4 线性方程组

合集下载

(完整版)线性代数第四章线性方程组试题及答案

(完整版)线性代数第四章线性方程组试题及答案

第四章 线性方程组1.线性方程组的基本概念(1)线性方程组的一般形式为:其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足当每个方程中的未知数x 用k i 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解. b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只有零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. (2) 线性方程组的其他形式 线性方程组除了通常的写法外,还常用两种简化形式: 向量式 x 1α1+x 2α2+…+n x n α= β, (齐次方程组x 1α1+x 2α2+…+n x n α=0).即[]n a a ,,a 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21=β 全部按列分块,其中β,,21n a a a 如下⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=121111m a a a α ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=222122m a a a α,………,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn n n n a a a 21α, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β 显然方程组有解的充要条件是向量β可由向量组n ααα,,21 线性表示。

矩阵式 AX =β,(齐次方程组AX =0).⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β其中A 为m n ⨯矩阵,则:① m 与方程的个数相同,即方程组AX =β有m 个方程; ② n 与方程组的未知数个数相同,方程组AX =β为n 元方程。

高等数学线性代数线性方程组教学ppt(4)

高等数学线性代数线性方程组教学ppt(4)

1.2 高斯消元法
对线性方程组消元的三种变换(统称为线性方程组 的初等变换):
(1)交换方程组中某两个方程的位置; (2)以非零常数k乘以方程组中某个方程; (3)用数k乘以方程组中某个方程后加到另一个方程 上去.
定理1 线性方程组经过初等变换后得到的新方程组 与原方程组同解.
例1
解线性方程组
R( A) n;
(2)若R(A) n 1,则 A 0, AA* A E O,
由例5知:R( A) R( A*) n, R( A*) n R( A) n (n 1) 1, 即R( A*) 1.
另一方面,由于R(A) n 1, 因此A存在n 1阶非零子式,即A* O, 从而R( A*) 1.
R( A*) 1;
任一解都可以表示为
x 0 k11 knrnr ,
其中k1, , knr R. 即,当R(A) R(A | b)时,有
Ax b的通解
Ax b的一个特解 Ax 0的通解.
行阶梯形矩阵对应的方程组,叫行阶梯 形方程组;
行阶梯形方程组中,每个方程的第一个 未知量称为主未知量(主变量),其余变量叫 自由未知量(自由变量);
用消元法解线性方程组,就是用初等行 变换将方程组的增广矩阵化为行阶最简形, 得到的行阶梯方程组与原方程组同解.
例2 求解非齐次方程组的通解
x1 x1
3.设0是Ax b的某个解(称为特解),则Ax b 的任一个解向量都可表示成0与对应的 Ax 0的解之和,即有
0 .
证 :由于 0 ( 0 ),记 0,由性质1知 是导出组Ax 0的解,则 0 .
故只要 取遍Ax 0的全部解, 0 就取遍了 Ax b的所有解.
三、Ax b解的结构定理 定理4 若Ax b有解,1, ,nr是对应的Ax 0 的基础解系,0是Ax b的一个特解,则Ax b的

计算机数学课件第四章 线性方程组

计算机数学课件第四章 线性方程组

这个矩阵M称为直接消耗矩阵
其中E是与直接消耗矩阵M同阶的单位阵,这个方程组表示总产出的一部分用 于系统生产运作,另一部分用于满足订单,称为分配平衡方程,(E-M)称为列 昂惕夫矩阵。
只要矩阵方程有非负解,这个经济系统就是可行的。
4.3.3 完全消耗系数
在实际生产过程中,经济系统各部门之间除了存在直接消耗关系外,还存 在间接消耗关系。如生产1元的铁路运能要直接消耗0.45元的煤,0.10元 的电,在被消耗的0.45元煤和0.10元电又要消耗电,就有了一个确定每生 产1元的铁路运能到底总共消耗多少电的完全消耗系数问题。
4.2.2 非齐次线性方程组解的判断
关于非齐次线性方程组的解的情况,我们有以下定理:
• 非齐次线性方程组的解的结构
通过上面几个例子,我们认识了求解线性方程组的高斯消元法思想 和步骤:首先用初等行变换化增广矩阵为阶梯形矩阵,然后进一步 化成行最简阶梯形矩阵,通过系数矩阵的秩、增广矩阵的秩可判断 线性方程组解的情况:唯一解、无穷多解、无解,如果方程组有无 穷多解,通解就表达了无穷多解,教科书一般将通解写成量形式, 方便符号化表述。不过,手工运算还是较繁琐容易出错,可用数学 软件来求解方程组。
例4.1 求解线性方程组
• 消元法的做法就是对方程组三种变换:数乘变换、消去变换、互换变换, 消去一些方程组中的若干未知量,进而化成阶梯形方程组。
• 将原方程组通过初等变换化为阶梯形方程组,这种方法称为高斯消元法。
例4.2 解线性方程组 在方程组的增广矩阵中对矩阵进行初等行变换:
例4.3 解线性方程组
表一:投入产出表
产出
系统内部消耗(需求)
投入
煤矿
电力
铁路
生产
煤矿

