2021年九年级中考专题训练:圆的有关性质(含答案)

合集下载

2021年九年级中考专题训练:圆的有关性质(含答案)

2021年九年级中考专题训练:圆的有关性质(含答案)

2021中考专题训练:圆的有关性质一、选择题1. 如图,AB为☉O的直径,C,D为☉O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°2. 如图,△ABC是☉O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°3. 如图,线段AB经过☉O的圆心,AC,BD分别与☉O相切于点C,D.若AC=BD=4,∠A=45°,则圆弧CD的长度为 ()A.πB.2πC.2πD.4π4. 如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°5. 如图,AB是⊙O的直径,CD为弦,CD⊥AB于点E,则下列结论中不成立...的是()A .∠COE =∠DOEB .CE =DEC .OE =BED.BD ︵=BC ︵6.△ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( ) A. 120° B. 125° C. 135° D. 150°7. 2019·天水 如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°8. 如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径为5.若P 是⊙O上的一点,在△ABP 中,PB =AB ,则PA 的长为( )A .5B.5 32C .5 2D .5 3二、填空题9. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.10.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,若∠BCD =28°,则∠ABD =________°.11. 如图,C ,D两点在以AB 为直径的圆上,AB =2,∠ACD =30°,则AD =________.12. 2019·随州如图,点A ,B ,C 在⊙O 上,点C 在AMB ︵上.若∠OBA =50°,则∠C 的度数为________.13. 如图,在⊙O 中,半径OA 垂直于弦BC ,点D 在圆上,且∠ADC =30°,则∠AOB 的度数为________.14. 如图2,一下水管道横截面为圆形,直径为100 cm ,下雨前水面宽为60 cm ,一场大雨过后,水面宽为80 cm,则水位上升________cm.链接听P39例4归纳总结15. 在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以点C为圆心,5为半径的圆上,连接PA,PB.若PB=4,则PA的长为________.16. 如图,定长弦CD在以AB为直径的⊙O上滑动(点C,D与点A,B不重合),M是CD的中点,过点C作CP⊥AB于点P.若CD=3,AB=8,PM=l,则l的最大值是________.三、解答题17.如图①,在△ABC中,点D在边BC上,∠ABC ∶∠ACB ∶∠ADB=1∶2∶3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图②),求∠CAD的度数.18. 已知:如图5,在⊙O中,M,N分别为弦AB,CD的中点,AB=CD,AB 不平行于CD.求证:∠AMN=∠CNM.19.如图,在△ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =C D ,过点D 作⊙O 的切线交边AC 于点F. (1)求证:DF ⊥AC ;(2)若⊙O 的半径为5,∠CDF =30°,求BD ︵的长.(结果保留π)20. 如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径作半圆O 交AC 于点D ,E 为BC 的中点,连接DE. (1)求证:DE 是半圆O 的切线;(2)若∠BAC =30°,DE =2,求AD 的长.21. (2019•辽阳)如图,BE 是⊙O 的直径,点A 和点D 是⊙O 上的两点,连接AE ,AD ,DE ,过点A 作射线交BE 的延长线于点C ,使EAC EDA ∠=∠. (1)求证:AC 是⊙O 的切线;(2)若23CE AE==,求阴影部分的面积.22. 已知平面直角坐标系中两定点A(-1, 0)、B(4, 0),抛物线y=ax2+bx-2(a ≠0)过点A、B,顶点为C,点P(m, n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>32,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<52)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得顺次首尾连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.2021中考专题训练:圆的有关性质-答案一、选择题1. 【答案】B[解析]如图,连接AD,∵AB为☉O的直径,∴∠ADB=90°.∵∠A和∠BCD都是所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.2. 【答案】A[解析]记线段OP交☉O于点F.连接CO,CF,∵∠A=119°,∴∠BFC=61°,∴∠BOC=122°,∴∠COP=58°.∵CP与圆相切于点C,∴OC⊥CP,∴在Rt△OCP中,∠P=90°-∠COP=32°,故选A.3. 【答案】B[解析]连接CO ,DO ,因为AC ,BD 分别与☉O 相切于C ,D ,所以∠ACO=∠BDO=90°,所以∠AOC=∠A=45°,所以CO=AC=4, 因为AC=BD ,CO=DO ,所以OD=BD ,所以∠DOB=∠B=45°, 所以∠DOC=180°-∠DOB -∠AOC=180°-45°-45°=90°,==2π,故选B .4. 【答案】B5. 【答案】C6.【答案】C【解析】由CD 为腰上的高,I 为△ACD 的内心,则∠IAC +∠ICA =12(∠DAC +∠DCA)=12(180°-∠ADC)=12(180°-90°)=45°,所以∠AIC =180°-(∠IAC +∠ICA)=180°-45°=135°.又可证△AIB ≌△AIC ,得∠AIB =∠AIC =135°.7. 【答案】C8. 【答案】D[解析] 如图,连接OB ,OA ,OP ,设OB 与AP 交于点D.由PB=AB 可知PB ︵=AB ︵,从而可知OB ⊥AP.运用“一条弧所对的圆周角等于它所对的圆心角的一半”及“同圆的半径相等”可知△OAB 为等边三角形,在Rt △OAD 中,运用“在直角三角形中,30°角所对的直角边等于斜边的一半”及勾股定理列方程可求得AD 的长,从而可求出AP 的长为5 3.故选D.二、填空题9. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB , ∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB , ∴∠BAD=20°.10.【答案】62 【解析】根据直径所对的圆周角等于90°及∠BCD =28°,可得∠ACD =∠ACB -∠BCD =90°-28°=62°,再根据同弧所对圆周角相等有∠ABD =∠ACD =62°.11. 【答案】1[解析] ∵AB 为⊙O 的直径,∴∠ADB =90°. ∵∠B =∠ACD =30°, ∴AD =12AB =12×2=1.12. 【答案】40°13. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.14. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm,到长为80 cm的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm或70 cm.15. 【答案】3或73[解析] 如图,连接CP,PB的延长线交⊙C于点P′.∵PC=5,BC=3,PB=4,∴BC2+PB2=PC2,∴△CPB为直角三角形,且∠CBP=90°,即CB⊥PB,∴PB=P′B=4.∵∠ACB=90°,∴PB∥AC.又∵PB=AC=4,∴四边形ACBP为平行四边形.又∵∠ACB=90°,∴▱ACBP为矩形,∴PA=BC=3.在Rt△APP′中,∵PA=3,PP′=8,∴P′A=82+32=73.综上所述,PA的长为3或73.16. 【答案】34[解析] 如图,当CD∥AB时,PM的长最大,连接OM,OC.∵CD∥AB,CP⊥AB,∴CP⊥CD.∵M为CD的中点,OM过点O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC.∵⊙O的直径AB=8,∴半径OC=4,∴PM=4.三、解答题17. 【答案】(1)证明:如解图,连接OA,OD.设∠ABC=x,∵∠ABC∶∠ACB∶∠ADB=1∶2∶3,∴∠ADB=3x,∠ACB=2x,解图∴∠DAC=x,∠AOD=2∠ABC=2x,∴∠OAD=180°-2x2=90°-x,(2分)∴∠OAC=90°-x+x=90°,∴OA⊥AC,又∵OA为⊙O的半径,∴AC是⊙O的切线.(4分)(2)解:∵BD是⊙O的直径,∴∠BAD=90°,∵∠ABC∶∠ACB∶∠ADB=1∶2∶3,∠ABC+∠ADB=90°,∴∠ABC+3∠ABC=90°,(6分)解得∠ABC=22.5°,∴∠ADB=67.5°,∠ACB=45°,∴∠CAD=∠ADB-∠ACB=22.5°.(8分)18. 【答案】证明:连接OM,ON,OA,OC,如图所示.∵M,N分别为AB,CD的中点,∴OM ⊥AB ,ON ⊥CD ,AM =12AB ,CN =12CD.又∵AB =CD ,∴AM =CN.在Rt △AOM 和Rt △CON 中,⎩⎨⎧OA =OC ,AM =CN ,∴Rt △AOM ≌Rt △CON(HL),∴OM =ON ,∴∠OMN =∠ONM ,∴∠AMO +∠OMN =∠CNO +∠ONM ,即∠AMN =∠CNM.19. 【答案】(1)证明:如解图,连接OD ,(1分)∵DF 是⊙O 的切线,D 为切点,解图∴OD ⊥DF ,∴∠ODF =90°,(2分)∵BD =CD ,OA =OB ,∴OD 是△ABC 的中位线,(3分)∴OD ∥AC ,∴∠CFD =∠ODF =90°,∴DF ⊥AC.(4分)(2)解:∵∠CDF =30°,由(1)得∠ODF =90°,∴∠ODB =180°-∠CDF -∠ODF =60°,∵OB =OD ,∴△OBD 是等边三角形,(7分)∴∠BOD =60°,∴lBD ︵=n πR 180=60π×5180=53π.(8分)20. 【答案】解:(1)证明:如图,连接BD ,OD ,OE.∵AB 为半圆O 的直径,∴∠ADB =∠BDC =90°.在Rt △BDC 中,E 为斜边BC 的中点,∴DE =BE.在△OBE 和△ODE 中,⎩⎨⎧OB =OD ,OE =OE ,BE =DE ,∴△OBE ≌△ODE(SSS),∴∠ODE =∠ABC =90°,即OD ⊥DE.又∵OD 是半圆O 的半径,∴DE 是半圆O 的切线.(2)在Rt △ABC 中,∠BAC =30°,∴BC =12AC. ∵BC =2DE =4,∴AC =8.又∵∠C =90°-∠BAC =60°,DE =BE =EC ,∴△DEC 为等边三角形,∴DC =DE =2,∴AD =AC -DC =6.21. 【答案】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒,∵OA OE =, ∴12EOF AOF AOE ∠=∠=∠, ∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠,∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵CE AE ==∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠,∴2AEO EAC ∠=∠,∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠,∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒,∴OAE △是等边三角形,∴OA AE =,60EOA ∠=︒,∴OA =∴260π2π360=AOE S ⋅⨯=扇形,在Rt OAE △中,sin 3OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π33-.22. 【答案】(1)因为抛物线y=ax2+bx-2与x轴交于A(-1, 0)、B(4, 0)两点,所以y=a(x+1)(x-4)=ax2-3ax-4a.所以-4a=-2,b=-3a.所以12a=,32b=-.所以221313252()22228y x x x=--=--。

