配方法解一元二次方程

合集下载

一元二次方程的解法(二)配方法(基础)

一元二次方程的解法(二)配方法(基础)

一元二次方程的解法(二)配方法—知识讲解(基础)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.【要点梳理】知识点一、一元二次方程的解法---配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1.用配方法解方程:2x2+3x﹣1=0.【思路点拨】首先把方程的二次项系数化为1,移项,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.【答案与解析】解:2x2+3x﹣1=0x2+x2+)x+x1=【点评】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行:(1)把形如ax2+bx+c=0(a≠0)的方程中二次项的系数化为1;(2)把常数项移到方程的右边;(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n≥0)的方程;(4)用直接开平方的方法解此题.举一反三:【变式】用配方法解方程.(1)x2-4x-2=0; (2)x2+6x+8=0.【答案】(1)方程变形为x2-4x=2.两边都加4,得x2-4x+4=2+4.利用完全平方公式,就得到形如(x+m)2=n的方程,即有(x-2)2=6.解这个方程,得x-2=或x-2=-.于是,原方程的根为x=2+或x=2-.(2)将常数项移到方程右边x2+6x=-8.两边都加“一次项系数一半的平方”=32,得 x2+6x+32=-8+32,∴ (x+3)2=1.用直接开平方法,得x+3=±1,∴ x=-2或x=-4.类型二、配方法在代数中的应用2.若代数式221078M a b a =+-+,2251N a b a =+++,则M N -的值( )A.一定是负数 B.一定是正数 C.一定不是负数 D.一定不是正数【答案】B ;【解析】(作差法)22221078(51)M N a b a a b a -=+-+-+++ 2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>.故选B.【点评】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.3.用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0. 【答案与解析】 解:﹣8x 2+12x ﹣5=﹣8(x 2﹣x )﹣5=﹣8[x 2﹣x+()2]﹣5+8×()2=﹣8(x ﹣)2﹣,∵(x ﹣)2≥0,∴﹣8(x ﹣)2≤0,∴﹣8(x ﹣)2﹣<0,即﹣8x 2+12﹣5的值一定小于0.【点评】利用配方法将代数式配成完全平方式后,再分析代数式值的符号. 注意在变形的过程中不要改变式子的值.举一反三:【高清ID 号:388499关联的位置名称(播放点名称):配方法与代数式的最值—例4变式1】【变式】求代数式 x 2+8x+17的最小值【答案】x 2+8x+17= x 2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴当(x+4)2=0时,代数式 x 2+8x+17的最小值是1.4.已知223730216b a a b -+-+=,求4a b -的值. 【思路点拨】解此题关键是把3716拆成91416+ ,可配成两个完全平方式. 【答案与解析】将原式进行配方,得2291304216b a a b ⎛⎫⎛⎫-++-+= ⎪ ⎪⎝⎭⎝⎭, 即2231024a b ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, ∴ 302a -=且104b -=, ∴ 32a =,14b =.∴ 3312222a -=-=-=-. 【点评】本题可将原式用配方法转化成平方和等于0的形式,进而求出a .b 的值.一元二次方程的解法(二)配方法—巩固练习(基础)【巩固练习】一、选择题1. (2015•滨州)用配方法解一元二次方程x 2﹣6x ﹣10=0时,下列变形正确的为( )A .(x+3)2=1B .(x ﹣3)2=1C .(x+3)2=19D .(x ﹣3)2=192.下列各式是完全平方式的是( )A .277x x ++B .244m m --C .211216n n ++ D .222y x -+ 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .3±D .以上都不对4.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-15.把方程x 2+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=26.用配方法解方程x 2+4x=10的根为( )A .2.-2..二、填空题7.(1)x 2+4x+ =(x+ )2;(2)x 2-6x+ =(x- )2;(3)x 2+8x+ =(x+ )2.8.若223(2)1x mx x ++=--,那么m =________.9.若226x x m ++是一个完全平方式,则m 的值是________.10.求代数式2x 2-7x+2的最小值为 .11.(2014•资阳二模)当x= 时,代数式﹣x 2﹣2x 有最大值,其最大值为 . 12.已知a 2+b 2-10a-6b+34=0,则的值为 .三、解答题13. 用配方法解方程(1) (2)221233x x +=14. (2014秋•西城区校级期中)已知a 2+b 2﹣4a+6b+13=0,求a+b 的值.15.已知a ,b ,c 是△ABC 的三边,且2226810500a b c a b c ++---+=.(1)求a ,b ,c 的值;(2)判断三角形的形状.【答案与解析】一、选择题1.【答案】D ;【解析】方程移项得:x 2﹣6x=10,配方得:x 2﹣6x+9=19,即(x ﹣3)2=19,故选D .2.【答案】C ; 【解析】211216n n ++214n ⎛⎫=+ ⎪⎝⎭. 3.【答案】C ;【解析】 若x 2+6x+m 2是一个完全平方式,则m 2=9,解得m=3±;4.【答案】A ;【解析】a 2-4a+5= a 2-4a+22-22+5=(a-2)2+1 ;5.【答案】C ;【解析】方程x 2+3=4x 化为x 2-4x=-3,x 2-4x+22=-3+22,(x-2)2=1.6.【答案】B ;【解析】方程x 2+4x=10两边都加上22得x 2+4x+22=10+22,x=-214二、填空题7.【答案】(1)4;2; (2)9;3; (3)16;4.【解析】配方:加上一次项系数一半的平方.8.【答案】-4;【解析】22343x mx x x ++=-+,∴ 4m =-.9.【答案】±3;【解析】2239m ==.∴ 3m =±.10.【答案】-338;【解析】∵2x 2-7x+2=2(x 2-72x )+2=2(x-74)2-338≥-338,∴最小值为-338, 11.【答案】-1,1【解析】∵﹣x 2﹣2x=﹣(x 2+2x )=﹣(x 2+2x+1﹣1)=﹣(x+1)2+1,∴x=﹣1时,代数式﹣x 2﹣2x 有最大值,其最大值为1;故答案为:﹣1,1.【解析】 -3x 2+5x+1=-3(x-56)2+3712≤3712,• ∴最大值为3712. 12.【答案】4.【解析】∵a 2+b 2-10a-6b+34=0∴a 2-10a+25+b 2-6b+9=0∴(a-5)2+(b-3)2=0,解得a=5,b=3,∴=4.三、解答题13.【答案与解析】(1)x 2-4x-1=0x 2-4x+22=1+22(x-2)2=5x-2=5 x 1=5x 2=5(2) 221233x x += 226x x +=2132x x += 222111()3()244x x ++=+ 2149()416x += 1744x +=± 132x = 22x =-14.【答案与解析】解:∵a 2+b 2﹣4a+6b+13=0,∴a 2﹣4a+4+b 2+6b+9=0,∴(a ﹣2)2+(b+3)2=0,∴a ﹣2=0,b+3=0,∴a=2,b=﹣3,∴a+b=2﹣3=﹣1.15.【答案与解析】(1)由2226810500a b c a b c ++---+=,得222(3)(4)(5)0a b c -+-+-= 又2(3)0a -≥,2(4)0b -≥,2(5)0c -≥,∴ 30a -=,40b -=,50c -=,∴ 3a =,4b =,5c =.(2)∵ 222345+= 即222a b c +=,∴ △ABC 是以c 为斜边的直角三角形.。