第四章 线性方程组

第四章  线性方程组
理学院田宝玉 (第 1 页/共 14 页) 第四章 线性方程组
结论:加减消元得到一系列同解方程组的过程,就相当于对增广矩阵施以一系列 的初等行变换, 化成上阶梯形矩阵. 得到的新矩阵作为增广矩阵所对应的方程组与 原方程组等价(即为同解方程组). 注:只施以初等行变换.
⎛ x1 ⎞ ⎛ −1 ⎞ ⎧ x1 = −1 ⎪ ⎜ ⎟ ⎜ ⎟ 求解: ⎨ x2 = −2 → 向量形式: ⎜ x2 ⎟ = ⎜ −2 ⎟ . ⎪x = 2 ⎜x ⎟ ⎜ 2 ⎟ ⎝ 3⎠ ⎝ ⎠ ⎩ 3 ⎧ x1 + 3 x2 − 5 x3 = −1 ⎪ 引例 2: ⎨ 2 x1 + 6 x2 − 3 x3 = 5 . ⎪3 x + 9 x − 10 x = 2 2 3 ⎩ 1
− c1n x n − c2n xn − c rn x n
此时, 每赋予未知量 xr +1 , xr + 2 ,
, xn 一组值, 则可惟一的解出左端 x1 , x2 ,
, xr 的
一组值.(因为左端系数矩阵的行列式不等于零,可由克拉默法则求解.)因此,方 程组有无穷多组解. 且右端未知量 xr +1 , xr + 2 ,
解 记系数矩阵为 A ,增广矩阵为 B .
⎛1 −1 1 −1 1 ⎞ ⎛ 1 −1 1 −1 1 ⎞ ⎛ 1 −1 1 −1 1 ⎞ ⎜ ⎟ 行变换 ⎜ ⎟ ⎜ ⎟ B = ⎜1 −1 −1 1 0 ⎟ ⎯⎯⎯ → ⎜ 0 0 −2 2 −1 ⎟ → ⎜ 0 0 1 −1 1 2⎟ ⎜1 −1 −2 2 − 1 ⎟ ⎜ 0 0 −3 3 − 3 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ ⎝ ⎝ 2⎠ 2⎠
⎧ x1 + 3 x2 − 5 x3 = −1 ⎪ 同解方程组为: ⎨ x3 = 1 . 显然,此方程组无解. ⎪ 0 =1 ⎩

第4章 线性方程组与向量习题课

第4章  线性方程组与向量习题课
b b1 0 2 1
5b x1 = a (b + 1) 2 x2 = b+1 2(b 1) x3 = b + 1
1 0
1 b 2 2b
1 c 1 x2 x1 = a x1 = a x2 = c . x3 = 0 x =0 3