2021年九年级数学中考一轮复习圆的有关性质填空题专题训练(附答案)

2021年九年级数学中考一轮复习圆的有关性质填空题专题训练(附答案)

九年级数学中考一轮复习圆的有关性质填空题专题训练(附答案)1.如图,ABC 中,60BAC ∠=︒,45ABC ∠=︒,D 是边BC 上(不与端点重合)的一个动点,以AD 为直径画O 分别交AB ,AC 于E ,F ,连接EF ,若线段AD 长度的最小值为3,则线段EF 长度的最小值为__________.2.如图,D 、E 是以AB 为直径的半圆O 上任意两点,连接AD 、AE 、DE ,AE 与BD 相交于点C ,要使ADC 与ABD △相似,可以添加的一个条件是___________(填正确结论的序号).①ACD DAB ∠=∠;②AD DE =;③2AD BD CD =⋅;④CD AB AC BD ⋅=⋅.3.如图,在Rt ABC △中,90C ∠=︒,6AC =,30B ∠=︒,点F 在边AC 上,并且2CF =,点E 为边BC 上的动点,将CEF △沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是______.4.如图,点(2,0)A 、(0,1)M 分别是x 轴和y 轴上两点,点B 是以M 为圆心、1为半径的圆上的一个动点,连接AB ,点C 是AB 的中点,连接OC ,则OC 的最大值为________.5.如图是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分.如果M 是弦CD 的中点,EM 经过圆心O 交O 于点E ,并且4CD m =,6EM m =,则O 的半径为________m .6.如图所示,已知C 为AB 的中点,OA ⊥CD 于M ,CN ⊥OB 于N ,若OA =r ,ON =a ,则CD =_____.7.如图,平面直角坐标系xOy 中,M 点的坐标为(3,0),⊙M 的半径为2,过M 点的直线与⊙M 的交点分别为A ,B ,则△AOB 的面积的最大值为_____,此时A ,B 两点所在直线与x 轴的夹角等于_____°.8.如图,圆心B 在y 轴的负半轴上,半径为5的B 与y 轴的正半轴交于点()0,1A ,过点()0,7P -的直线l 与OB 相交于C 、D 两点,则弦CD 长的所有可能的整数值是___________.9.如图,O 的两条弦AB CD ⊥,若130AOD ∠=︒,则BOC ∠=________.10.如图,在半径为13的⊙O 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6AB =,1AE =,则CD 的长是______.11.如图,在扇形AOB 中,点C 、D 在AB 上,连接AD 、BC 交于点E ,若120AOB ∠=︒,CD 的度数为50°,则AEB ∠=_____°.12.在平面直角坐标系中,⊙C 的圆心坐标为(1,0),AB 为⊙C 的直径,若点A 的坐标为(a ,b ),则点B 的坐标为________.13.在平面直角坐标系中,已知A (3,0),B (-1,0),点C 是y 轴上一动点,当∠BCA=45°时,点C 的坐标为_____________.14.如图,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是CBD 上任意一点,AH =2,CH =4.则sin ∠CMD=________.15.在平面直角坐标系中,以原点O 为圆心的圆过点()0,13M ,直线43=-+y kx k 与O 交于B 、C 两点则弦BC 的长最小值为______.16.如图,AB 是⊙O 的弦,OC ⊥AB ,垂足为点C ,将劣弧AB 沿弦AB 折叠与OC 交于OC 的中点D ,若AB =210,则⊙O 的半径为_____________17.如图,已知AB 是⊙O 的直径,AB =6,C ,D 是圆周上的点,且∠CDB =30°,则BC 的长为_____.18.⊙O 的半径为1,AB 、AC 是⊙O 的两条弦,AB=2、AC=3,则∠CAB 所对圆周角的度数为_______.19.如图,在圆O 的内接五边形ABCDE 中,40CAD ∠=︒,则B E ∠+∠=_______°.20.如图,已知正方形ABCD 的边长为2,点M 和N 分别从B 、C 同时出发,以相同的速度沿BC 、CD 方向向终点C 和D 运动.连接AM ,BN 交于点P ,则PC 长的最小值为____________.21.ABC 是边长为5的等边三角形,点D 在ABC 的外部且30BDC ∠=︒,则AD 的最大值是______.22.如图,⊙O 的直径为5,在⊙O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA =4:3,点P 在半圆弧AB 上运动(不与A ,B 重合),过C 作CP 的垂线CD 交PB 的延长线于D 点.则△PCD 的面积最大为______________.23.如图,AB 是⊙O 的直径,点C 在圆上,直线l 经过点C ,且l ∥AB ,P 为直线l 上一个动点,若AC =4,BC =3,以点P ,A ,C 为顶点的三角形与△ABC 相似,则PC =_____.24.如图,直线33y x =+交x 轴于点A ,交y 轴于点B .以A 为圆心,以AB 为半径作弧交x 轴于点A 1;过点A 1作x 轴的垂线,交直线 AB 于点B 1,以A 为圆心,以AB 1为半径作弧交x 轴于点 A 2;…,如此作下去,则点n A 的坐标为___________;25.如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD 的延长线交⊙O于点E,若∠BOE=54°,则∠C=______.26.如图,AB是⊙O的直径,C、D是⊙O上的两个动点(点C、D不与A、B重合),在运动过程中弦CD始终保持不变,F是弦CD的中点,过点C作CE⊥AB于点E.若CD=5,AB=6,当EF取得最大值时,CE的长度为__________.27.如图,在半径为10cm的⊙O中,圆心O到弦AB的距离OC为6cm,则弦AB的长为_____________cm.28.如图,BC为半圆O的直径,EF⊥BC于点F,且BF:FC=5:1,若AB=8,AE=2,则AD的长为__________.参考答案1.32. 2.①②③3.24 5.1036.7.6 908.8,9,10.9.50︒10.11.14512.()2,a b --13.(0,)或(0,) 14.4515.2416..17.318.15°或75°19.2202021.522.50323.3.2或524.(2n ﹣1,0)25.18°.26 27.1628.12。

2021年九年级中考数学 几何专题训练:圆的有关性质(含答案)

2021年九年级中考数学 几何专题训练:圆的有关性质(含答案)

