(浙江专版)高中物理6导体棒切割磁感线问题剖析讲义新人教版选修3-2

合集下载

高中物理选修3-2讲义 详细

高中物理选修3-2讲义 详细

第四章电磁感应第一节感应电流产生的条件一、知识回顾:磁通量φ1、概念:穿过某一面积的磁感线条数叫做穿过这一面积的磁通量。

2、公式:φ=BS cosθ3、单位:韦伯,简称韦,符号Wb,1Wb=1T.㎡4、磁通量与匝数无关。

Φ≠nBS5、磁通量是标量,但是有正负6、磁通量是净磁通量7、磁通量的变化量是:Δφ=φ2-φ18、改变磁通量的办法:φ=BS cosθ练习1、关于磁通量的说法正确的是()A 磁通量是一个反映磁场强弱和方向的物理量B 某一面积上的磁通量可表示穿过此面积的磁感线条数C 在磁场中所取得面积越大,该面上磁通量一定越大D 穿过任何封闭曲面的磁通量一定为0练习2、条形磁铁竖直放置,闭合圆环水平放置,条形磁铁中心线穿过圆环中心,如图,若圆环为弹性环,其形状由a扩大为b,那么圆环内磁通量变化情况是()A 增大B 减小C 不变D 无法确定练习3、一磁感应强度为B的匀强磁场方形水平向右,一面积为S的矩形线圈abcd如图所示放置,平面abcd与竖直方向成α角,将abcd绕ad边为轴转过180度角,则穿过线圈平面的刺痛流量的变化量有()A 0B 2BSC 2BScosαD 2BSsinα练习4、如图,线框面积为S,水平放置,磁感应强度B竖直向上,若将线框沿图示方向以OO’为轴顺时针转动60°,则此时磁通量的大小为,若顺时针转动180°,则磁通量的改变量是。

练习5、矩形线框abcd的边长分别为L1、L2,可绕它的一条对称轴OO’转动,匀强磁场的磁感应强度为B,方向与OO’垂直,初位置时线圈平面与B平行,如图1)初位置时穿过线框的磁通量φ1为多少?2)当线框沿图甲所示方向绕过60°时,磁通量φ2为多少?这一过程中磁通量的变化为多少?3)当线框绕轴沿图示方向由图乙中的位置再转过60°位置时,磁通量φ3为多少?这一过程中Δφ=φ3-φ2为多少?练习6、如图,两直导线中通以相同的电流I ,矩形线圈位于导线之间,将线圈由实线位置移到虚线位置的过程中,穿过线圈的磁通量的变化情况是()A 向里,逐渐增大B 向外,逐渐减小C 先向里增大,再向外减小D 先向外减小,再向里增大二、探究感应电流的产生条件1、实验:结论:闭合回路的一部分切割磁感线,产生感应电流思考:感应电流产生的条件:1、闭合回路2、磁通量的改变练习7、如图,有一个电子沿一个圆环形导体的直径方向在圆环表面匀速掠过时,圆环中()A 感应电流时有时无 B 没有感应电流C 有持续的感应电流D 以上说法都不对练习8、在一个专门研究地磁场的实验室的水平桌面上,放置一个边长为L的正方形闭合线圈,线圈的ab边指向南北,如图,下列几种说法正确的是()A 线圈以速度V向东平东时,线圈中有感应电流B线圈以速度V向南平东时,线圈中有感应电流C 以ab边为轴,将cd边迅速翻转90°的过程中,线圈中有感应电流D以ab边为轴,将cd边迅速翻转180°的过程中,线圈中无感应电流第二节楞次定律一、定义:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

导体棒切割磁感线问题分类解析

导体棒切割磁感线问题分类解析

导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。

解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。

导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。

一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。

例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。

导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s 向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。