《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

知2-讲
(2) 移项,得
2x2-3x=-1.
x2
二次项系数化为1,得
3
1
x .
2
2
2
2
3
1 3
3
x x .
2
2 4
4
2
配方,得
2
3
1

x

=
.


4
16

3
1
x ,
4
4
由此可得
x1 1, x2
1
2
知2-讲
(3)移项,得
(1)当p>0时,方程(Ⅱ)有两个不等的实数根
x1=-n-
p ,x
2=-n+
p;
(2)当p=0时,方程(Ⅱ)有两个相等的实数根
x1=x2=-n;
(3)当p<0时,因为对任意实数x,都有(x+n)2≥0,
所以方程(Ⅱ)无实数根.
知2-练
1 用配方法解下列方程,其中应在方程左右两边同时 加上4的
是(
)
12.在实数范围内定义一种新运算“※”,其规则为a※b=a2-b2,根据这个规则求方程( 2x1 )※( -4 )=0的解.
解:根据新定义得( 2x-1 )2-( -4 )2=0,
即( 2x-1 )2=( -4 )2,
5
3
∴2x-1=±4,∴x1=2,x2=-2.
-41-
第二章
2.2 用配方法求解一元二次方程
2
3
1
A.x,-4
B.2x,-2
3
3
C.2x,D.x,2
2
C )
10.已知关于x的多项式-x2+mx+4的最大值为5,则m的值为( B )