b 2 1 a A → 0 b1 1 0 0 0 1 b 2 2b
b 2 1 a b 2 1 a A = 0 b1 1 0 → 0 b1 1 0 a b 1 b 3 2b 0 0 1 b 2 2b
( 1) a ≠ 0, b ≠ ±1, 方程组有唯一解; 方程组有唯一解;
暨南大学珠海学院
( 2 ) a ≠ 0, b = 1, 方程组有无穷多解; 方程组有无穷多解;
α 1 , α 2 , L , α m 线性相关
α1 x1 + α 2 x2 + L + α m xm = ο 有非零解. 有非零解.
R ( A) < n , 其 中 A = ( α 1 , α 2 , L , α n ) .
n个m维列向量 α1 , α 2 ,L , α n 线性相关 个 维列向量
暨南大学珠海学院
解:方法一,对方程组的系数矩阵作行初等变换, 方法一 对方程组的系数矩阵作行初等变换, 对方程组的系数矩阵作行初等变换
1 1 q 1 1 q A = 1 2q 1 → 0 1 1 p p 1 1 0 0 q( p 1)
x1 = 0, x2 = 0, x3 = 0.
线性表示且表法唯一. 线性表示且表法唯一. 线性相关, 线性无关, 例⒋设 α1 , α 2 , α 3 线性相关,α 2 , α 3 , α 4 线性无关, 线性表出, α 问 α1 能否由 α 2 , α 3 线性表出, 4 能否由 α1 , α 2 , α 3 线性表出? 线性表出? Q 线性无关, 线性无关, 解: α 2 , α 3 , α 4 线性无关,∴α 2 , α 3 线性无关, 又 Qα1 , α 2 , α 3 线性相关, 线性相关,

(完整版)线性代数第四章线性方程组(自考经管类原创)

(完整版)线性代数第四章线性方程组(自考经管类原创)
第四章 线性方程组
知识结构
线性方程组
齐次线性方程组 非齐次线性方程组
4.1 齐次线性方程组
2
1.齐次线性方程组的解
设有齐次线性方程组
a11x1 a12 x2 a1n xn 0
a21 x1
a22 x2 a2n xn
0
am1 x1 am2 x2 amn xn 0
求齐次线性方程组通解的方法
(1)将系数矩阵A进行初等行变为行最简形矩阵T (2)写出Ax=0的同解方程组Tx=0 (3)确定自由未知量(n-r个),并用自由未知量表示其他未知量 (4)依次令其中某个自由未知量为1,其他自由未知量为0,求相 应的特殊解,那么基础解系即为所有特殊解的全体 (5)特殊解的线性组合即为通解,此处写明组合系数为任意实数
下面给出非齐次线性方程组解的性质
(1)设x 1及x 2都是Ax b的解,则x 1 2为对应的齐次方程Ax 0的解.
证明 A1 b, A2 b
A1 2 b b 0.
即x 1 2满足方程Ax 0.
(2) 设x 是方程 Ax b的解, x 是方程 Ax 0的解,则x 仍是方程 Ax b 的解.
a21x1 LLL
a22 x2 LLL
L L
L
a2n xn LLL
b2 L
am1x1 am2 x2 L amn xn bm
简写成矩阵形式AX=b,其中
a11 a12
A
a21
a22
am1 am2
a1n
a2n
,
amn
x1
x
x2
xn
b1
b
b2
例1 判断t为何值时,方程组无解
-x1 4x2 x3 1 tx2 3x3 3