解析:金属棒向左匀速运动时,等效电路如图2所示。

在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。

图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。

(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F安=BIh=0.02N 。

(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。

2019-2020学年物理人教版选修3-2(浙江新高考专用)讲义:第四章 电磁感应现象 微型专题2 Word版含答案

2019-2020学年物理人教版选修3-2(浙江新高考专用)讲义:第四章 电磁感应现象 微型专题2 Word版含答案

微型专题2 电磁感应中的电路、电荷量及图象问题[课时要求] 1.掌握电磁感应现象中电路问题的分析方法和解题基本思路.2.掌握电磁感应电路中感应电荷量求解的基本思路和方法.3.综合应用楞次定律和法拉第电磁感应定律解决电磁感应的图象问题.一、电磁感应中的电路问题1.明确哪部分电路或导体产生感应电动势,该部分电路或导体就相当于电源,其他部分是外电路.2.画等效电路图,分清内、外电路.3.用法拉第电磁感应定律E =n 或E =Bl v 确定感应电动势的大小,用楞次定律或右手定则ΔΦΔt确定感应电流的方向.注意在等效电源内部,电流方向从负极流向正极.4.运用闭合电路欧姆定律、串并联电路特点、电功率、电热等公式联立求解.例1 固定在匀强磁场中的正方形导线框abcd 边长为L ,其中ab 是一段电阻为R 的均匀电阻丝,其余三边均为电阻可以忽略的铜线.磁感应强度为B ,方向垂直纸面向里.现有一段与ab 段的材料、粗细、长度均相同的电阻丝PQ 架在导线框上(如图1所示).若PQ 以恒定的速度v从ad 滑向bc ,当其滑过的距离时,通过aP 段的电流是多大?方向如何?L 3图1答案  方向由 P 到a 6B v L 11R 解析 PQ 在磁场中做切割磁感线运动产生感应电动势,由于是闭合回路,故电路中有感应电流,可将电阻丝PQ 视为有内阻的电源,电阻丝aP 与bP 并联,且R aP =R 、R bP =R ,于1323是可画出如图所示的等效电路图.电源电动势为E =BL v ,外电阻为R 外==R .R aP R bP R aP +R bP 29总电阻为R 总=R 外+r =R .119电路中的电流为:I ==.E R 总9BL v 11R通过aP 段的电流为:I aP =I =,方向由P 到a .R bP R aP +R bP 6B v L 11R[学科素养] 本题考查了电磁感应中的电路问题.正确画出等效电路图是解题的关键,所以要熟记以下两点:(1)“切割”磁感线的导体(或磁通量发生变化的线圈)相当于“电源”.(2)在“电源”内部电流从负极流向正极.解决本题的思路是:先确定“电源”,画出等效电路图,再利用闭合电路欧姆定律计算总电流,然后根据电路的串、并联关系求出aP 段中的电流,通过这样的分析培养了学生的综合分析能力,很好地体现了“科学思维”的学科素养.针对训练 如图2所示,均匀的金属长方形线框从匀强磁场中以速度v 匀速向右拉出,它的两边固定有带金属滑轮的导电机构,金属框向右运动时总是与两边良好接触,一理想电压表跨接在PQ 两导电机构上,当金属框向右匀速拉出的过程中,已知金属框的长为a ,宽为b ,磁感应强度为B ,则电压表的读数( )图2A.恒定不变,为Bb vB.恒定不变,为Ba vC.变大D.变小答案 C解析 当金属框向右匀速拉出的过程中,线框左边切割磁感线产生感应电动势,相当于电源,其余部分是外电路.由公式E =Bl v 知,左边产生的感应电动势等于Bb v ,保持不变,线框中感应电流也不变,而PQ 右侧的电阻增大,由欧姆定律U =IR 知,PQ 间的电压增大,则电压表的读数变大.根据闭合电路欧姆定律知,PQ 间的电压必定小于Bb v ,C 项正确,A 、B 、D 错误.二、电磁感应中的电荷量问题闭合回路中磁通量发生变化时,电荷发生定向移动而形成感应电流,在Δt 内迁移的电荷量(感应电荷量)q =I ·Δt =·Δt =n ··Δt =.E R 总ΔΦΔt 1R 总n ΔΦR 总(1)从上式可知,线圈匝数一定时,感应电荷量仅由回路电阻和磁通量的变化量决定,与时间无关.(2)求解电路中通过的电荷量时,I 、E 均为平均值.例2 一个阻值为R 、匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1、电容为C 的电容器连接成如图3(a)所示回路.金属线圈的半径为r 1,在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图(b)所示.图线与横、纵轴的截距分别为t 0和B 0.导线的电阻不计.求:图3(1)通过电阻R 1的电流大小和方向;(2)0~t 1时间内通过电阻R 1的电荷量q ;(3)t 1时刻电容器所带电荷量Q .答案 (1) 方向从b 到a (2)n πB 0r 23Rt 0n πB 0r 2t 13Rt 0(3)2n πCB 0r 23t 0解析 (1)由B -t 图象可知,磁感应强度的变化率为:=,ΔB Δt B 0t 0根据法拉第电磁感应定律,感应电动势:E =n =n πr =ΔΦΔt 2ΔB Δt n πB 0r 2t 0根据闭合电路的欧姆定律,感应电流为:I =E 3R联立解得:I =n πB 0r 23Rt 0根据楞次定律可知通过R 1的电流方向为从b 到a .(2)通过R 1的电荷量q =It 1得:q =n πB 0r 2t 13Rt 0(3)电容器两板间电压为:U =IR 1=2n πB 0r 23t 0则电容器所带的电荷量为:Q =CU =.2n πCB 0r 23t 0例3 (2018·全国卷Ⅰ)如图4,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于( )图4A. B. C. D.2543274答案 B解析 在过程Ⅰ中,根据法拉第电磁感应定律,有E 1==ΔΦ1Δt 1B (12πr 2-14πr 2)Δt 1根据闭合电路欧姆定律,有I 1=,q 1=I 1Δt 1E 1R在过程Ⅱ中,有E 2==ΔΦ2Δt 2(B ′-B )12πr 2Δt 2I 2=,q 2=I 2Δt 2E 2R又q 1=q 2,即=B (12πr 2-14πr 2)R (B ′-B )12πr 2R所以=.B ′B 32三、电磁感应中的图象问题1.问题类型(1)由给定的电磁感应过程选出或画出正确的图象.(2)由给定的图象分析电磁感应过程,求解相应的物理量.2.图象类型(1)各物理量随时间t 变化的图象,即B -t 图象、Φ-t 图象、E -t 图象和I -t 图象.(2)导体切割磁感线运动时,还涉及感应电动势E 和感应电流I 随导体位移变化的图象,即E -x 图象和I -x 图象.3.解决此类问题需要熟练掌握的规律:安培定则、左手定则、楞次定律、右手定则、法拉第电磁感应定律、欧姆定律等.例4 在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图5甲所示,当磁场的磁感应强度B 随时间t 按图乙变化时,图中能正确表示线圈中感应电动势E 变化的是( )图5答案 A解析 由题图乙知,0~1 s 内磁通量向上均匀增加,根据楞次定律知,电流方向为正且保持不变;1~3 s 内磁通量不变,故感应电动势为0;3~5 s 内磁通量向上均匀减少,由楞次定律知,电流方向为负且保持不变.