2021中考数学 几何专题训练圆的有关性质一、选择题(本大题共10道小题)1. 如图,⊙O 过点B 、C ,圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为( )A. 10B. 2 3C.13 D. 3 22. 如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于点E ,则下列结论中不成立...的是( )A .∠COE =∠DOEB .CE =DEC .OE =BED.BD ︵=BC ︵3. 如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD =34°,则∠AEO 的度数是( )A.51°B.56°C.68°D.78°4. 如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是( )A.7 B.27 C.6 D.85. 在⊙O中,圆心角∠AOB=3∠COD(∠COD<60°),则劣弧AB,劣弧CD的大小关系是( )A.AB︵=3CD︵B.AB︵>3CD︵C.AB︵<3CD︵D.3AB︵<CD︵6. 2019·梧州如图,在半径为13的⊙O中,弦AB与CD 交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是( )A.2 6 B.2 10 C.2 11D.4 37. 如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm.若不计容器壁厚度,则球的半径为( )A.5 cm B.6 cm C.7 cm D.8 cm8. 如图,将半径为6的⊙O沿AB折叠,AB︵与垂直于AB的半径OC交于点D,且CD=2OD,则折痕AB的长为( )A.4 2 B.8 2 C.6D.6 39. 2020·武汉模拟小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a 为160 mm ,直角顶点A 到轮胎与地面接触点B 的距离AB 为320 mm ,请帮小名同学计算轮胎的直径为( )A .350 mmB .700 mmC .800 mmD .400 mm10. (2019•仙桃)如图,AB 为的直径,BC为的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是的切线;②;③;④.其中正确结论的个数有A .4个B .3个C .2个D .1个O O O CO DB ⊥EDA EBD △∽△ED BC BO BE ⋅=⋅二、填空题(本大题共8道小题)11. 如图所示,AB为☉O的直径,点C在☉O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD= 度.12. 如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=________°.13. 2018·孝感已知⊙O的半径为10 cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16 cm,CD=12 cm,则弦AB和CD 之间的距离是________cm.14. 已知:如图,A,B是⊙O上的两点,∠AOB=120°,C 是AB︵的中点,则四边形OACB是________.(填特殊平行四边形的名称)15. 如图,点A,B,C都在⊙O上,OC⊥OB,点A在BC︵上,且OA=AB,则∠ABC=________°.16. 如图,在⊙O中,BD为⊙O的直径,弦AD的长为3,AB的长为4,AC平分∠DAB,则弦CD的长为________.17. 如图2,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升________cm.链接听P39例4归纳总结18. 只用圆规测量∠XOY 的度数,方法是:以顶点O 为圆心任意画一个圆,与角的两边分别交于点A ,B(如图),在这个圆上顺次截取AB ︵=BC ︵=CD ︵=DE ︵=EF ︵=…,这样绕着圆一周一周地截下去,直到绕第n 周时,终于使第m(m >n)次截得的弧的末端恰好与点A 重合,那么∠XOY 的度数等于________.三、解答题(本大题共4道小题)19. 如图,直线AB 经过⊙O 上的点C ,直线AO 与⊙O 交于点E 和点D ,OB 与⊙O 交于点F ,连接DF ,DC.已知OA =OB ,CA =CB.(1)求证:直线AB 是⊙O 的切线; (2)求证:∠CDF =∠EDC ;(3)若DE =10,DF =8,求CD 的长.20. 如图,AB为⊙O的直径,C为圆外一点,AC交⊙O于点D,BC2=CD·CA,ED︵=BD︵,BE交AC于点F.(1)求证:BC为⊙O的切线;(2)判断△BCF的形状并说明理由;(3)已知BC=15,CD=9,∠BAC=36°,求BD︵的长度(结果保留π).21. 如图,点E是△ABC的内心,线段AE的延长线交BC 于点F(∠AFC≠90°),交△ABC的外接圆于点D.(1)求点F与△ABC的内切圆⊙E的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B ,C ,E 三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.22. (2019•辽阳)如图,是⊙的直径,点和点是⊙上的两点,连接,,,过点作射线交的延长线于点,使. (1)求证:是⊙的切线; (2)若,求阴影部分的面积.BE O A D O AE AD DE A BE C EAC EDA ∠=∠AC O CE AE ==2021中考数学 几何专题训练:圆的有关性质-答案 一、选择题(本大题共10道小题)1. 【答案】C 【解析】延长AO 交BC 于点D ,连接OB.由AB =AC 得点A 在线段BC 的垂直平分线上,因而可得AD ⊥BC ,所以BD =3,不难得出AD =BD =3,于是OD =AD -OA =2,在R t △ODB 中,OB =OD 2+DB 2=22+32=13.2. 【答案】C3. 【答案】A [解析] ∵BC ︵=CD ︵=DE ︵,∠COD =34°, ∴∠BOC =∠COD =∠EOD =34°,∴∠AOE =180°-∠EOD -∠COD -∠BOC =78°. 又∵OA =OE ,∴∠AEO =∠OAE , ∴∠AEO =12×(180°-78°)=51°.4. 【答案】B [解析] 连接OC ,则OC =4,OE =3.在Rt △OCE 中,CE =OC2-OE2=42-32=7.因为AB ⊥CD ,所以CD =2CE =2 7.5. 【答案】A [解析] 把∠AOB三等分,得到的每一份角所对的弧都等于CD︵,因此有AB︵=3CD︵.6. 【答案】C7. 【答案】A [解析] 作出该球轴截面的示意图如图所示.依题意,得BE=2 cm,AE=CE=4 cm.设OE=x cm,则OA =(2+x)cm.∵OA2=AE2+OE2,∴(2+x)2=42+x2,解得x=3,故该球的半径为5 cm.8. 【答案】B [解析] 如图,延长CO交AB于点E,连接OB.