一元二次方程配方法求最大值的方法总结

一元二次方程配方法求最大值的方法总结

一元二次方程配方法求最大值的方法总结一、确定变量和参数在一元二次方程中,通常设变量为x,参数为a、b、c。

其中,a、b、c为常数,且a≠0。

二、构建一元二次方程一元二次方程的标准形式为:ax^2 + bx + c = 0。

其中,a、b、c为已知参数,x为变量。

三、进行配方转换配方法是一元二次方程求解中的一种常用方法。

通过配方,将一元二次方程转化为完全平方的形式,从而简化求解过程。

具体的配方步骤如下:1. 将方程的常数项移到等号的右边:ax^2 + bx = -c2. 为了使用配方法,我们需要使左边成为一个完全平方项,所以需要加上(b/2a)^2,这样左边的式子就可以写成一个完全平方的形式了:ax^2 + bx + (b/2a)^2 = (b/2a)^2 - c3. 接下来,我们可以将左边的式子写成一个完全平方的形式:a(x + b/2a)^2 = (b^2/4a^2) - c4. 最后,我们得出方程的解为:x = [-b ±sqrt(b^2-4ac)] / (2a)四、求判别式并确定方程解的情况判别式Δ= b^2 - 4ac,根据判别式的值,我们可以确定方程解的情况:1. 当Δ> 0时,方程有两个不相等的实根;2. 当Δ= 0时,方程有两个相等的实根;3. 当Δ< 0时,方程没有实根,而是有两个共轭复根。

五、利用配方法求解最值当一元二次方程代表的是开口向上的抛物线时(即a > 0),我们可以利用配方法求出抛物线的最大值。

最大值出现在顶点处,顶点的横坐标即为方程的解。

而纵坐标即为所求的最值。

当抛物线开口向下时(即a < 0),我们可以利用配方法求出抛物线的最小值,最小值同样出现在顶点处。

1.2.2 一元二次方程的解法-配方法(解析版)

1.2.2 一元二次方程的解法-配方法(解析版)