由法拉第电磁感应定律知,感应电动势的大小与磁通量的变化率成正比,所以3~5 s 内的感应电动势是0~1 s 内的感应电动势的,故选项A 正确.12本类题目线圈面积不变而磁场发生变化,可根据E =S 判断E 的大小及变化,其中n ΔB Δt ΔB Δt 为B -t 图象的斜率,且斜率正、负变化时对应电流的方向发生变化.例5 (2018·全国卷Ⅱ)如图6所示,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l ,磁感应强度大小相等、方向交替向上向下.一边长为l 的正方形金属线框在导轨上向左匀速运动.线框中感应电流i 随时间t 变化的正确图线可32能是( )图6答案 D解析 设线路中只有一边切割磁感线时产生的感应电流为I 0.线框位移等效电路的连接电流0~l2I =2I 0(顺时针)~l l 2I =0l ~3l 2I =2I 0(逆时针)~2l 3l 2I =0分析知,只有选项D 符合要求.1.(电磁感应中的电路问题)(多选)(2017·慈溪市高二上学期期中)如图7所示,虚线框内是磁感应强度为B 的匀强磁场,用同种导线制成的正方形线框abcd 的边长为L (L 小于磁场宽度d ),线框平面与磁场方向垂直,线框的ab 边与磁场左边界平行.导线框以恒定速度v 水平向右运动,当ab 边刚进入磁场时,ab 两端的电势差大小为U 1;当cd 边刚进入磁场时,ab 两端的电势差大小为U 2,则( )图7A.U 1=BL vB.U 1=BL v 34C.U 2=BL vD.U 2=BL v 34答案 BC解析 ab 边进入磁场切割磁感线,产生的感应电动势E =BL v ,ab 两端的电势差大小U 1=E =34BL v .当cd 边刚进入磁场时,回路中无感应电流,则ab 两端的电势差大小为U 2=BL v .342.(电磁感应中的电荷量问题)如图8所示,空间存在垂直于纸面的匀强磁场,在半径为a 的圆形区域内部及外部,磁场方向相反,磁感应强度的大小均为B .一半径为b (b >a )、电阻为R 的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合.当内、外磁场同时由B 均匀地减小到零的过程中,通过导线环横截面的电荷量为( )图8A. B.πB |b 2-2a 2|RπB (b 2+2a 2)R C. D.πB (b 2-a 2)RπB (b 2+a 2)R答案 A解析 开始时穿过导线环向里的磁通量设为正值,Φ1=B πa 2,则向外的磁通量为负值,Φ2=-B ·π(b 2-a 2),总的磁通量为它们的代数和(取绝对值)Φ=B ·π|b 2-2a 2|,末态总的磁通量为Φ′=0,由法拉第电磁感应定律得平均感应电动势为=,通过导线环横截面的电荷量为q =E ΔΦΔt E R·Δt =,A 项正确.πB |b 2-2a 2|R3.(电磁感应中的图象问题)如图9所示,两条平行虚线之间存在匀强磁场,虚线间的距离为l ,磁场方向垂直纸面向里,abcd 是位于纸面内的梯形线圈,ad 与bc 间的距离也为l ,t =0时刻bc 边与磁场区域边界重合.现令线圈以恒定的速度v 沿垂直于磁场区域边界的方向穿过磁场区域,取沿abcda 方向为感应电流正方向,则在线圈穿越磁场区域的过程中,感应电流I 随时间t 变化的图线可能是 ( )图9答案 B解析 bc 边进入磁场时,根据右手定则判断出其感应电流的方向是沿adcba 方向,其方向与电流的正方向相反,故是负的,所以A 、C 错误;当线圈逐渐向右移动时,切割磁感线的有效长度变大,故感应电流在增大;当bc 边穿出磁场区域时,线圈中的感应电流方向变为abcda ,是正方向,故其图象在时间轴的上方,所以B 正确,D 错误.4.(电磁感应中的图象问题)如图10甲所示,矩形线圈abcd 位于匀强磁场中,磁场方向垂直线圈所在平面,磁感应强度B 随时间t 变化的规律如图乙所示.以图中箭头所示方向为线圈中感应电流i 的正方向,以垂直于线圈所在平面向里为磁感应强度B 的正方向,则下列图中能正确表示线圈中感应电流i 随时间t 变化规律的是( )图10答案 C解析 由B -t 图象可知,0~1 s 时间内,B 增大,Φ增大,感应电流的磁场与原磁场方向相反(感应电流的磁场方向向外),由楞次定律知,感应电流是逆时针的,因而是负值;同理可知2~3 s 内感应电流是正值.再由法拉第电磁感应定律和欧姆定律得:I ===·,所E R ΔΦR Δt S R ΔB Δt以线圈中的感应电流决定于磁感应强度B 随t 的变化率,B -t 图象的斜率为,故在2~3 ΔB Δts 内感应电流的大小是0~1 s 内的2倍.C 正确.一、选择题考点一 电磁感应中的电路问题1.如图1所示,设磁感应强度为B ,ef 长为l ,ef 的电阻为r ,外电阻为R ,其余电阻不计.当ef 在外力作用下向右以速度v 匀速运动时,ef 两端的电压为( )图1A.Bl vB.Bl v R R +rC.D.Bl v r R +r Bl v r R答案 B2.如图2所示,由均匀导线制成的半径为R 的圆环,以速度v 匀速进入一磁感应强度大小为B 的有直线边界(图中竖直虚线)的匀强磁场.当圆环运动到图示位置(∠aOb =90°)时,a 、b 两点的电势差为( )图2A.BR vB.BR vC.BR v D.BR v 22224324答案 D解析 设整个圆环的电阻为r ,位于题图所示位置时,电路的外电阻是r .而在磁场内切割磁34感线的有效长度是R ,其相当于电源,E =B ·R ·v ,根据欧姆定律可得U =E =BR v ,2234r r324选项D 正确.3.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框的一边a 、b 两点间电势差的绝对值最大的是( )答案 B解析 磁场中切割磁感线的边相当于电源,外电路可看成由三个相同电阻串联形成,A 、C 、D 选项中a 、b 两点间电势差的绝对值为外电路中一个电阻两端的电压:U =E =,B 选项14Bl v4中a 、b 两点间电势差的绝对值为路端电压:U ′=E =,所以a 、b 两点间电势差的绝343Bl v4对值最大的是B 选项.4.如图3所示,竖直平面内有一金属圆环,半径为a ,总电阻为R (指剪开拉直时的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面.环的最高点A 用铰链连接长度为2a 、电阻为的导R2体棒AB ,AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两端的电压大小为( )图3A.B. C. D.Ba v Ba v 3Ba v 62Ba v3答案 A解析 导体棒AB 摆到竖直位置时,AB 切割磁感线的瞬时感应电动势E =B ·2a ·v =Ba v .外电12路电阻大小为=,由闭合电路欧姆定律有|U AB |=·=Ba v ,故选A.R 2·R 2R 2+R 2R 4E R 2+R 4R 413考点二 电磁感应中的电荷量问题5.