∵CE⊥AB,∴AB=2BE.∵OC=6,CD=2OD,∴CD=4,OD=2,OB=6.由折叠的性质可得DE=12×(6×2-4)=4,∴OE=DE-OD=4-2=2.在Rt△OEB中,BE=OB2-OE2=62-22=4 2,∴AB=8 2.故选B.9. 【答案】C10. 【答案】A【解析】如图,连接.∵为的直径,为的切线,∴,∵,∴,.又∵,∴,∴.在和中,,∴,∴.又∵点在上,∴是的切线,故①正确,∵,∴,∵,∴垂直平分,即,故②正确;DOAB O BC O90CBO∠=︒AD OC∥DAO COB∠=∠ADO COD∠=∠OA OD=DAO ADO∠=∠COD COB∠=∠COD△COB△CO COCOD COBOD OB=⎧⎪∠=∠⎨⎪=⎩COD COB△≌△90CDO CBO∠=∠=︒D O CD OCOD COB△≌△CD CB=OD OB=CO DB CO DB⊥∵为的直径,为的切线,∴, ∴,∴,∵,∴,∴,∵,∴,故③正确;∵,,∴,∴,∵,∴,故④正确,故选A .二、填空题(本大题共8道小题)11. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB ,∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB ,∴∠BAD=20°.12. 【答案】62 【解析】根据直径所对的圆周角等于90°及∠BCD =28°,可得∠ACD =∠ACB -∠BCD =90°-28°=62°,再根据同弧所对圆周角相等有∠ABD =∠ACD =AB O DC O 90EDO ADB ∠=∠=︒90EDA ADO BDO ADO ∠+∠=∠+∠=︒ADE BDO ∠=∠OD OB =ODB OBD ∠=∠EDA DBE ∠=∠E E ∠=∠EDA EBD △∽△90EDO EBC ∠=∠=︒E E ∠=∠EOD ECB △∽△ED OD BE BC =OD OB =ED BC BO BE ⋅=⋅62°.13. 【答案】2或14 [解析] ①当弦AB和CD在圆心同侧时,连接OA,OC,过点O作OE⊥CD于点F,交AB于点E,如图①,∵AB=16 cm,CD=12 cm,∴AE=8 cm,CF=6 cm.∵OA=OC=10 cm,∴EO=6 cm,OF=8 cm,∴EF=OF-OE=2 cm;②当弦AB和CD在圆心异侧时,连接OA,OC,过点O作OE⊥CD于点E并反向延长交AB于点F,如图②,∵AB=16 cm,CD=12 cm,∴AF=8 cm,CE=6 cm.∵OA=OC=10 cm,∴OF=6 cm,OE=8 cm,∴EF=OF+OE=14 cm.∴AB与CD之间的距离为2 cm或14 cm.14. 【答案】菱形[解析] 连接OC.∵C是AB︵的中点,∴∠AOC=∠COB=60°.又∵OA=OC=OB,∴△OAC和△OCB都是等边三角形,∴OA=AC=BC=OB,∴四边形OACB是菱形.15. 【答案】15 [解析] ∵OC⊥OB,∴∠COB=90°. 又∵OC=OB,∴△COB是等腰直角三角形,∴∠OBC=45°.∵OA=AB,OA=OB,∴OA=AB=OB,∴△AOB是等边三角形,∴∠OBA=60°,∴∠ABC=∠OBA-∠OBC=15°.16. 【答案】522 [解析] ∵BD为⊙O的直径,∴∠DAB=∠DCB=90°.∵AD=3,AB=4,∴BD=5.又∵AC平分∠DAB,∴∠DAC=∠BAC=45°,∴∠DBC=∠DAC=45°,∠CDB=∠BAC=45°,从而CD =CB ,∴CD =522.17. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm ,到长为80 cm 的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm 或70 cm.18. 【答案】⎝ ⎛⎭⎪⎪⎫360n m °[解析] 设∠XOY 的度数为x ,则mx=n ×360°,所以x =⎝ ⎛⎭⎪⎪⎫360n m °.三、解答题(本大题共4道小题)19. 【答案】解:(1)证明:如图,连接OC.∵OA =OB ,AC =CB ,∴OC ⊥AB.又∵点C 在⊙O 上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M.∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN =9,∴CD=DM2+CM2=92+32=310.20. 【答案】(1)证明:∵BC2=CD·CA,∴BCCA=CD BC,∵∠C=∠C,∴△CBD∽△CAB,∴∠CBD=∠BAC,又∵AB为⊙O的直径,∴∠ADB=90°,即∠BAC+∠ABD=90°,∴∠ABD+∠CBD=90°,即AB⊥BC,又∵AB为⊙O的直径,∴BC为⊙O的切线;(2)解:△BCF为等腰三角形.证明如下:∵ED︵=BD︵,∴∠DAE=∠BAC,又∵△CBD∽△CAB,∴∠BAC=∠CBD,∴∠CBD=∠DAE,∵∠DAE=∠DBF,∴∠DBF=∠CBD,∵∠BDF=90°,∴∠BDC=∠BDF=90°,∵BD=BD,∴△BDF≌△BDC,∴BF=BC,∴△BCF为等腰三角形;(3)解:由(1)知,BC为⊙O的切线,∴∠ABC=90°∵BC2=CD·CA,∴AC=BC2CD=1529=25,由勾股定理得AB=AC2-BC2=252-152=20,∴⊙O的半径为r=AB2=10,∵∠BAC=36°,∴BD︵所对圆心角为72°.则BD︵=72×π×10180=4π.21. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD 2+CD 2=BC 2,∴BD =CD =3 2.(4)B,C ,E 三点可以确定一个圆.如图②,连接CD .∵点E 是△ABC 的内心,∴∠BAD =∠CAD ,∴BD =CD .又由(2)可知ED =BD ,∴BD =CD =ED ,∴B ,C ,E 三点确定的圆的圆心为点D ,半径为BD (或ED ,CD )的长度.22. 【答案】(1)如图,连接,过作于,∴,∴,OA O OF AE ⊥F 90AFO ∠=︒90EAO AOF ∠+∠=︒∵,∴, ∵, ∴, ∵, ∴, ∴, ∵, ∴, ∴,∴是⊙的切线.(2)∵, ∴, ∵, ∴, ∵,, ∴, ∵, OA OE =12EOF AOF AOE ∠=∠=∠12EDA AOE ∠=∠EDA AOF ∠=∠EAC EDA ∠=∠EAC AOF ∠=∠90EAO EAC ∠+∠=︒EAC EAO CAO ∠+∠=∠90CAO ∠=︒OA AC ⊥ACO CE AE ==C EAC ∠=∠EAC C AEO ∠+∠=∠2AEO EAC ∠=∠OA OE =AEO EAO ∠=∠2EAO EAC ∠=∠90EAO EAC ∠+∠=︒∴,, ∴是等边三角形, ∴,, ∴,∴, 在中,, ∴, ∴阴影部分的面积.30EAC ∠=︒60EAO ∠=︒OAE △OA AE =60EOA ∠=︒OA=2πAOE S =扇形Rt OAE△sin 3OF OA EAO =⋅∠==11322AOE S AE OF =⋅=⨯=△=2π-。