1.2.2 一元二次方程的解法-配方法考点一.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式.考点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.题型1:配方法解一元二次方程1.用配方法解一元二次方程2620x x -+=,此方程可化为( )A .2(3)7x -=B .2(3)11x -=C .2(3)7x +=D .2(3)11x +=【答案】A 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后可得答案.2222()a ab b a b ±+=±【解析】解:2620x x -+=Q ,262x x \-=-,则26929x x -+=-+,即()237x -=,故选:A .【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.2.用配方法解一元二次方程23610x x +-=时,将它化为()2x a b +=的形式,则a b +的值为( )A .103B .73C .2D .433.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -=B .2890x x ++=化为2(4)25x +=C .22740t t --=化为2781416t æö-=ç÷èøD .23420x x --=化为221039x æö-=ç÷èø【答案】B【分析】根据配方的步骤计算即可解题.【解析】()2222890,89,816916,47x x x x x x x ++=+=-++=-++=故B 错误.且ACD 选项均正确,故选:B【点睛】考查了用配方法解一元二次方程,配方步骤:第一步平方项系数化1;第二步移项,把常数项移到右边;第三步配方,左右两边加上一次项系数一半的平方;第四步左边写成完全平方式;第五步,直接开方即可.4.关于y 的方程249996y y -=,用___________法解,得1y =__,2y =__.【答案】 配方 102 98-【分析】利用配方法解一元二次方程即可得.【解析】249996y y -=,24499964y y -+=+,2(2)10000y -=,2100y -=±,1002y =±+,12102,98y y ==-,故答案为:配方,102,98-.【点睛】本题考查了利用配方法解一元二次方程即可得,熟练掌握配方法是解题关键.5.用配方法解方程ax 2+bx +c =0(a ≠0),四个学生在变形时得到四种不同结果,其中配方正确的是( )A .2224()24b ac b x a a -+=B .2224()22b b ac x a a -+=C .2224()24b b ac x a a -+=D .2222()22b b ac x a a ++=6.用配方法解方程22103x x -+=,正确的是( )A .212251()1,,333x x x -===-B .224(),39x x -==C .238(29x -=-,原方程无实数解D .2()1839x -=-,原方程无实数解7.用配方法解下列方程:(1)2352x x -=;(2)289x x +=;(3)212150x x +-=;(4)21404x x --=;(5)2212100x x ++=;(6)()22040x px q p q ++=-³.8.ABC D 的三边分别为a 、b 、c ,若8+=b c ,21252bc a a =-+,按边分类,则ABC D 是______三角形【答案】等腰【分析】将8+=b c ,代入21252bc a a =-+中得到关系式,利用完全平方公式变形后,根据非负数的性质求出a 与c 的值,进而求出b 的值,即可确定出三角形形状.【解析】解:∵8+=b c ∴8b c =- ,∴()288bc c c c c =-=-+,∴2212528bc a a c c =-+=-+,即2212361680a a c c -+++-=,整理得:()()22640a c -+-=,∵()260a -³,()240c -³,∴60a -=,即6a =;40c -=,即4c =,∴844b =-=,则△ABC 为等腰三角形.故答案是:等腰.【点睛】此题考查了配方法的应用,非负数的性质,以及等腰三角形的判定,熟练掌握完全平方公式是解本题的关键.9.如果一个三角形的三边均满足方程210250x x -+=,则此三角形的面积是______10.已知三角形的三条边为,,a b c ,且满足221016890a a b b -+-+=,则这个三角形的最大边c 的取值范围是( )A .c >8B .5<c <8C .8<c <13D .5<c <13【答案】C【分析】先利用配方法对含a 的式子和含有b 的式子配方,再根据偶次方的非负性可得出a 和b 的值,然后根据三角形的三边关系可得答案.【解析】解:∵a 2-10a +b 2-16b +89=0,∴(a 2-10a +25)+(b 2-16b +64)=0,∴(a -5)2+(b -8)2=0,∵(a -5)2≥0,(b -8)2≥0,∴a -5=0,b -8=0,∴a =5,b =8.∵三角形的三条边为a ,b ,c ,∴b -a <c <b +a ,∴3<c <13.又∵这个三角形的最大边为c ,∴8<c <13.故选:C .【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.题型3:配方法的应用2-比较整式大小与求值问题11.若M =22x -12x +15,N =2x -8x +11,则M 与N 的大小关系为( )A .M ≥NB .M >NC .M ≤ND .M <N 【答案】A【解析】∵M=22x -12x +15,N=2x -8x +11,∴M-N=222222(21215)(811)2121581144(2)x x x x x x x x x x x -+--+=-+-+-=-+=- .∵2(2)0x -³,∴M-N ³0,∴M ³N.故选A.点睛:比较两个含有同一字母的代数式的大小关系时,当无法直接比较两者的大小关系时,可以通过求出两者的“差”,再看“差”的值是“正数”、“负数”或“0”来比较两者的大小.12.已知下面三个关于x 的一元二次方程2ax bx c 0++=,2bx cx a 0++=,2cx ax b 0++=恰好有一个相同的实数根a ,则a b c ++的值为( )A .0B .1C .3D .不确定【答案】A【分析】把x =a 代入3个方程得出a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,3个方程相加即可得出(a +b +c )(a 2+a +1)=0,即可求出答案.【解析】把x =a 代入ax 2+bx +c =0,bx 2+cx +a =0,cx 2+ax +b =0得:a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,相加得:(a +b +c )a 2+(b +c +a )a +(a +b +c )=0,13.已知实数m ,n ,c 满足2104m m c -+=,22112124n m m c =-++,则n 的取值范围是( )A .74n ³-B .74n >-C .2n ³-D .2n >-14.若x 为任意实数时,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是( )A .0c ³B .9c ³C .0c >D .9c >【答案】B【分析】把二次三项式进行配方即可解决.