2<S 3故选A .点评:本题主要考查棱锥的结构特征,特别考查了用平面分割几何体的问题,一般考查平行于底面,侧棱或侧面的问题,属常规题.8、正四面体的内切球球心到一个面的距离等于这个正四面体高的( )A 、12B 、13C 、14D 、15考点:棱锥的结构特征;点、线、面间的距离计算。
专题:综合题;数形结合。
分析:连接球心与正四面体的四个顶点.把正四面体分成四个高为r 的三棱锥,正四面体的体积,就是四个三棱锥的体积的和,求解即可.解答:解:球心到正四面体一个面的距离即球的半径r ,连接球心与正四面体的四个顶点. 把正四面体分成四个高为r 的三棱锥,所以4×13S•r=13•S•h ,r=14h .(其中S 为正四面体一个面的面积,h 为正四面体的高)答案:C .点评:主要考察知识点:简单几何体和球,考查计算能力,是基础题.9、若圆台两底面周长的比是1:4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( )A 、1:16B 、3:27C 、13:129D 、39:129考点:棱柱、棱锥、棱台的体积。
专题:常规题型。
分析:根据条件分别设上、下底面半径分别为r ,4r ,截面半径为x ,圆台的高为2h ,则有x ﹣r 3r =12,从而寻求到x 与r 的关系,再由圆台体积公式求解. 解答:解:由题意设上、下底面半径分别为r ,4r ,截面半径为x ,圆台的高为2h ,则有 x ﹣r 3r =12, ∴x=52r . ∴V上V 下=13πℎ(r 2+rx+x 2)13πℎ(x 2+4rx+16r 2)=39129.故选D 点评:本题主要考查圆台的结构特征及体积的求法,是常考类型,属中档题. 10、(2004•广东)在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后,剩下的几何体的体积是( )A 、23B 、76C 、45D 、56考点:组合几何体的面积、体积问题。