第四章 线性方程组

第四章 线性方程组

§4.1 线性方程组解的判定这一节我们利用n 维向量和矩阵秩的概念来讨论线性方程组解的情况. 设线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* (1)的系数矩阵和增广矩阵分别为A 和A ,即 A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅mn m m n n a a a a a a a a a 212222111211, A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅m mn m m n n b a a a b a a a b a a a 21222221111211. 定理1 线性方程组(1)有解的充分必要条件是:系数矩阵的秩与增广矩阵的秩相等,即r (A )=r (A )证:必要性如果方程组(1)有解,则β可由α1,α2,…,αn 线性表出,从而向量组α1,α2,…,αn ,β 可由α1,α2,…,αn 线性表出.又显然α1,α2,…,αn 可由α1,α2,…,αn ,β 线性表出, 于是 {α1,α2,…,αn }≅{α1,α2,…,αn ,β}. 所以 r {α1,α2,…,αn }=r {α1,α2,…,αn ,β}, 因此 r (A )=r (A )充分性 若 r (A )=r (A ),则有 r {α1,α2,…,αn }=r {α1,α2,…,αn ,β},又向量组 α1,α2,…,αn 可由α1,α2,…,αn ,β 线性表出,于是由§4的定理4知{}n ααα,,,21 ≅{}βααα,,,,21n ,因此β可由n ααα,,,21 线性表出,这就表明线性方程组(1)有解.此定理与前面§1介绍的消元法所得的结果是一致的.用消元法解线性方程组就是用初等行变换把增广矩阵化为阶梯形矩阵,这个阶梯形矩阵在适当调动前几列的顺序之后可能有两种情形:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1222221111211r r rn rr n r n r d d c c d c c c d c c c c 或者⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 222221111211r rn rr n r n r d c c d c c c d c c c c其中c ii ≠0,i =1,2,…, r ,d r+1≠0.在前一种情形,我们说原方程组无解,而后一种情形方程组有解.实际上,把阶梯形矩阵中最后一列去掉,就是系数矩阵经过初等变换所变成的阶梯形矩阵.所以,当d r+1≠0时,r (A )≠r (A ),方程无解;当d r+1=0时,r (A )=r (A ),方程组有解.定理2 当线性方程组有解时, (1) 若r (A )=r =n ,则方程组有唯一解. (2) 若r (A )=r<n ,则方程组有无穷多解.对于齐次线性方程组,由于它的系数矩阵A 与增广矩阵的秩总是相等的,所以齐次方程组总是有解的,至少有零解.那么,何时有非零解呢?将定理2用于齐次线性方程组立即可得到如下推论.推论1 齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n mn m m nn n n x a x a x a x a x a x a x a x a x a 有非零解的充分必要条件是:系数矩阵的秩r (A )=r<n . 推论2 齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a 有非零解的充分必要条件是:系数行列式D =0思考题:当λ为何值时,下述齐次线性方程组有非零解?并且求出它的一般解.⎪⎩⎪⎨⎧=+++=--+-=---0)3(14202)8(023)2(321321321x x x x x x x x x λλλ§4.2-4.3 线性方程组解的结构上节解决了线性方程组的解的判定问题,接下来我们进一步讨论解的结构.已经知道,在方程组有解时,解的情况只有两种可能:有唯一解或有无穷多个解.唯一解的情况下,当然没有什么结构问题.在无穷多个解的情况下,需要讨论解与解的关系如何?是否可将全部的解由有限多个解表示出来,这就是所谓的解的结构问题.一. 齐次线性方程组解的结构设齐次线性方程组为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n mn m m nn n n x a x a x a x a x a x a x a x a x a (1)我们要研究当(1)有非零解时,这些非零解之间有什么关系,如何求出全部解?为此,先讨论齐次线性方程组的解的性质.为了讨论的方便,将(1)的解n n k x k x k x ===,,,2211写成行向量的形式),,,(21n k k k性质1 如果α=(c 1,c 2,…,c n ),β= (d 1,d 2,…,d n )是方程组(1)的两个解,则α+β=( c 1+d 1, c 2+d 2,,…, c n +d n )也是(1)的解.证明:因为α=(c 1,c 2,…,c n )与β= ( d 1,d 2,…,d n )都是(1)的解,所以有下列两组等式成立,即a i 1c 1+a i 2c 2+…+a in c n =0 (i =1,2,…, m ) a i 1d 1+a i 2d 2+…+a in d n =0 (i =1,2,…, m )两式相加得:a i1(c1+d1)+a i2(c2+d2)+…+a in(c n+d n)=0(i=1,2,…,m)这表明(c1+d1),(c2+d2),…,(c n+d n)是(1)的一个解,即α+β是(1)的解.性质2若α是(1)的解,则kα=( kc1,kc2,…,kc n)也是(1)的解.(k是常数) 证明:因α=(c1,c2,…,c n) 是(1)的解,所以有a i1c1+a i2c2+…+a in c n=0 i=1,2,…,n,两边同乘以k得a i1(kc1)+ a i2(kc2)+…+ a in(kc n)=0这说明(kc1,kc2,…,kc n) 是(1)的解.性质3如果α1,α2,…,αn,都是(1)的解,则其线性组合k1α1+k2α2+…+k nαn,也是(1)的解,其中k1,k2,…,k n是任意数.由性质1、2立即可以推出性质3.由此可知,如果一个齐次线性方程组有非零解,则它就有无穷多个解,那么如何把这无穷多个解表示出来呢?也就是方程组的全部解能否通过它的有限个解的线性组合表示出来.如将它的每个解看成一个向量(也称解向量),这无穷多个解就构成一个n维向量组.若能求出这个向量组的一个“极大无关组”,就能用它的线性组合来表示它的全部解.这个极大无关组在线性方程组的解的理论中,称为齐次线性方程组的基础解系.定义1如果齐次线性方程组(1)的有限个解η1,η2,…,ηt满足:(1) η1,η2,…,ηt线性无关;(2) 方程组(1)的任意一个解都可以由η1,η2,…,ηt线性表出.则称η1,η2,…,ηt是齐次线性方程组(1)的一个基础解系.问题是,任何一个齐次线性方程组是否都有基础解系?如果有的话,如何求出它的基础解系?基础解系中含有多少个解向量?定理1 如果齐次线性方程组(1)有非零解,则它一定有基础解系,并且基础解系含有n–r个解向量.其中n是未知量的个数,r是系数矩阵的秩.