如图4所示,将一个闭合金属圆环从有界磁场中匀速拉出,第一次速度为v ,通过金属圆环某一横截面的电荷量为q 1,第二次速度为2v ,通过金属圆环某一横截面的电荷量为q 2,则( )图4A.q 1∶q 2=1∶2B.q 1∶q 2=1∶4C.q 1∶q 2=1∶1D.q 1∶q 2=2∶1答案 C6.物理实验中,常用一种叫做“冲击电流计”的仪器测定通过电路的电荷量.如图5所示,探测线圈与冲击电流计串联后可用来测定磁场的磁感应强度.已知线圈的匝数为n ,面积为S ,线圈与冲击电流计组成的回路总电阻为R .若将线圈放在被测匀强磁场中,开始时线圈平面与磁场垂直,现把探测线圈翻转180°,冲击电流计测出通过线圈的电荷量为q ,由上述数据可测出被测磁场的磁感应强度为( )图5A.B. C. D.qR S qR nS qR 2nS qR 2S答案 C解析 由题意知q =·Δt =·Δt =Δt =n =n ,则B =,故C 正确.I E R n ΔΦΔt R ΔΦR 2BS R qR2nS7.(多选)如图6甲所示,静止在水平面上的等边三角形闭合金属线框,匝数n =20匝,总电阻R =2.5 Ω,边长L =0.3 m ,处在两个半径均为r =0.1 m 的圆形匀强磁场中,线框顶点与右侧圆心重合,线框底边与左侧圆直径重合.磁感应强度B 1垂直水平面向外,B 2垂直水平面向里,B 1、B 2随时间t 的变化如图乙所示,线框一直处于静止状态,计算过程中π取3,下列说法正确的是( )图6A.线框具有向左运动的趋势B.t =0时刻穿过线框的磁通量为0.5 WbC.t =0.4 s 时刻线框中感应电动势为1.5 VD.0~0.6 s 内通过线框横截面的电荷量为0.36 C 答案 CD解析 磁感应强度B 1增加,由楞次定律和右手定则可知,线框中的电流为顺时针方向,由左手定则可知,线框所受安培力方向向右,所以线框有向右运动的趋势,A 错误;由Φ=BS 可知,t =0时刻,由磁场B 1产生的磁通量Φ1=B 1·πr 2=0.03 Wb ,方向向外,由磁场B 2产生12的磁通量Φ2=B 2·πr 2=0.005 Wb ,方向向里,所以穿过整个线框的磁通量Φ=Φ1-Φ2=160.025 Wb ,B 错误;根据法拉第电磁感应定律,t =0.4 s 时刻线框中感应电动势E =n ·πr 2=ΔB 1Δt 121.5 V ,C 正确;0~0.6 s 内,通过线框横截面的电荷量q =n ·=0.36 C ,D 正确.ΔB 1·12πr 2R 考点三 电磁感应中的图象问题8.如图7甲所示,一根电阻R =4 Ω的导线绕成半径d =2 m 的圆,在圆内部分区域存在变化的匀强磁场,中间S 形虚线是两个直径均为d 的半圆,磁感应强度随时间变化如图乙所示(磁场垂直于纸面向外为正,电流逆时针方向为正),关于圆环中的感应电流—时间图象,下列选项中正确的是( )图7答案 C解析 0~1 s 内,感应电动势为:E 1=S =× V =4π V ,感应电流大小为:I 1==ΔB Δt πd 2221E 1R 4π4A =π A ,由楞次定律知,感应电流为顺时针方向,为负值,故C 正确,A 、B 、D 错误.9.(2017·慈溪市高二期中)如图8所示,有一等腰直角三角形形状的导线框abc ,在外力作用下匀速地经过一个宽为d (d 大于ac 边长)的有限范围的匀强磁场区域,导线框中产生的感应电流i 与沿运动方向的位移x 之间的函数图象是图中的(规定逆时针为电流正方向)( )图8答案 B解析 开始时导线框进入磁场切割磁感线,根据右手定则可知,电流方向为逆时针,当导线框开始出磁场时,回路中磁通量减小,产生的感应电流为顺时针;不论进入磁场还是出磁场时,由于切割的有效长度变小,导致产生的感应电流大小变小,故B 正确,A 、C 、D 错误.10.(2017·宁波诺丁汉大学附中高二第一学期期中)如图9甲所示,矩形导线框abcd 放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B 随时间t 变化的图象如图乙所示.设t =0时刻,磁感应强度的方向垂直纸面向里,则在0~4 s 时间内,选项图中能正确反映线框ab 边所受的安培力F 随时间t 变化的图象是(规定ab 边所受的安培力向左为正)( )图9答案 D 二、非选择题11.如图10所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线.线框以恒定的速度v 垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:图10(1)流过线框横截面的电荷量q ;(2)cd 两点间的电势差U cd .答案 (1) (2)2Bl 2R 4Bl v 3解析 (1)线框离开磁场过程中,cd 边切割磁感线E =B ·2l ·v ,回路电流I ==,流过线E R 2Bl vR框横截面的电荷量q =I Δt =·=;2Bl v R l v2Bl 2R (2)线框向左离开磁场,cd 边相当于电源,c 点为电源正极,外电阻R 外=R ,U cd =E =.23234Bl v312.如图11所示,导线全部为裸导线,半径为r 、两端开有小口的圆内有垂直纸面向里的匀强磁场,磁感应强度大小为B ,一根长度大于2r 的导线MN 以速度v 在圆环上无摩擦地自左端匀速滑到右端,电路中固定电阻阻值为R ,其余部分电阻均忽略不计,试求MN 从圆环左端滑到右端的过程中:图11(1)电阻R 上的最大感应电流;(2)电阻R 上的平均感应电流;(3)通过电阻R 的电荷量.答案 (1) (2) (3)2Br v R πBr v2RπBr 2R 解析 (1)MN 自左向右滑动时,切割磁感线的有效长度不断变化,当MN 经过圆心时,有效切割长度最长,此时感应电动势和感应电流达到最大值,所以I max ==.E max R 2Br vR(2)===,==.(由于MN 向右滑动中感应电动势和感应电流大小不断E ΔΦΔt B πr 22r vB πr v 2I E R πBr v2R 变化,且不是简单线性变化,故不能通过=BL 求解平均值.)E v (3)流过电阻R 的电荷量等于平均感应电流与时间的乘积,所以q =Δt ==.I ΔΦR πBr 2R13.(2018·温州十五校联合体第二学期期中)由粗细均匀金属丝制成的单匝线圈,其形状如图12所示,可视为由两个扇形拼接而成,每米金属丝的电阻为0.1 Ω,两个扇形所对应的圆心角都为θ=rad ,Oa =Of =7 cm ,Ob =Oc =5 cm ,Od =Oe =3 cm.线圈固定在一绝缘的水平转411盘上,扇形的圆心与转轴重合.转盘一半处在竖直向下的匀强磁场中,磁感应强度为1 T ,转轴刚好在磁场边界上,现让转盘以角速度ω=100 rad/s 顺时针匀速转动.求:图12(1)回路的总电阻;(2)ef 边刚进入磁场时线圈中的电流的大小和方向;(3)cd 边刚进入磁场时线圈中的电流大小以及此时ef 两点间的电压U ef .答案 (1)0.016 Ω (2)12.5 A 逆时针 (3)7.5 A 0.17 V解析 (1)由题意可知单匝线圈总长l =0.16 m ,回路总电阻R =0.016 Ω.(2)ef 边刚进入磁场时,由右手定则可知,电流为逆时针方向.E =Bl ef ,=ω,得E =0.2 V v v Oe +Of2I ==12.5 A ER(3)当cd 边刚进入磁场时,E ′=B (l ef -l cd )′,′=ω,得E ′=0.12 V v v Oa +Ob2I ′==7.5 A E ′RU ef =E -I ′r ef =0.17 V.。