【解析】配方得:226(3)9x x c x c -+=--+∵2(3)0x -³,且对x 为任意实数,260x x c -+³∴90c -+³∴9c ³故选:B【点睛】本题考查了配方法的应用,对于二次项系数为1的二次三项式,加上一次项系数一半的平方,再减去这个数即可配成完全平方式.15.无论x 、y 取任何实数,多项式x 2+y 2-2x -4y+16的值总是_______数.【答案】正【解析】x 2+y 2-2x -4y +16=(x 2-2x +1)+(y 2-4y +4)-1-4+16=(x -1)2+(y -2)2+11,由于(x -1)2≥0,(y -2)2≥0,故(x -1)2+(y -2)2+11≥11,所以x 2+y 2-2x -4y +16的值总是正数.故答案为正.点睛:要证明一个式子的值总是正数,可以用配方法将式子写成多个非负数之和与一个正数的和的形式即可证明.16.不论x ,y 为什么数,代数式4x 2+3y 2+8x ﹣12y +7的值( )A .总大于7B .总不小于9C .总不小于﹣9D .为任意有理数【答案】C【分析】先将原式配方,然后根据偶次方的非负性质,判断出代数式的值总不小于−9即可.【解析】解:4x 2+3y 2+8x ﹣12y +7=4x 2+8x +4+3y 2−12y +3=4(x 2+2x +1)+3(y 2−4y +1)=4(x +1)2+3(y 2−4y +4−4+1)=4(x +1)2+3(y −2)2−9,∵(x +1)2≥0,(y −2)2≥0,∴4x 2+3y 2+8x ﹣12y +7≥−9.即不论x 、y 为什么实数,代数式4x 2+3y 2+8x ﹣12y +7的值总不小于−9.故选:C .【点睛】此题主要考查了配方法的应用,以及偶次方的非负性质的应用,要熟练掌握.解决本题的关键是掌握配方法.17.若12123y z x +--==,则x 2+y 2+z 2可取得的最小值为( )A .3B .5914C .92D .618.关于代数式12a a ++,有以下几种说法,①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a =③若2a >-,则12a a ++存在最小值且最小值为0.在上述说法中正确的是( )A .①B .①②C .①③D .①②③19.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b c p ++=,则其面积S =.这个公式也被称为海伦—秦九韶公式.若3p =,2c =,则此三角形面积的最大值是_________.20.已知y=x,y均为实数),则y的最大值是______.21.已知152a b c +--=-,则a b c ++=____________22.已知212y x x c =+-,无论x 取任何实数,这个式子都有意义,则c 的取值范围_______.【答案】c <−1【分析】将原式分母配方后,根据完全平方式的值为非负数,只需−c−1大于0,求出不等式的解集即可得到c 的范围.【解析】原式分母为:x 2+2x−c =x 2+2x +1−c−1=(x +1)2−c−1,∵(x +1)2≥0,无论x 取任何实数,这个式子都有意义,∴−c−1>0,解得:c <−1.故填:c <−1【点睛】此题考查了配方法的应用,以及分式有意义的条件,灵活运用配方法是解本题的关键.23.(1)设220,3a b a b ab >>+=,求a b a b+-的值.(2)已知代数式257x x -+,先用配方法说明:不论x 取何值,这个代数式的值总是正数;再求出当x 取何值时,这个代数式的值最小,最小值是多少?24.选取二次三项式2(0)ax bx c a ++¹中的两项,配成完全平方式的过程叫作配方.例如①选取二次项和一次项配方:2242(2)2x x x -+=--;②选取二次项和常数项配方:2242(4)x x x x -+=+-或2242((4x x x x -+=+-+;③选取一次项和常数项配方:22242x x x -+=-.根据上述材料解决下面问题:(1)写出284x x -+的两种不同形式的配方.(2)已知22330x y xy y ++-+=,求y x 的值.(3)已知a 、b 、c 为三条线段,且满足()222214(23)a b c a b c ++=++,试判断a 、b 、c 能否围成三角形,并说明理由.25.若实数x ,y ,z 满足x <y <z 时,则称x ,y ,z 为正序排列.已知x =﹣m 2+2m ﹣1,y =﹣m 2+2m ,若当m 12>时,x ,y ,z 必为正序排列,则z 可以是( )A .m 14+B .﹣2m +4C .m 2D .1A.甲B.乙C.丙D.丁故选:D .【点睛】本题考查了解一元二次方程,掌握配方法是解题的关键.7.代数式243x x -+的最小值为( ).A .1-B .0C .3D .5【答案】A【分析】利用配方法对代数式做适当变形,通过计算即可得到答案.【解析】代数式()2224344121x x x x x -+=-+-=--∵()220x -³,∴()2211x --³-即代数式2|431x x -+³-,故选:A .【点睛】本题考查了完全平方公式和不等式的知识;解题的关键是熟练掌握完全平方公式和不等式的性质,从而完成求解.8.已知625N m =-,22M m m =-(m 为任意实数),则M 、N 的大小关系为( )A .M N<B .M N >C .M N =D .不能确定【答案】B 【分析】求出M N -的结果,再判断即可.【解析】根据题意,可知()22226258169490M N m m m m m m -=--+=-++=-+>,所以M N >.故选:B .【点睛】本题主要考查了整式的加减运算,配方法的应用,掌握配方法是解题的关键.9.若22242021p a b a b =++++,则p 的最小值是( )A .2021B .2015C .2016D .没有最小值【答案】C【分析】将等式右边分组,配成两个完全平方式,即可根据平方的非负性进行解答.【解析】解:22242021p a b a b =++++2221442016a ab b =++++++()()2221442016a ab b =++++++()()22120162a b ++=++,∵()210a +³,()220b +³,∴p 的最小值为2016,故选:C .【点睛】本题主要考查了配方法的应用,解题的关键是将原式分组配方.10.新定义:关于x 的一元二次方程21()0a x m k -+=与22()0a x m k -+=称为“同族二次方程”.如22021(3)40x -+=与23(3)40x -+=是“同族二次方程”.现有关于x 的一元二次方程22(1)10x -+=与()()22480a x b x ++-+=是“同族二次方程”,那么代数式22021ax bx ++能取的最小值是( )A .2013B .2014C .2015D .2016【答案】D【分析】根据同族二次方程的定义,可得出a 和b 的值,从而解得代数式的最小值.【解析】解:22(1)10x -+=Q 与2(2)(4)80a x b x ++-+=为同族二次方程.22(2)(4)8(2)(1)1a x b x a x \++-+=+-+,22(2)(4)8(2)2(2)3a x b x a x a x a \++-+=+-+++,∴42(2)83b a a -=-+ìí=+î,解得:510a b =ìí=-î.∴()22220215102021512016ax bx x x x ++=-+=-+\当1x =时,22021ax bx ++取最小值为2016.故选:D .【点睛】此题主要考查了配方法的应用,解二元一次方程组的方法,理解同族二次方程的定义是解答本题的关键.二、填空题11.将一元二次方程2410x x -+=变形为()2x h k +=的形式为______三、解答题。