证明:因为齐次线性方程组(1)有非零解,所以r(A)=r<n,对方程组(1)的增广矩阵A施行初等行变换,可以化为如下形式:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++000000000100001000011212111rn rr n r n r c c c c c c即方程组(1)与下面的方程组同解⎪⎪⎩⎪⎪⎨⎧----=----=----=++++++++++++nrn r rr r rr r nn r r r r n n r r r r x c x c x c x x c x c x c x x c x c x c x 22112222112212211111 其中x r+1, x r+2,…, x n 为自由未知量 对n –r 个自由未知量分别取⎪⎪⎪⎪⎪⎭⎫ ⎝⎛001 ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛010 ,…,⎪⎪⎪⎪⎪⎭⎫⎝⎛100 , 可得方程组(1)的n –r 个解.η1=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++ 0 0 1- --11211 rr r r c c c ,η2=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++ 0 1 0- --22221 rr r r c c c ,…,ηn –r =⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 1 0 0- --21 rn n n c c c , 现在来证明η1,η2,…,ηn –r 就是方程组(1)的一个基础解系. 首先证明η1,η2,…,ηn –r 线性无关. 以解向量η1,η2,…,ηn –r 为列构成矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------++++++1 0 0 0 1 0 0 0 1 212221212111 rn rr rr n r r n r r c c c c c c c c c ,有n –r 阶子式1 0 0 0 0 1 000 0 1 0 0 0 0 1 =1≠0,即r (η1,η2,…,ηn –r )=n –r ,所以η1,η2,…,ηn –r 线性无关.其次证明方程组(1)的任意一个解η=⎪⎪⎪⎪⎪⎭⎫⎝⎛n k k k 21,是η1,η2,…,ηn –r 的线性组合.由于⎪⎪⎩⎪⎪⎨⎧----=----=----=++++++++++++nrn r rr r rr r nn r r r r n n r r r r k c k c k c k k c k c k c k k c k c k c k 22112222112212211111所以η=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++n r r r k k k k k k 2121 =⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---------++++++++++++++n r r n rn r rr r rr n n r r r r n n r r r r k k k k c k c k c k c k c k c k c k c k c 0 00 0 0 0 21221122221121221111=k r+1⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+++0 0 1 11211 rr r r c c c +k r+2⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+++0 1 1 11211 rr r r c c c +…+k n ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1 0 0 21 rn n n c c c =k r+1η1+ k r+2η2+…+ k n ηn –r .即η是η1,η2,…,ηn –r 的线性组合.这就说明了η1,η2,…,ηn –r 是方程组(1)的一个基础解系.因此,方程组(1)的全部解为 k 1η1+ k 2η2+…+ k n –r ηn –r .定理的证明过程实际上给我们指出了求齐次线性方程组基础解系的具体方法.由于自由未知量x r +1,x r +2,…,x n 可以任意取值,故基础解系不是唯一的,但两个基础解系所含向量的个数都是n –r 个.可以证明:齐次线性方程组(1)的任意n –r 个线性无关的解向量均可以构成它的一个基础解系.性质1 非齐次线性方程组(2)的任意两个解的差是它的导出组(1)的一个解. 证: 设α=(c 1,c 2,…,c n ),β= ( d 1,d 2,…,d n )为方程组(2)的两个解,分别代入(2)得a i 1c 1+a i 2c 2+…+a in c n =b i (i =1,2,…, m ) a i 1d 1+a i 2d 2+…+a in d n =b i (i =1,2,…, m )两式相减得:a i 1(c 1–d 1)+a i 2(c 2–d 2)+…+a in (c n –d n )=0 (i =1,2,…, m )这表明 (c 1–d 1),(c 2–d 2),…,(c n –d n )是(1)的一个解,即α–β是(1)的解.性质2 非齐次线性方程组(2)的一个解与它的导出组(1)的一个解的和是非齐次线性方程组(2)的一个解.证明方法与性质1的证明方法相同. 由性质1、性质2可得定理2 设γ0是非齐次线性方程组(2)的一个解,η是导出组(1)的全部解,则γ=γ0+η是非齐次线性方程组的全部解.证明:由非齐次线性方程组解的性质2可知,γ=γ0+η 是方程组(2)的解. 下面证明方程组(2)的任意一个解γ*都可以表示成γ0+η0,其中η0是齐次线性方程组(1)的某一个解.因为γ*、γ0都是非齐次线性方程组(2)的解,由非齐次线性方程组的解的性质1可知γ*–γ0是导出组(1)的解.令η0=γ*–γ0则η0是齐次线性方程组(1)的某一个解,且,00*ηγγ+=因η是齐次线性方程组(1)的全部解,所以非齐次线性方程组(2)的任意一个解都包含在γ=γ0+η中,这就证明了γ=γ0+η是非齐次线性方程组(2)的全部解.由此定理可知,如果非齐次线性方程组有解,则只需求出它的一个解(特解)γ0,并求出其导出组的基础解系η1, η2,,…, ηn –r ,则非齐次线性方程组的全部解可表示为η0=γ0+k 1η1+ k 2η2+…+ k n –r ηn –r其中k 1,k 2,…,k n –r 为任意数.如果非齐次线性方程组的导出组仅有零解,则该非齐次线性方程组只有唯一解,如果其导出组有无穷多解,则它也有无穷多解. 思考题:已知矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-----023*********02100121的各行向量都是齐次线性方程组 ⎪⎪⎩⎪⎪⎨⎧=-+++=++++=-+++=++++033450622032305432154325432154321x x x x x x x x x x x x x x x x x x x 的解向量,问这4个行向量能否构成基础解系?假如不能,这4个行向量是多了还是少了,假如多了,如何去掉?假如少了又如何补充?。