导体棒切割磁感线安培力方向-概述说明以及解释

导体棒切割磁感线安培力方向-概述说明以及解释

导体棒切割磁感线安培力方向-概述说明以及解释1.引言1.1 概述导体棒切割磁感线是电磁学中一个重要的现象,通过导体棒与磁场的相互作用,产生了一种称为安培力的力量。

这一现象在物理学的研究中被广泛探讨,并且在实际应用中也有着重要的意义。

在导体棒与磁场相互作用的过程中,磁感线被切割,导体内部的自由电子将会受到力的作用,从而产生了电流。

这个现象被称为磁感线切割引起的感应电流,其原理基于法拉第电磁感应定律。

磁感线是磁场的一种表示方式,它用来描述磁场的分布和强度。

而导体棒在磁场中运动时,会与磁感线交叉或相互接触,导致磁感线被切割。

安培力是导体棒切割磁感线所产生的一种力。

根据安培力的方向规则,当导体棒与磁感线垂直时,安培力的方向与磁感线和导体棒的相对运动方向垂直。

这个实验规律是由法国物理学家安培提出的,因此被命名为安培力。

导体棒切割磁感线引起的安培力大小与切割的磁感线数目成正比,与导体棒的速度成正比,与导体的长度成正比。

因此,在实际应用中,我们可以通过改变导体棒的速度或长度,来控制安培力的大小。

导体棒切割磁感线安培力的方向是一个重要的研究内容。

根据安培力的方向规则,当导体棒与磁感线垂直时,安培力的方向与磁感线和导体棒的相对运动方向垂直。

这一规律的理解对于研究导体棒在磁场中的行为和应用具有重要意义。

综上所述,导体棒切割磁感线是一个引人瞩目的现象,通过导体与磁场的相互作用,产生了一种重要的力——安培力。

了解安培力的方向和作用对于理解导体棒在磁场中的行为和实际应用具有重要意义。

接下来的文章将具体探讨导体棒切割磁感线的原理、安培力对其影响以及实际应用和意义。

1.2文章结构文章结构部分的内容可以包括以下几个方面:1.2 文章结构本文主要分为引言、正文和结论部分:- 引言部分将对导体棒切割磁感线安培力方向的研究背景和意义进行概述,介绍本文的主要内容和目的。

- 正文部分将详细阐述导体棒切割磁感线的原理和作用,其中包括介绍磁感线的概念和导体棒切割磁感线的过程,以及导体棒切割磁感线对安培力的影响等内容。

人教版高中物理选修3第二章《导体切割磁感线运动》讲义及练习

人教版高中物理选修3第二章《导体切割磁感线运动》讲义及练习

第2讲:导体切割磁感线运动(教师版)1.右手定则(1)内容:伸开右手,使拇指与其余四指垂直,并且都与手掌在同一平面内,让磁感线从手心垂直进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向。