2021年中考数学专题汇编:圆的有关性质(含答案)

2021年中考数学专题汇编:圆的有关性质(含答案)

2021年中考数学专题汇编:圆的有关性质(含答案)2021中考数学专题汇编:圆的有关性质一、选择题(本大题共10道小题)1. 如图,已知直径MN ⊥弦AB ,垂足为C ,有下列结论:①AC =BC ;②AN ︵=BN ︵;③AM ︵=BM ︵;④AM =BM .其中正确的个数为( )A .1B .2C .3D .42. 如图,☉O的直径AB 垂直于弦CD.垂足是点E ,∠CAO=22.5°,OC=6,则CD 的长为 ( )A .6B .3C .6D .123. 如图,AB 是⊙O的直径,点C ,D ,E 在⊙O 上.若∠AED =20°,则∠BCD的度数为( )A .100°B .110°C .115°D .120°4. 2019·葫芦岛如图,在⊙O 中,∠BAC =15°,∠ADC =20°,则∠ABO 的度数为( )A .70°B .55°C .45°D .35°5. 2019·赤峰如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,D 是⊙O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°6. 如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135°B.122.5°C.115.5°D.112.5°7. 如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x 的图象被⊙P截得的弦AB的长为2 3,则a的值是()A.2 B.2+ 2C.2 3 D.2+ 38. 如图,⊙P与x轴交于点A(—5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为()A.13+ 3 B .2 2+ 3C .4 2D .2 2+29. 如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm.若不计容器壁厚度,则球的半径为( )A .5 cmB .6 cmC .7 cmD .8 cm10. 一条排水管的截面如图所示,已知排水管的半径OA =1 m ,水面宽AB =1.2m ,某天下雨后,排水管水面上升了0.2 m ,则此时排水管水面宽为( )A .1.4 mB .1.6 mC .1.8 mD .2 m二、填空题(本大题共8道小题)11. 2019·随州如图,点A ,B ,C 在⊙O 上,点C 在AMB ︵上.若∠OBA =50°,则∠C 的度数为________.12. 如图,AB 为⊙O的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为________.13. 已知:如图,A ,B是⊙O 上的两点,∠AOB =120°,C 是AB ︵的中点,则四边形OACB 是________.(填特殊平行四边形的名称)14. 如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,C 为弧BD 的中点.若∠DAB =40°,则∠ABC =________°.15. 如图所示,OB ,OC是⊙O 的半径,A 是⊙O 上一点.若∠B =20°,∠C =30°,则∠A =________°.16. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.17. 如图,在☉O 中,弦AB=1,点C 在AB 上移动,连接OC ,过点C 作CD ⊥OC 交☉O 于点D ,则CD 的最大值为 .18. 已知⊙O的半径为2,弦BC =2 3,A 是⊙O 上一点,且AB ︵=AC ︵,直线AO 与BC 交于点D ,则AD 的长为________.三、解答题(本大题共4道小题)19.如图,在△ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =C D ,过点D 作⊙O 的切线交边AC 于点F. (1)求证:DF ⊥AC ;(2)若⊙O 的半径为5,∠CDF =30°,求BD ︵的长.(结果保留π)20. 如图,在⊙O 中,AB =DE ,BC =EF .求证:AC =DF .21. 如图为一拱形公路桥,圆弧形桥拱的水面跨度AB =80米,桥拱到水面的最大高度为20米. (1)求桥拱的半径;(2)现有一艘宽60米,船舱顶部为长方形并高出水面9米的轮船要经过这里,这艘轮船能顺利通过这座拱桥吗?请说明理由.22.如图,AB是⊙O的直径,点E为线段OB上一点(不与O、B重合),作EC⊥OB交⊙O于点C,作直径CD过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠F AB;(2)求证:BC2=CE·CP;(3)当AB=43且CFCP=34时,求劣弧BD︵的长度.2021中考数学专题汇编:圆的有关性质-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】A[解析]∵∠A=22.5°,∴∠COE=45°,∵☉O的直径AB垂直于弦CD,∴∠CEO=90°,CE=DE.∵∠COE=45°,∴CE=OE=OC=3,∴CD=2CE=6,故选A.3. 【答案】B[解析] 连接AC.∵AB为⊙O的直径,∴∠ACB=90°.∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°.故选B.4. 【答案】B5. 【答案】D6. 【答案】D[解析] ∵OA=OB,∴∠OAB=∠OBA=22.5°,∴∠AOB=180°-22.5°-22.5°=135°,∴∠C=180°-12×135°=112.5°.7. 【答案】B[解析] 如图,连接PB,过点P作PC⊥AB于点C,过点P作横轴的垂线,垂足为E,交AB于点D,则PB=2,BC=3.在Rt△PBC中,由勾股定理得PC=1.∵直线y=x平分第一象限的夹角,∴△PCD和△DEO都是等腰直角三角形,∴PD=2,DE=OE=2,∴a=PE=2+ 2.故选B.8. 【答案】B[解析] 如图,连接PA,PB,PC,过点P作PD⊥AB 于点D,PE ⊥OC于点E.∵∠ACB=60°,∴∠APB=120°.∵PA=PB,∴∠PAB=∠PBA=30°.∵A(-5,0),B(1,0),∴AB=6,∴AD=BD=3,∴PD=3,PA=PB=PC=2 3.∵PD⊥AB,PE⊥OC,∠AOC=90°,∴四边形PEOD是矩形,∴OE=PD=3,PE=OD=3-1=2,∴CE=PC2-PE2=12-4=2 2,∴OC=CE+OE=2 2+3,∴点C的纵坐标为2 2+ 3.故选B.9. 【答案】A[解析] 作出该球轴截面的示意图如图所示.依题意,得BE=2 cm,AE=CE=4 cm.设OE=x cm,则OA=(2+x)cm.∵OA2=AE2+OE2,∴(2+x)2=42+x2,解得x=3,故该球的半径为5 cm.10. 【答案】B[解析] 如图,过点O作OE⊥AB于点E,交CD于点F,连接OC.∵AB=1.2 m,OE⊥AB,OA=1 m,∴AE=0.6 m,∴OE=0.8 m.∵排水管水面上升了0.2 m,∴OF=0.8-0.2=0.6(m).由题意可知CD∥AB.∵OE⊥AB,∴OE⊥CD,∴CF=OC2-OF2=0.8 m,CD=2CF,∴CD =1.6 m .故选B.二、填空题(本大题共8道小题)11. 【答案】40°12. 【答案】5[解析] 设圆的半径为x ,则OE =x -1.根据垂径定理可知,CE =3,由勾股定理可得32+(x -1)2=x2,解得x =5. 故答案为5.13. 【答案】菱形[解析] 连接OC.∵C 是AB ︵的中点,∴∠AOC =∠COB =60°. 又∵OA =OC =OB ,∴△OAC 和△OCB 都是等边三角形,∴OA =AC =BC =OB ,∴四边形OACB 是菱形.14. 【答案】70[解析] 如图,连接AC.∵AB 为⊙O 的直径,∴∠ACB =90°.∵C为弧BD 的中点,∴∠CAB =12∠DAB =20°,∴∠ABC =70°.15. 【答案】50[解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.16. 【答案】8[解析] 由题意可得A ,P ,B ,C 在同一个圆上,所以当BP 为圆的直径时,BP 最大,此时∠P AB =90°.过点C 作CD ⊥AB 于点D ,可求得AB =4 3,进而可求得BP 的最大值为8.17. 【答案】[解析]连接OD ,因为CD ⊥OC ,所以CD=,根据题意可知圆半径一定,故当OC 最小时CD 最大.当OC ⊥AB 时OC 最小,CD 最大值=AB=.18. 【答案】3或1 [解析] 如图所示:∵⊙O 的半径为2,弦BC =2 3,A 是⊙O 上一点,且AB ︵=AC ︵,∴AO ⊥BC ,垂足为D ,则BD =12BC = 3. 在Rt △OBD 中,∵BD2+OD2=OB2,即(3)2+OD2=22,解得OD =1.∴当点A 在如图①所示的位置时,AD =OA -OD =2-1=1;当点A 在如图②所示的位置时,AD =OA +OD =2+1=3.三、解答题(本大题共4道小题)19. 【答案】(1)证明:如解图,连接OD ,(1分) ∵DF 是⊙O 的切线,D 为切点,解图∴OD ⊥DF ,∴∠ODF =90°,(2分) ∵BD =CD ,OA =OB ,∴OD 是△ABC 的中位线,(3分) ∴OD ∥AC ,∴∠CFD =∠ODF =90°,∴DF ⊥AC.(4分)(2)解:∵∠CDF =30°,由(1)得∠ODF =90°,∴∠ODB =180°-∠CDF -∠O DF =60°,∵OB =OD ,∴△OBD 是等边三角形,(7分) ∴∠BOD =60°,∴lBD ︵=n πR 180=60π×5180=53π.(8分)20. 【答案】证明:∵AB =DE ,BC =EF ,∴AB ︵=DE ︵,BC ︵=EF ︵,∴AB ︵+BC ︵=DE ︵+EF ︵,∴AC ︵=DF ︵,∴AC =DF .21. 【答案】解:(1)如图①,设点E 是桥拱所在圆的圆心,连接AE ,过点E 作EF ⊥AB 于点F ,延长EF 交AB ︵于点D.根据垂径定理知F 是AB 的中点,D 是AB ︵的中点,DF 的长是桥拱到水面的最大高度,∴AF =FB =12AB =40米,EF =DE -DF =AE -DF. 由勾股定理,知AE2=AF2+EF2=AF2+(AE -DF)2. 设桥拱的半径为r 米,则r2=402+(r -20)2,解得r =50.答:桥拱的半径为50米.(2)这艘轮船能顺利通过这座拱桥.理由如下:如图②,由题意,知DE ⊥MN ,PM =12MN =30米,EF =50-20=30(米).在Rt △PEM中,PE =EM2-PM2=40米,∴PF =PE -EF =40-30=10(米).∵10米>9米,∴这艘轮船能顺利通过这座拱桥.22. 【答案】(1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径,∴CD ⊥PF ,又∵AF ⊥PC ,∴AF ∥CD ,∴∠OCA =∠CAF ,∵OA =OC ,∴∠OAC =∠OCA ,∴∠CAF =∠OAC ,∴AC 平分∠F AB ;(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠DCP =90°,∴∠ACB =∠DCP =90°,又∵∠BAC =∠D ,∴△ACB ∽△DCP ,∴∠EBC =∠P ,∵CE ⊥AB ,∴∠BEC =90°,∵CD 是⊙O 的直径,∴∠DBC =90°,∴∠CBP =90°,∴∠BEC =∠CBP ,∴△CBE ∽△CPB ,∴BC PC =CE CB ,∴BC 2=CE ·CP ;(3)解:∵AC 平分∠F AB ,CF ⊥AF ,CE ⊥AB ,∴CF =CE ,∵CF CP =34,∴CE CP =34,设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32,∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.。

2021年九年级中考数学 专题训练:圆的有关性质(含答案)

2021年九年级中考数学 专题训练:圆的有关性质(含答案)