一元二次方程的解法(配方法)

一元二次方程的解法(配方法)

元二次方程的解法(配方法)[内容]教学目标(一)使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0, b≠0, c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;(二)在理的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;(三)在数学思想方法方面,使学生体会“转化”的思想和掌握配方法。

教学重点和难点重点:掌握用配方法配一元二次方程。

难点:凑配成完全平方的方法与技巧。

教学过程设计(一)复习1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)2.不完全一元二次方程的哪几种形式?(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))3.对于前两种不完全的一元二次方程ax2=0 (a≠0)和ax2+c=0 (a≠0),我们已经学会了它们的解法。

特别是结合换元法,我们还会解形如(x+m) 2=n(n≥0)的方程。

例解方程:(x-3) 2=4 (让学生说出过程)。

解:方程两边开方,得 x-3=±2,移项,得 x=3±2。

所以 x1=5,x2=1. (并代回原方程检验,是不是根)4.其实(x-3) 2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。

(把这个展开过程写在黑板上)(x-3) 2=4, ①x2-6x+9=4, ②x2-6x+5=0. ③(二)新课1.逆向思维我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m) 2=n的形式。

这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m) 2。

2.通过观察,发现规律问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。

(添一项+1)即 (x2+2x+1)=(x+1) 2.练习,填空:x2+4x+( )=(x+ ) 2; y2+6y+( )=(y+ ) 2.算理 x2+4x=2x·22的平方,y2+6y=y2+2y33的平方。

一元二次方程解法-配方法

一元二次方程解法-配方法

04 一元二次方程的配方法练 习
练习题一:简单的一元二次方程
总结词
方程
通过简单的方程,熟悉配方法的基本 步骤。
$x^2 - 6x + 9 = 0$
解法
将常数项移到等号右边,得到 $x^2 6x = -9$。为了使用配方法,我们需要 使左边成为一个完全平方三项式,所以 在方程的两边加上9(即一次项系数的 一半的平方),得到 $x^2 - 6x + 9 = 0$。现在左边是一个完全平方项,可 以写为 $(x-3)^2 = 0$。最后,我们通 过直接开平方法得到解 $x_1 = x_2 = 3$。
THANKS FOR WATCHING
感谢您的观看
配方
开方
化简
将方程左边化为一个完 全平方项,右边为一个
常数。
对方程两边同时开方, 得到一元一次方程的解。
解出一元一次方程的解 后,将其代入原方程进 行化简,得到最终解。
配方法解一元二次方程的实例
实例1
解方程 $x^2 - 6x + 9 = 0$,通过 配方得到 $(x - 3)^2 = 0$,解得 $x_1 = x_2 = 3$。
ห้องสมุดไป่ตู้注意开方的正负号
在开方时需要注意根的正 负号,以保证解的合理性。
注意解的检验
解出一元一次方程后,需 要将解代入原方程进行检 验,以确保解的正确性。
03 一元二次方程的配方法扩 展
配方法的推广
适用于所有一元二次方程
配方法不仅适用于标准形式的一元二 次方程,即$ax^2 + bx + c = 0$, 还可以应用于其他形式的一元二次方 程。
一元二次方程解法-配方法
目 录
• 一元二次方程的配方法概述 • 一元二次方程的配方法应用 • 一元二次方程的配方法扩展 • 一元二次方程的配方法练习

一元二次方程的解法,配方法,因式分解法

一元二次方程的解法,配方法,因式分解法

一元二次方程的解法-配方法、因式分解法(复习)一元二次方程解法回顾:1、直接开平方法;(2x-6)2=62、配方法;(方程各项系数比较简单可以考虑用配方法来做)3、公式法;x=aac b b 242-±-(ac b 42-0≥) 4、因式分解法。

(能直接因式分解)因式分解的几种方法:提公因式法、运用公式法、十字相乘法.一、配方法例题分析:1、配方法步骤:(1)化二次项系数为:两边同除以二次项系数;(2)移项:使方程左边只有二次项和一次项;(3)配方:等号两边都加上一次项系数一半的平方;(4)变形为(x+m)2=n 的形式,如果n≥0,得x+m=±n ,x=-m±n .所以x 1=-m+n ,x 2=-m-n 。