线代第四章线性方程组第一节

线代第四章线性方程组第一节
x1 = 4 − 3k, x 2 = k, x = 1 3 ,
其中 k 为任意常数. 为任意常数.
North University of China
目录 上页 下页 返回 结束
k 取遍所有实数时, 上 取遍所有实数时 ,
式也就取遍方程组的所有 解.这种解的表达形式称 为线性方程组的一般解. 为线性方程组的一般解. 一般解
North University of China
目录 上页 下页 返回 结束
下三种关于 线性方程组的 关于线性方程组 以 下三种 关于 线性方程组 的 变换称为线性方程组的 初等变换: 初等变换 :
(1) 交换某两个方程的位置; 交换某两个方程的位置; (2) 用一个非零数乘以某一个方程的两边; 用一个非零数乘以某一个方程的两边; (3) 将一个方程的倍数加到另一个方程. 将一个方程的倍数加到另一个方程.
North University of China
目录 上页 下页 返回 结束
对线性方程组用消元法 对应方程组的增广矩阵
, x1 + x 2 + 2 x3 = 1 1 1 2 1 − 3 x 2 − 2 x3 = 2, B3 = 0 −3 −2 2 ; 0 0 −2 −4 − 2 x3 = −4;
b1 b2 . ⋮ bm
x1 b1 x b 2 , b = 2 ,则线性方程组 则线性方程组(4.1)可写为: 可写为: 令x = 可写为 ⋮ ⋮ xn bm
Ax = b .
为方程组(4.1)的矩阵形式. 称(4.2)为方程组 为方程组 的矩阵形式.
目录 上页 下页 返回 结束
第一节 利用矩阵的初等变换解线性方程组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档