(2)适用范围:适用于判断闭合电路中的部分导体切割磁感线产生感应电流的情况。

2.导体在匀强磁场中平动(1)一般情况:运动速度v 和磁感线方向夹角为θ,则E =Blv sin_θ。

(2)常用情况:运动速度v 和磁感线方向垂直,则E =Blv 。

3.导体棒在匀强磁场中转动导体棒以端点为轴,在垂直于磁感线的平面内以角速度ω匀速转动产生感应电动势 E =12Bωl 2(导体棒的长度为l )。

题目类型:导体平动切割磁感线例1.半径为a 的圆形区域内有匀强磁场,磁感应强度为B =0.2 T,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4 m,b =0.6 m,金属圆环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2 Ω,一金属棒MN 与金属圆环接触良好,棒与环的电阻均忽略不计。

(1)若棒以v 0=5 m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO '的瞬间(如图所示)MN 中的电动势和流过灯L 1的电流。

(2)撤去中间的金属棒MN ,将右面的半圆环O L 2O '以OO '为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为∆B ∆t =4πT s ⁄ ,求L 1的功率。

解析:(1)棒通过圆环直径时切割磁感线的有效长度l =2a ,棒中产生的感应电动势为 E =Blv =B ·2av 0=0.2×0.8×5 V=0.8 V 。

当不计棒和圆环的电阻时,直径OO '两端的电压U =E =0.8 V,通过灯L 1的电流为I 1=UR 0 =0.4 A 。

(2)右半圆环上翻90°后,穿过回路的磁场有效面积为原来的一半,S '=12πa 2,磁场变化时回路中产生的感应电动势为E ,=∆∅∆t =S ,∆B ∆t =12πa 2x 4π=0.32V由于L 1、L 2两灯相同,圆环电阻不计,所以每个灯的电压均为U '=12E ',L 1的功率为P 1 = U ,2R 0 = 1.28×10-2 W 。

人教版高中物理选修3-2电磁感应讲义.docx

人教版高中物理选修3-2电磁感应讲义.docx

高中物理学习材料(灿若寒星**整理制作)电磁感应讲义班级 学号 姓名 知识结构重点难点1.电磁感应现象:(1)产生感应电流的条件是:穿过闭合电路的磁通量发生变化.(2)起磁通量变化的类型:2.楞次定律:⑴适用范围:适用于由磁通量变化引起感应电流的各种情况.⑵内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化.⑶对“阻碍”的进一步理解:①阻碍原磁通量的变化或原磁场的变化.“增则反减则同”②阻碍导体的相对运动,可理解为“来则拒去则留”(由磁体相对运动而引起感应电流的情况).③使线圈面积有扩大或缩小的趋势.④阻碍原电流的变化(自感现象). 电磁感应产生 条件自感与 互 感 导体切割磁感线运动 穿过闭合电路所围面积中磁通量发生变化 法拉第电磁感应定律㈠ 法拉第电磁感应定律㈡ 大小:ε=BLV方向:右手定则 大小:ε=n t ∆∆φ 方向:楞次定律 自感现象 互感现象 变压器 21U U =21n n P 出=P 入(理想变压器) 交变电流 即时值 U=U m sin ωt I=I m sin ωt 有效值 U=2m U I= 2m I 周期、频率、角频率 T=ωπ21=f⑷楞次定律判断感应电流方向的一般步骤:①明确所研究的闭合回路中原磁场的方向;②明确穿过闭合回路的磁通量是增加还是减少;③楞次定律判定感应电流的磁场方向;④由安培定则根据感应电流的磁场方向判断出感应电流的方向.3.右手定则:4.法拉第电磁感应定律:(1)感应电动势:感生电动势:由感生电场产生的感应电动势.动生电动势:由于导体运动而产生的感应电动势.(2)公式:E n t ∆Φ=∆ 当△仅由B 引起时,则t B nS E ∆∆=;当△Φ仅由S 引起时,则t SnB E ∆∆=.(3)注意:区分磁通量Φ、磁通量的变化量△Φ和磁通量的变化率t ∆Φ∆磁通量Φ等于磁感应强度B 与垂直于磁场方向的面积S 的乘积,即Φ=BS ,它的意义可以形象地用穿过面的磁感线的条数表示.磁通量的变化量△Φ是指回路在初末两个状态磁通量的变化量,△Φ=Φ2-Φ1.△Φ与某一时刻回路的磁通量Φ无关,当△Φ≠0时,回路中要产生感应电动势,但是△Φ却不能决定感应电动势E 的大小. 磁通量的变化率t ∆Φ∆表示的是磁通量变化的快慢,它决定了回路中感应电动势的大小.t ∆Φ∆的大小与Φ、△Φ均无关.(4)部分导体切割磁感线产生的感应电动势的大小:E=BLVsin θ.①若切割磁感线的导体是弯曲的,L 应理解为有效切割长度,即导体在垂直于速度方向上的投影长度.②公式E=BLV 一般适用于在匀强磁场中导体各部分切割速度相同的情况,对一段导体的转动切割,导体上各点线速度不等,取其平均切割速度12L υω=,得212E BL BL υω==.5.互感两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势.变压器就是利用互感现象制成的.6.自感:对自感要搞清楚通电自感和断电自感两个基本问题,尤其是断电自感,特别模糊的是断电自感中“小灯泡在熄灭之前是否要闪亮一下”的问题,如图9-2-10所示,原来电路闭合处于稳图9-2-10B A I (a )(b)itt2t1定状态,L与A并联,其电流分别为IL和IA,都是从左向右.在断开K的瞬时,灯A中原来的从左向右的电流IA立即消失.但是灯A与线圈L组成一闭合回路,由于L的自感作用,其中的电流IL不会立即消失,而是在回路中逐渐减弱维持短暂的的时间,这个时间内灯A中有从右向左的电流通过.这时通过A的电流是从IL开始减弱,如果原来IL>IA,则在灯A熄灭之前要闪亮一下;如果原来IL≤IA,则灯A逐渐熄灭不再闪亮一下.原来的IL和IA哪一个大,要由L的直流电阻RL与A的电阻RA的大小来决定.如果RL≥RA,则IL≤IA;如果RL<RA,则IL>IA.7.感应电量.回路中发生磁通量变化时,由于感应电场的作用使电荷发生定向移动而形成感应电流,在△t内迁移的电量(感应电量)q:8.电磁感应现象中的综合问题⑴电磁感应中的力学问题:在电磁感应的力学问题中,由于感应电流与导体切割磁感线运动的加速度有着相互制约的关系,故导体一般不是做匀变速运动,而是经历一个动态变化过程再趋于一稳定状态.分析这一动态过程进而确定最终状态是解决这类问题的关键所在.分析顺序一般为:①首先分析导体最初在磁场中的运动状态和受力情况;②再分析由于运动状态变化,导体受到的磁场力、合外力的变化;③再分析由于合外力的变化,导体的加速度、速度又会怎样变,从而又引起感应电流、磁场力、合力怎么变;④最终明确导体所能达到的是何种稳定状态.⑵电磁感应中的电路问题:在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势而成为电源,将它们跟电阻、电容等构成回路即为电磁感应中的电路问题.解决这类问题时,找准电源、正确判断感应电动势的方向(即电源的正负极)是关键.分析求解的一般步骤为:①确定电源,求出电动势(或其表达式);②分析电路结构,明确内、外电路;③正确运用稳恒电流求解.⑶电磁感应中的能量转化问题:导体切割磁感线或磁通量发生变化在回路中产生感应电流,则有机械能或其他形式的能量转化为电能,通过安培力做功,电能最终又转化为内能或机械能.因此,电磁感应过程问题伴随着能量转化.功是能量转化的量度,做功与能量转化的形式相对应,所以从能量转化的观点出发,结合动能定理、能量守恒定律、功能关系来分析导体的动能、势能、电能的变化,就可以建立相应的能量方程.⑷电磁感应中的图像问题:电磁感应教学中涉及的图像一般有以下两种:①各物理量随时间t变化的图像,即B—t图线、Φ--t图线、E--t图线、I--t图线等.②各物理量随线圈或导体的位移x变化的图线.常有E--x图线、I--x图线等.图像问题大致可分为两类:由给定的电磁感应过程选出或画出正确的图像或由给定的图像分析电磁感应过程.电磁感应中的图像问题一般需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决.例题精选1.如图(a)所示,两个闭合圆形线圈A、B的圆心重合,放在同一水平面内,线圈A 中通以如图(b)所示的变化电流,t=0时电流方向为顺时针(箭头所示)。