2、理论依据:222)(2b a b ab a ±=+±3、例题讲解:(1)41x 2+1=x (配方法)(2)用配方法解关于x 的一元二次方程ax 2+bx+c=0(a≠0,a,b,c 为常数),(3)、试说明代数式-3x2_x-121的值不大于0(4)x2+y 2+2x-4y+5=0,则.x y =__________(5)已知:a,b,c ,是△ABC 的三边,且满足0222=---++ac bc ab c b a ,求证△ABC 是等边三角形类题演练、(1)2x2-4x-3=0.(用配方法)(2)求证:不论m 为何值,解关于x 的一元二次方程x2+(m-1)x+m-3=0总有两个不等实数根(3)4x2+4xy+|x-1|+y2=0,则2x-y=________中考链接、(2009•资阳)已知关于x的一元二次方程x2+kx-3=0.(1)求证:不论k为何实数,方程总有两个不相等的实数根;(2)当k=2时,用配方法解此一元二次方程二、因式分解法例题分析1、因式分解法解一元二次方程步骤①将一元二次方程化成一般形式,即方程右边为0,(ax2+bx+c=0)②将方程左边式子分解因式,由一元二次方程转化成两个一元一次方程。

一元二次方程 配方法

一元二次方程 配方法
解:移项, x2+10x=-9 配方, x2+10x+25=16 (2)x2-x- =0 ; 解:移项, x2-x=
7 4
7
配方,
(x-
x2- 4
4
+
1 4
(x+5) 2=16 x+5=±4 方程的两个根为 x1=-1,x2=-9
XX1=
方程的两个根为
1
1 2 ) =2 2 1 =±2 2
课后作业 P17 2题 3题(1)(2)
p ①当p>0时,则 x n ,方程的两个根为
x1 n p, x2 n p
②当p=0时,则(x+n)2=0,x+n=0,开平方得方程的两个根为
x1=x2=-n.
③当p<0时,则方程(x+n)2=p 无实数根.
课堂练习
用配方法解下列方程. (1)x2+10x+9=0;
降次
(x+3)2=5
左边写成 x2+6x+9=-4+9 完全平方式
解一次方程
回忆完全平方公式 a2±2ab+b2=(a±b)2 思考:为什么要在x2+6x=-4两边加9而不是其他数? 因为两边加9,式子左边可以恰好凑成完全平方式.
通过配成完全平方形式 来解一元二次方程的方 法,叫做配方法。
练一练
2
+ 2 ,
x 2=
1
2
- 2
(3)x2+4x-9=2x-11 解:化简移项, x2+2x=-2
配方, x2+2x+1=-1
(x+1)2=-1
因为实数的平方不可能是负数,原方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 配方法
要点感知1 通过配成完全平方形式来解一元二次方程的方法,叫做______法.
预习练习1-1 下列各式是完全平方式的是( )
A.a 2+7a+7
B.m 2-4m-4
C.x 2-12x+161
D.y 2-2y+2
要点感知2 如果一元二次方程通过配方能化成(x+n)2=p 的形式,那么(1)当p>0时,方程有______的实数根,
______;(2)当p=0时,方程有两个相等的实数根______;(3)当p<0,方程______.
预习练习2-1 若(2x-1)2=9,则2x-1=______,所以______或______.所以x 1=______,x 2=______.
2-2解方程:2x 2-3x-2=0.为了便于配方,我们将常数项移到右边,得2x 2-3x=2;再把二次项系数化为1,得x 2-
23x=1;然后配方,得x 2-23x+(43)2=1+(43)2;进一步得(x-43)2=16
25,解得方程的两个根为______.
知识点1 配方
1.若x 2+6x+m 2是一个完全平方式,则m 的值是( )
A.3
B.-3
C.±3
D.以上都不对
2.若方程x 2-mx+4=0的左边是一个完全平方式,则m 等于( )
A.±2
B.±4
C.2
D.4
3.用适当的数填空:
(1)x 2-4x+______=(x-______)2;
(2)m 2±______m+4
9=(m ±______)2. 4.(吉林中考)若将方程x 2+6x=7化为(x+m)2=16,则m=______.
知识点2 用配方法解方程
5.(聊城中考)用配方法解一元二次方程ax 2+bx+c=0(a ≠0),此方程可变形为( )
A.(x+a b 2)2=2
244a ac b - B.(x+a b 2)2=2244a b ac - C.(x-a b 2)2=2244a ac b - D.(x-a b 2)2=22
44a