2021中考数学 专题训练:圆的有关性质一、选择题1. 如图,AB ,AC 分别是☉O 的直径和弦,OD ⊥AC 于点D ,连接BD ,BC ,若AB=10,AC=8,则BD 的长为 ( )A .2B .4C .2D .4.82. 如图,在⊙O 中,点C 是AB ︵的中点,∠A =50°,则∠BOC =( )A . 40°B . 45°C . 50°D . 60°3. 如图,AB是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论正确的是( )A .OE =BEB.BC ︵=BD ︵C .△BOC 是等边三角形D .四边形ODBC 是菱形4. 如图,在半径为5的⊙O 中,弦AB =6,OP ⊥AB ,垂足为P ,则OP 的长为( )A .3B .2.5C .4D .3.55. 2019·武汉京山期中在圆柱形油槽内装有一些油,油槽直径MN 为10分米.截面如图,油面宽AB 为6分米,如果再注入一些油后,油面宽变为8分米,则油面AB 上升( )A .1分米B .4分米C .3分米D .1分米或7分米6. (2019•镇江)如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若110C ∠=︒,则ABC ∠的度数等于A .55︒B .60︒C .65︒D .70︒7. 如图,在⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为( )A .19B .16C .18D .208. 如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径为5.若P 是⊙O 上的一点,在△ABP 中,PB =AB ,则PA 的长为( )A .5B.5 32C .5 2D .5 3二、填空题 9. 如图,AT 切⊙O 于点A ,AB 是⊙O 的直径.若∠ABT =40°,则∠ATB =________.10. 如图,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升了cm.11. 2018·孝感已知⊙O的半径为10 cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16 cm,CD=12 cm,则弦AB和CD之间的距离是________cm.12. 如图0,A,B是⊙O上的两点,AB=10,P是⊙O上的动点(点P与A,B两点不重合),连接AP,PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=________.13. 如图,在☉O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交☉O于点D,则CD的最大值为.14. 如图所示,动点C在⊙O的弦AB上运动,AB=23,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为________.15. 如图,圆内接四边形ABCD中两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=________°.16. 如图2,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升________cm.链接听P39例4归纳总结三、解答题17. 如图,已知△ABC内接于☉O,AB是直径,点D在☉O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE.18. 筒车是我国古代发明的一种水利灌溉工具.如图,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图②,筒车盛水桶的运行轨道是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB的长为6米,∠OAB=41.3°.若点C为运行轨道的最高点(C,O的连线垂直于AB).求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)19. 如图,AB为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F . (1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).20. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.2021中考数学 专题训练:圆的有关性质-答案一、选择题1. 【答案】C [解析]∵AB 是直径,∴∠C=90°,∴BC==6.∵OD ⊥AC ,∴CD=AD=AC=4, ∴BD==2,故选C .2. 【答案】A【解析】∵OA =OB ,∠A =50°,∴∠B =50°,∴∠AOB =180°-∠A -∠B =180°-50°-50°=80°,∵点C 是AB ︵的中点,∴∠BOC =∠AOC =12∠AOB =40°,故选A.3. 【答案】B[解析] AB 是⊙O 的直径,弦CD ⊥AB 于点E ,由垂径定理可以得到CE =DE ,BC ︵=BD ︵,AC ︵=AD ︵.但并不一定能得到OE =BE ,OC =BC ,从而A ,C ,D 选项都是错误的. 故选B.4. 【答案】C5. 【答案】D6. 【答案】A【解析】如图,连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∠DAB=180°–∠C=70°, ∵DC CB ,∴∠CAB=12∠DAB=35°, ∵AB 是直径,∴∠ACB=90°,∴∠ABC=90°–∠CAB=55°,故选A .7. 【答案】D [解析] 如图,延长AO 交BC 于点D ,过点O 作OE ⊥BC 于点E.∵∠A =∠B =60°,∴△DAB 是等边三角形,∴AD =DB =AB =12,∠ADB =∠A =60°,∴OD =AD -OA =12-8=4.在Rt △ODE 中,∵∠DOE =90°-∠ADB =30°,∴DE =12OD=2,∴BE =DB -DE =12-2=10.由垂径定理,知BC =2BE =20.8. 【答案】D [解析] 如图,连接OB ,OA ,OP ,设OB 与AP 交于点D.由PB =AB 可知PB︵=AB ︵,从而可知OB ⊥AP.运用“一条弧所对的圆周角等于它所对的圆心角的一半”及“同圆的半径相等”可知△OAB 为等边三角形,在Rt △OAD 中,运用“在直角三角形中,30°角所对的直角边等于斜边的一半”及勾股定理列方程可求得AD 的长,从而可求出AP 的长为5 3.故选D.二、填空题 9. 【答案】50° 【解析】∵AT 是⊙O 的切线,AB 是⊙O 的直径,∴∠BAT =90°,在Rt △BAT 中,∵∠ABT =40°,∴∠ATB =50°.10. 【答案】10或70 [解析]作OD ⊥AB 于C ,OD 交☉O 于点D ,连接OB.由垂径定理得:BC=AB=30 cm . 在Rt △OBC 中,OC==40(cm).当水位上升到圆心以下且水面宽80 cm 时, 圆心到水面距离==30(cm),水面上升的高度为:40-30=10(cm).当水位上升到圆心以上且水面宽80 cm 时,水面上升的高度为:40+30=70(cm). 综上可得,水面上升的高度为10 cm 或70 cm . 故答案为10或70.11. 【答案】2或14 [解析] ①当弦AB 和CD 在圆心同侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点F ,交AB 于点E ,如图①, ∵AB =16 cm ,CD =12 cm , ∴AE =8 cm ,CF =6 cm. ∵OA =OC =10 cm , ∴EO =6 cm ,OF =8 cm , ∴EF =OF -OE =2 cm ;②当弦AB 和CD 在圆心异侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点E 并反向延长交AB 于点F ,如图②,∵AB =16 cm ,CD =12 cm , ∴AF =8 cm ,CE =6 cm. ∵OA =OC =10 cm , ∴OF =6 cm ,OE =8 cm , ∴EF =OF +OE =14 cm.∴AB 与CD 之间的距离为2 cm 或14 cm.12. 【答案】5 [解析] ∵OE 过圆心且与PA 垂直,∴PE =EA.同理PF =FB ,∴EF 是△PAB 的中位线, ∴EF =12AB =5.13. 【答案】[解析]连接OD ,因为CD ⊥OC ,所以CD=,根据题意可知圆半径一定,故当OC 最小时CD 最大.当OC ⊥AB 时OC 最小,CD 最大值=AB=.14. 【答案】3 [解析] 如图,连接OD ,过点O 作OH ⊥AB 于点H ,则AH =BH=12AB = 3.∵CD ⊥OC ,∴CD =OD 2-OC 2.∵OD 为⊙O 的半径,∴当OC 最小时,CD 最大.当点C 运动到点H 时,OC 最小,此时CD =BH =3,即CD 的最大值为 3.15. 【答案】40 [解析] ∵∠BCD =180°-∠A =125°,∠CBF =∠A +∠E =85°,∴∠F =∠BCD -∠CBF =125°-85°=40°.16. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm ,到长为80 cm 的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm 或70 cm.三、解答题17. 【答案】证明:(1)∵AB 是☉O 的直径,∴∠ACB=90°. ∵DE ⊥AB ,∴∠DEO=90°, ∴∠DEO=∠ACB.∵OD ∥BC ,∴∠DOE=∠ABC , ∴△DOE ∽△ABC.(2)∵△DOE ∽△ABC ,∴∠ODE=∠A. ∵∠A 和∠BDC 都是所对的圆周角,∴∠A=∠BDC ,∴∠ODE=∠BDC. ∴∠ODF=∠BDE.18. 【答案】解:连接CO 并延长,交AB 于点D ,∴CD ⊥AB ,且D 为AB 中点,所求运行轨道的最高点C 到弦AB 所在直线的距离即为线段CD 的长. 在Rt △AOD 中,∵AD=AB=3,∠OAD=41.3°, ∴OD=AD ·tan41.3°≈3×0.88=2.64,OA=≈=4,∴CD=CO +OD=AO +OD=4+2.64=6.64(米).答:运行轨道的最高点C 到弦AB 所在直线的距离约为6.64米.19. 【答案】(1)证明:∵BC 2=CD ·CA , ∴BC CA =CD BC , ∵∠C =∠C ,∴△CBD ∽△CAB , ∴∠CBD =∠BAC , 又∵AB 为⊙O 的直径, ∴∠ADB =90°,即∠BAC +∠ABD =90°, ∴∠ABD +∠CBD =90°, 即AB ⊥BC ,又∵AB 为⊙O 的直径, ∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形. 证明如下:∵ED ︵=BD ︵, ∴∠DAE =∠BAC , 又∵△CBD ∽△CAB , ∴∠BAC =∠CBD , ∴∠CBD =∠DAE , ∵∠DAE =∠DBF , ∴∠DBF =∠CBD , ∵∠BDF =90°,∴∠BDC =∠BDF =90°, ∵BD =BD ,∴△BDF ≌△BDC , ∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°,∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.20. 【答案】(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC ,∴△ACO 为等边三角形,∴∠AOC =∠ACO =∠OAC =60°,∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C ,∴OC ⊥DC ,∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°,∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°,∴△COP 和△BOP 都为等边三角形,∴OC =CP =OB =PB ,∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°,在Rt △ABC 与Rt △CP A 中,⎩⎨⎧AB =CP AC =AC, ∴Rt △ABC ≌Rt △CP A (HL).。

2021年 中考数学 专题训练:与圆有关的性质(含答案)

2021年 中考数学 专题训练:与圆有关的性质(含答案)