选修3-2电磁感应导体棒绕固定点转动切割磁感线无答案

选修3-2电磁感应导体棒绕固定点转动切割磁感线无答案

导体棒绕固定点转动切割磁感线问题研究一、基本知识。

导体棒在磁场中转动切割磁感线时,由于各点切割的线速度不同,不能直接用E=BLVsin θ来计算,然导体棒绕定轴转动时依V=rω可知各点的线速度随半径按线性规律变化,因此通常用中点的线速度来替代,即或二、例题讲解。

例1:一根导体棒oa 长度为L,电阻不计,绕o 点在垂直于匀强磁场B 的平面内以角速度ω做匀速圆周运动,求其产生的电动势。

拓展1:存在供电电路例2:金属棒长为l,电阻为r,绕o 点以角速度ω做匀速圆周运动,a 点与金属圆环光滑接触,如图5 所示,图中定值电阻的阻值为R,圆环电阻不计,求Uoa。

拓展2:磁场不是普通的匀强磁场例3:其他条件同例3,空间存在的匀强磁场随时间作周期性变化,B=B0sinAt,其中A 为正的常数,以垂直纸面向里为正方向,求Uoa。

拓展3:有机械能参与的能量转化问题例4:如图8 所示,一金属圆环和一根金属辐条构成的轮子,可绕垂直于圆环平面的水平轴自由转动,金属环与辐条的电阻不计,质量忽略,辐条长度为L0,轮子处在与之垂直的磁感应强度为B 匀强磁场中,磁场方向垂直纸面向里,一阻值为R 的定值电阻通过导线与轮子的中心和边缘相连,轮子外缘同时有绝缘绳绕着,细绳下端挂着质量为m 的重物,求重物下落的稳定速度。

变式(1):如果原题中的辐条有电阻,且电阻r,求最终系统平衡的速度。

变式(2):如果把原题中的辐条由一根变成四根,如图10所示,且相邻两根辐条的夹角是90°,辐条电阻不计,求重物最终下落的稳定速度。

变式(3):如果把变式(2)中的四根辐条变成一金属圆盘,且不计金属圆盘内阻,求重物最终下落的稳定速度,变式(4):如果变式(2)中的四根辐条的电阻都是r,则重物下落的最终稳定速度为多少?变式(5):在变式(4)的情况下,去掉定值电阻R,环的电阻不可忽略,大小为R,且改变圆环右半边所在区域磁场的方向,如图12 所示,磁感应强度的大小都是B,MN 左侧磁场垂直纸面向里,MN 右侧磁场垂直纸面向外,求重物最终下落的稳定速。