b a
c - 6.(兰州中考)用配方法解方程x 2-2x-1=0时,配方后得的方程为( )
A.(x+1)2=0
B.(x-1)2=0
C.(x+1)2=2
D.(x-1)2=2
7.用配方法解下列方程:
(1)x 2-4x-2=0;
(2)2x 2-3x-6=0; (3)32x 2+3
1x-2=0.
8.用配方法解一元二次方程x 2+6x-11=0,则方程可变形为( )
A.(x+3)2=2
B.(x-3)2=20
C.(x+3)2=20
D.(x-3)2=2
9.用配方法解方程x 2-3
2x+1=0,正确的是( )
A.(x-32)2=1,x 1=35,x 2=-31
B.(x-32)2=94,x=2
32± C.(x-23)2=98-,原方程无实数解 D.(x-3
1
)2=98-,原方程无实数解 10.若方程4x 2-(m-2)x+1=0的左边是一个完全平方式,则m 等于( )
A.-2
B.-2或6
C.-2或-6
D.2或-6
11.已知方程x 2-6x+q=0可以配方成(x-p)2=7的形式,那么x 2-6x+q=2可以配方成下列的( )
A.(x-p)2=5
B.(x-p)2=9
C.(x-p+2)2=9
D.(x-p+2)2=5
12.用配方法解下列方程:
(1)2x 2+7x-4=0; (2)x 2-2x-6=x-11;
(3)x(x+4)=6x+12; (4)3(x-1)(x+2)=x-7.
13.(河北中考)嘉淇同学用配方法推导一元二次方程ax 2+bx+c=0(a ≠0)的求根公式时,对于b 2-4ac>0的情况,她是这样做的:
由于a ≠0,方程ax 2+bx+c=0变形为:
x 2+
a
b x=-ca,第一步 x 2+a b x+(a b 2)2=-a
c +(a b 2)2,第二步 (x+a b 2)2=a
ac b 442-,第三步 x+a b 2=a
ac b 242-(b 2-4ac>0),第四步 x=a
ac b b 242-+-.第五步 (1)嘉淇的解法从第四步开始出现错误;事实上,当b 2-4ac>0时,方程ax 2+bx+c=0(a ≠0)的求根公式是x=______
(2)用配方法解方程:x 2-2x-24=0.
14.若要用一根长20厘米的铁丝,折成一个面积为16平方厘米的矩形方框,则应该怎样折呢?
挑战自我
15.(葫芦岛中考)有n 个方程:x 2+2x-8=0;x 2+2×2x-8×22=0;……;x 2+2nx-8n 2=0.
小静同学解第1个方程x 2+2x-8=0的步骤为:“①x 2+2x=8;②x 2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x 1=4,
x 2=-2.”
(1)小静的解法是从步骤______开始出现错误的;
(2)用配方法解第n 个方程x 2+2nx-8n 2=0.(用含n 的式子表示方程的根)
参考答案
第2课时 配方法
要点感知1 配方
预习练习1-1 C
要点感知2 (1)两个不相等,x 1=-n-p ,x 2=-n+p ;(2)两个相等,x 1=x 2=-n ;(3)无实数根. 预习练习2-1 ±3,2x-1=3或2x-1=-3.x 1=2,x 2=-1.
2-2 (x-43)2=1625,x 1=2,x 2=-2
1.
1.C
2.B
3.(1)4,2 (2)3,23
4.3.
5.A
6.D
7.(1)(x-2)2=6; x 1=6+2,x 2=-6+2. (2)(x-43)2=1657; x 1=4573+,x 2=4
573-. (3)(x+
41)2=1649; x 1=23,x 2=-2.
8.C
9.D 10.B 11.B 12.(1)(x+47)2=16
81; x 1=21,x 2=-4; (2)(x-23)2=-411; 原方程无实数解;
(3)(x-1)2=13; x 1=1+13,x 2=1-13;
(4)(x+31
)2=-9
2; 原方程无实数解. 13(1)a
ac b b 242-±-. (2)方程x 2-2x-24=0变形,得x 2-2x=24,x 2-2x+1=24+1, (x-1)2=25,x-1=±5,x=1±5,
所以x 1=-4,x 2=6.
14.设折成的矩形的长为x厘米,则宽为(10-x)厘米,由题意,得
x(10-x)=16.
解得x1=2,x2=8.
∴矩形的长为8厘米,宽为2厘米.
挑战自我
15.(1)⑤;
(2)x2+2nx-8n2=0,x2+2nx=8n2,
x2+2nx+n2=8n2+n2,(x+n)2=9n2,
x+n=±3n,x=-n±3n,
∴x1=-4n,x2=2n.。

相关文档
最新文档