2021 中考数学专题训练:与圆有关的性质一、选择题1. 如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°2. 已知⊙O的半径为5 cm,P是⊙O内一点,则OP的长可能是()A.4 cm B.5 cm C.6 cm D.7 cm3. 下列语句中不正确的有()①过圆上一点可以作圆中最长的弦无数条;②长度相等的弧是等弧;③圆上的点到圆心的距离都相等;④在同圆或等圆中,优弧一定比劣弧长.A.1个B.2个C.3个D.4个4. 如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°5. 2019·赤峰如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A .30°B .40°C .50°D .60°6. (2019•广元)如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .5B .4C .13D .4.87. 下列说法:①矩形的四个顶点在同一个圆上;②菱形的四个顶点在同一个圆上;③平行四边形的四个顶点在同一个圆上.其中正确的有( )链接听P37例3归纳总结 A .0个 B .1个 C .2个 D .3个8. 如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB︵上一点,∠AOP =55°,则∠POB 的度数为( )A .30°B .45°C .55°D .60°9. (2019•镇江)如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若110C ∠=︒,则ABC ∠的度数等于A .55︒B .60︒C .65︒D .70︒10. 2019·天水如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°二、填空题11.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.12. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE,若∠ABC=64°,则∠BAE的度数为.︵13. 如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC 上一点,则∠D=________.14. 如图,AB为⊙O的直径,CD⊥AB.若AB=10,CD=8,则圆心O到弦CD 的距离为________.15. 如图所示,OB ,OC 是⊙O 的半径,A 是⊙O 上一点.若∠B =20°,∠C =30°,则∠A =________°.16. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.17. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题19.如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,求证:MO∥B C.20.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=10,求⊙O的半径.21. (2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,∠=∠.AD,DE,过点A作射线交BE的延长线于点C,使EAC EDA(1)求证:AC是⊙O的切线;(2)若23==,求阴影部分的面积.CE AE2021 中考数学专题训练:与圆有关的性质-答案一、选择题1. 【答案】A2. 【答案】A3. 【答案】B[解析] ①②不正确.4. 【答案】A[解析]连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°-∠C=70°.∵=,∴∠CAB=∠DAB=35°.∵AB 是直径,∴∠ACB=90°, ∴∠ABC=90°-∠CAB=55°,故选A .5. 【答案】D6. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =-=-=,∵OD AC ⊥,∴142CD AD AC ===, 在Rt CBD △中,2246213BD =+=.故选C .7. 【答案】B[解析] 矩形的两条对角线的交点到矩形的四个顶点的距离相等,故它的四个顶点在以对角线的交点为圆心、对角线长的一半为半径的圆上.8. 【答案】B9. 【答案】A【解析】如图,连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∠DAB=180°–∠C=70°, ∵DC CB =,∴∠CAB=12∠DAB=35°, ∵AB 是直径,∴∠ACB=90°,∴∠ABC=90°–∠CAB=55°,故选A .10. 【答案】C二、填空题11.【答案】50°【解析】∵AT 是⊙O 的切线,AB 是⊙O 的直径,∴∠BAT =90°,在Rt △BAT 中,∵∠ABT =40°,∴∠ATB =50°.12. 【答案】52°[解析]∵圆内接四边形对角互补,∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°. ∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.13. 【答案】40°【解析】AC 是⊙O 的直径⇒∠ABC =90°⇒⎭⎪⎬⎪⎫ ∠A =90°-50°=40°∠A 和∠D 都是BC ︵所对的圆周角 ⇒∠D =∠A =40°. 14. 【答案】315. 【答案】50 [解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.16. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.17. 【答案】65[解析] ∵∠C =25°,∴∠A =∠C =25°.∵⊙O 的直径AB 过弦CD 的中点E , ∴AB ⊥CD ,∴∠AED =90°, ∴∠D =90°-25°=65°.18. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A作直径AD,连接BD,则∠ABD=90°,∴∠C=∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题19. 【答案】证明:∵AB是⊙O的直径,∴∠ACB=90°,∵MP为⊙O的切线,∴∠PMO=90°,∵MP∥AC,∴∠P=∠CAB,∴∠MOP=∠B,故MO∥BC.20. 【答案】(1)证明:如解图,连接DO,∴∠BOD=2∠BCD=∠A,(2分)解图又∵∠DEA=∠CBA,∴∠DEA+∠DOE=∠CAB+∠CBA,又∵∠ACB=90°,∴∠ODE=∠ACB=90°,(5分)∴OD⊥DE,又∵OD是⊙O的半径,∴DE与⊙O相切.(7分)(2)解:如解图,连接BD,可得△FBD ∽△DBO , ∴BD BO =DF OD =BF BD ,(8分)∴BD =DF =10,∴OB =5,(10分)即⊙O 的半径为5.21. 【答案】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒, ∵OA OE =,∴12EOF AOF AOE ∠=∠=∠, ∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠, ∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵CE AE == ∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠, ∴2AEO EAC ∠=∠, ∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠, ∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒, ∴OAE △是等边三角形, ∴OA AE =,60EOA ∠=︒,∴OA =∴260π2π360=AOE S ⋅⨯=扇形,在Rt OAE △中,sin 32OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π。

2021年九年级数学中考一轮复习知识点中考真题演练:圆的有关性质(附答案)

2021年九年级数学中考一轮复习知识点中考真题演练:圆的有关性质(附答案)