2019-2020学年物理人教版选修3-2(浙江新高考专用)讲义:第五章 交变电流 1

2019-2020学年物理人教版选修3-2(浙江新高考专用)讲义:第五章 交变电流 1

图 10 答案 BD
ΔΦ 解析 第 1 s 末,u 最大,e 最大,则 Δt 最大,线框平面平行于磁感线,A 错,B 对;第 2
ΔΦ s 末,e=0, Δt =0,Φ 最大,线框位于中性面上,C 错,D 对. [学科素养] 通过以上例题,使学生进一步熟悉:1.中性面是线圈平面与磁场垂直的位置;2.当 线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动,且从中性面位置开始计时时,线圈中产 生的感应电流是正弦交流电,满足表达式 e=Emsin ωt,i=Imsin ωt,u=Umsin ωt,也可用正 弦图象表示 e-t、i-t、u-t 的变化规律.通过这样的提炼和升华,较好地体现了“物理观念” 和“科学思维”的学科素养.
B、C、D 错误.
2.(交变电流的产生)(多选)(2017·杭州市高二检测)下列各图中,线圈中能产生交变电流的有( )
答案 BCD 3.(交变电流的图象)(2017·温州市高二检测)如图 12 所示是磁电式电流表的结构图和磁场分布 图,若磁极与圆柱间的磁场都是沿半径方向,且磁场有理想的边界,线圈经过有磁场的位置 处磁感应强度大小相等.某同学用此种电流表中的线圈和磁体做成发电机使用,让线圈匀速 转动,若从图中水平位置开始计时,取起始电流方向为正方向,表示产生的电流随时间变化 关系的下列图象中正确的是( )
一、交变电流的产生 两个特殊位置 (1)中性面(S⊥B 位置)
ΔΦ 线圈平面与磁场垂直的位置,此时通过线圈的磁通量 Φ 最大,磁通量变化率 Δt 为 0,电动 势 e 为 0,电流 i 为 0. 线圈经过中性面时,电流方向发生改变,线圈转一圈电流方向改变两次. (2)垂直中性面位置(S∥B 位置)
如图 5 所示的几种情况中,如果 N、B、ω、S 均相同,则感应电动势的峰值均为 Em=NBSω.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6点导体棒切割磁感线问题
剖析
导体切割磁感线是电磁感应中的一类重要问题,其感应电动势的计算公式E=Blv虽然可由
法拉第电磁感应定律E=n ΔΦ
Δt
推出,但其应用却更广泛.首先是因为,在实际的生产实践
中,电磁感应主要是由导体与磁体间的相对运动引起的;其次在实际应用中,我们关注感应电动势的瞬时值多于关注其平均值,而利用E=Blv可以更方便地求瞬时值.
公式E=Blv的适用条件是B、l、v两两垂直,在实际问题的处理中,要处理好以下几种情况:
1.导体是否做切割磁感线运动问题
(1)导体速度与导体共线,此时无论磁场方向怎么样都不切割.
(2)导体速度与导体不共线,它们决定的平面我们可称之为导体运动平面.
①当导体运动平面与磁感线不平行时,切割.如图1(a).
②当导体运动平面与磁感线平行时,不切割.如图(b).
图1
2.平动切割
如图2(a),在磁感应强度为B 的匀强磁场中,棒以速度v 垂直切割磁感线时,感应电动势E =Blv .
图2
3.转动切割
如图(b),在磁感应强度为B 的匀强磁场中,长为l 的导体棒绕其一端为轴以角速度ω匀速
转动,此时产生的感应电动势E =12
Bωl 2. 4.有效切割长度
即导体在与v 垂直的方向上的投影长度.
图3甲中的有效切割长度为:l =MN ;乙图中的有效切割长度为:沿v 1的方向运动时,l =2R ;沿v 2的方向运动时,l =R .
图3
对点例题 如图4所示,三角形金属框架MON 所在平面与磁感应强度为B 的匀强磁场垂直,金属棒ab 能紧贴金属框架运动,且始终与ON 垂直.当ab 从O 点开始匀速向右平动时,速度为v 0,∠bOc =30°,试求bOc 回路中感应电动势E 随时间t 变化的函数关系式.
图4
答案 E =33
Bv 20t 解题指导 设ab 从O 点出发时开始计时,经过时间t 后,ab 匀速运动的距离为s , 则有s =v 0t .在△bOc 中,
由tan 30°=bc s ,有bc =v 0t ·tan 30°.
则金属棒ab 接入回路的bc 部分切割磁感线产生的感应电动势为
E =Bv 0bc =Bv 20t ·tan 30°=33
Bv 20t .
如图5所示是法拉第做成的世界上第一台发电机模型的原理图.将铜盘放在磁场中,让磁感线垂直穿过铜盘,图中a 、b 导线与铜盘的中轴线处在同一平面内,转动铜盘,就可以使闭合电路获得电流.若图中铜盘半径为l ,匀强磁场的磁感应强度为B ,回路总电阻为R ,从上往下看沿逆时针方向匀速转动的铜盘的角速度为ω,则下列说法正确的是( )
图5
A .回路中有大小和方向做周期性变化的电流
B .回路中电流大小恒定,且等于Bl2ωR
C .回路中电流方向不变,且从b 导线流进灯泡,再从a 导线流向旋转的铜盘
D .回路中电流方向不变,且从a 导线流进灯泡,再从b 导线流向旋转的铜盘
答案 C
解析 把铜盘看成若干条由中心指向边缘的铜棒组合而成,当铜盘转动时,每根铜棒都在切割磁感线,相当于电源.由右手定则知,中心为电源正极,铜盘边缘为负极,若干个相同的电源并联对外供电,电流方向由b 经灯泡再从a 流向铜盘,方向不变,选项C 正确,选项
A 、D 错误.回路中感应电动势为E =Bl v =12Bωl 2,所以电流I =E R =Bωl22R
,选项B 错误.。

相关文档
最新文档