2021年九年级数学中考一轮复习中考真题演练:圆的有关性质(附答案)1.如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2B.﹣2C.﹣8D.﹣72.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径D,测得两根圆钢棒与地的两个接触点之间的距离为400mm,则工件直径D(mm)用科学记数法可表示为()mm.A.4×104B.0.4×105C.20000D.4×1023.如图所示,一种花边是由如图弧ACB组成的,弧ACB所在圆的半径为5,弦AB=8,则弧形的高CD为()A.2B.C.3D.4.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.cm B.cm C.cm D.4cm5.在⊙O中,C是的中点,D是上的任一点(与点A、C不重合),则()A.AC+CB=AD+DB B.AC+CB<AD+DBC.AC+CB>AD+DB D.AC+CB与AD+DB的大小关系不确定6.如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为上任意一点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°7.如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.27°C.36°D.108°8.如图,四边形ABCD内接于⊙O,连接BD.若,∠BDC=50°,则∠ADC的度数是()A.125°B.130°C.135°D.140°9.如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°10.如图,A是硬币圆周上一点,硬币与数轴相切于原点O(A与O点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是.11.如图,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积为.12.AB是⊙O的弦,OM⊥AB,垂足为M,连接OA.若△AOM中有一个角是30°,OM =2,则弦AB的长为.13.如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O 于点D,则CD的最大值为.14.如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB =120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)15.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm.16.如图,⊙O的半径为1cm,弦AB、CD的长度分别为cm,1cm,则弦AC、BD所夹的锐角α=度.17.如图,在⊙O中,,∠A=40°,则∠B=度.18.如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=°.19.如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB 相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.20.已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD.求证:△OAC≌△OBD.21.如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.22.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.23.如图,在⊙O中,=,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.24.如图,在⊙O中,点P为的中点,弦AD、PC互相垂直,垂足为M,BC分别与AD、PD相交于点E、N,连接BD、MN.(1)求证:N为BE的中点.(2)若⊙O的半径为8,的度数为90°,求线段MN的长.25.如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.26.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.27.如图,在▱ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.(1)求证:A、E、C、F四点共圆;(2)设线段BD与(1)中的圆交于M、N.求证:BM=ND.参考答案1.解:连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,在Rt△AOC中,AO==2,∵a<0,∴a=﹣2,故选:A.2.解:根据图形可知,两圆相切,过点O作OP垂直O1O2于P,则:PO1=PO2=200 PO=R﹣50根据勾股定理可得:2002+(R﹣50)2=(R+50)2解得:R=200∴D=2R=400=4×102.故选:D.3.解:如图所示,AB⊥CD,根据垂径定理,BD=AB=×8=4.由于圆的半径为5,根据勾股定理,OD===3,CD=5﹣3=2.故选:A.4.解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).故选:A.5.解:如图;以C为圆心,AC为半径作圆,交BD的延长线于E,连接AE、CE;∵CB=CE,∴∠CBE=∠CEB;∵∠DAC=∠CBE,∴∠DAC=∠CEB;∵AC=CE,∴∠CAE=∠CEA,∴∠CAE﹣∠DAC=∠CEA﹣∠CED,即∠DAE=∠DEA;∴AD=DE;∵EC+BC>BE,EC=AC,BE=BD+DE=AD+BD,∴AC+BC>BD+AD;故选:C.6.解:连接OD、OE,∵OC=OA,∴△OAC是等腰三角形,∵点D为弦AC的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°,∵OC=OE,∠COE=100°﹣x,∴∠OEC=∠OCE=40°+x,∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,∴∠OED<20°+x,∴∠CED=∠OEC﹣∠OED>(40°+x)﹣(20°+x)=20°,∵∠CED<∠ABC=40°,∴20°<∠CED<40°故选:C.7.解:∵∠ACB=54°,∴圆心角∠AOB=2∠ACB=108°,∵OB=OA,∴∠ABO=∠BAO=(180°﹣∠AOB)=36°,故选:C.8.解:连接OA,OB,OC,∵∠BDC=50°,∴∠BOC=2∠BDC=100°,∵,∴∠BOC=∠AOC=100°,∴∠ABC=∠AOC=50°,∴∠ADC=180°﹣∠ABC=130°.故选:B.9.解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.10.解:将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A'重合,则转过的距离是圆的周长是π,因而点A'对应的实数是π.故答案为:π.11.解:S阴=πab.故答案为:πab.12.解:∵OM⊥AB,∴AM=BM,若∠OAM=30°,则tan∠OAM=,∴AM=6,∴AB=2AM=12;若∠AOM=30°,则tan∠AOM=,∴AM=2,∴AB=2AM=4.故答案为:12或4.13.解:连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=×1=,即CD的最大值为,故答案为:.14.解:作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=(180°﹣∠AOB)=(180°﹣120°)=30°,在Rt△AOC中,OC=OA=10,AC=OC=10,∴AB=2AC=20≈69(步);而的长=≈84(步),的长与AB的长多15步.所以这些市民其实仅仅少走了15步.故答案为15.15.解:如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.16.解:连接OA、OB、OC、OD,∵OA=OB=OC=OD=1,AB=,CD=1,∴OA2+OB2=AB2,∴△AOB是等腰直角三角形,△COD是等边三角形,∴∠OAB=∠OBA=45°,∠ODC=∠OCD=60°,∵∠CDB=∠CAB,∠ODB=∠OBD,∴α=180°﹣∠CAB﹣∠OBA﹣∠OBD=180°﹣∠OBA﹣(∠CDB+∠ODB)=180°﹣45°﹣60°=75°.17.解:∵,∴AB=AC,∵∠A=40°,∴∠B=∠C=(180°﹣∠A)÷2=70°.18.解:如图,连接AD.∵AB是直径,∴∠ADB=90°,∵∠1=∠ADE,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.19.解:连接OD,如图:∵OC⊥AB,∴∠COE=90°,∵∠AEC=65°,∴∠OCE=90°﹣65°=25°,∵OC=OD,∴∠ODC=∠OCE=25°,∴∠DOC=180°﹣25°﹣25°=130°,∴∠BOD=∠DOC﹣∠COE=40°,∴∠BAD=∠BOD=20°,故答案为:20.20.证明:∵OA=OB,∴∠A=∠B,∵在△OAC和△OBD中:,∴△OAC≌△OBD(SAS).21.(1)证明:∵AD是⊙O的直径,∴∠ABD=∠ACD=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;(2)四边形BFCD是菱形.证明:∵AD是直径,AB=AC,∴AD⊥BC,BE=CE,∵CF∥BD,∴∠FCE=∠DBE,在△BED和△CEF中,,∴△BED≌△CEF(ASA),∴CF=BD,∴四边形BFCD是平行四边形,∵∠BAD=∠CAD,∴BD=CD,∴四边形BFCD是菱形;(3)解:∵AD是直径,AD⊥BC,BE=CE,∵∠AEC=∠CED,∠CAE=∠ECD,∴△AEC∽△CED,∴=,设DE=x,∵BC=8,AD=10,∴42=x(10﹣x),解得:x=2或x=8(舍去)在Rt△CED中,CD===2.22.解:∵小刚身高1.6米,测得其影长为2.4米,∴8米高旗杆DE的影子为:12m,∵测得EG的长为3米,HF的长为1米,∴GH=12﹣3﹣1=8(m),∴GM=MH=4m.如图,设小桥的圆心为O,连接OM、OG.设小桥所在圆的半径为r,∵MN=2m,∴OM=(r﹣2)m.在Rt△OGM中,由勾股定理得:∴r2=(r﹣2)2+16,解得:r=5,答:小桥所在圆的半径为5m.23.证明:连接OC,∵=,∴∠AOC=∠BOC.∵CD⊥OA于D,CE⊥OB于E,∴∠CDO=∠CEO=90°在△COD与△COE中,∵,∴△COD≌△COE(AAS),∴OD=OE,∵AO=BO,∴AD=BE.24.(1)证明:∵AD⊥PC,∴∠EMC=90°,∵点P为的中点,∴,∴∠ADP=∠BCP,∵∠CEM=∠DEN,∴∠DNE=∠EMC=90°=∠DNB,∵,∴∠BDP=∠ADP,∴∠DEN=∠DBN,∴DE=DB,∴EN=BN,∴N为BE的中点;(2)解:连接OA,OB,AB,AC,∵的度数为90°,∴∠AOB=90°,∵OA=OB=8,∴AB=8,由(1)同理得:AM=EM,∵EN=BN,∴MN是△AEB的中位线,∴MN=AB=4.25.(1)证明:∵四边形ABCD内接于圆.∴∠ABC+∠ADC=180°,∵∠ABC=60°,∴∠ADC=120°,∵DB平分∠ADC,∴∠ADB=∠CDB=60°,∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°,∴∠ABC=∠BCA=∠BAC,∴△ABC是等边三角形.(2)过点A作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.∴∠AMD=90°,∵∠ADC=120°,∴∠ADM=60°,∴∠DAM=30°,∴DM=AD=1,AM===,∵CD=3,∴CM=CD+DM=1+3=4,∴S△ACD=CD•AM=×=,Rt△AMC中,∠AMD=90°,∴AC===,∵△ABC是等边三角形,∴AB=BC=AC=,∴BN=BC=,∴S△ABC=×=,∴四边形ABCD的面积=+=,∵BE∥CD,∴∠E+∠ADC=180°,∵∠ADC=120°,∴∠E=60°,∴∠E=∠BDC,∵四边形ABCD内接于⊙O,∴∠EAB=∠BCD,在△EAB和△DCB中,,∴△EAB≌△DCB(AAS),∴△BDE的面积=四边形ABCD的面积=.26.解:设OA交⊙O于C,连结B′C,如图2,∵OA′•OA=42,而r=4,OA=8,∴OA′=2,∵OB′•OB=42,∴OB′=4,即点B和B′重合,∵∠BOA=60°,OB=OC,∴△OBC为等边三角形,而点A′为OC的中点,∴B′A′⊥OC,在Rt△OA′B′中,sin∠A′OB′=,∴A′B′=4sin60°=2.27.证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEC=∠AFC=90°.∴∠AEC+∠AFC=180°.∴A、E、C、F四点共圆;(2)由(1)可知,∠AEC=90°,则AC是直径,设AC、BD相交于点O;∵ABCD是平行四边形,∴O为圆心,OB=OD,∴OM=ON,∴OB﹣OM=OD﹣ON,∴BM=DN.。

2021年中考数学真题 圆的有关性质(共54题)-(原卷版)

2021年中考数学真题 圆的有关性质(共54题)-(原卷版)

24圆的有关性质(共54题)一、单选题1.(2021·甘肃武威市·中考真题)如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=( )A .48︒B .24︒C .22︒D .21︒2.(2021·广西玉林市·中考真题)学习圆的性质后,小铭与小熹就讨论起来,小铭说:“被直径平分的弦也与直径垂直”,小熹说:“用反例就能说明这是假命题” .下列判断正确的是( )A .两人说的都对B .小铭说的对,小燕说的反例不存在C .两人说的都不对D .小铭说的不对,小熹说的反例存在3.(2021·青海中考真题)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A ,B 两点,他测得“图上”圆的半径为10厘米,16AB =厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为( ).A .1.0厘米/分B .0.8厘米分C .12厘米/分D .1.4厘米/分4.(2021·山东聊城市·中考真题)如图,A ,B ,C 是半径为1的⊙O 上的三个点,若AB ⊙CAB =30°,则⊙ABC 的度数为( )A .95°B .100°C .105°D .110°5.(2021·湖北鄂州市·中考真题)已知锐角40AOB ∠=︒,如图,按下列步骤作图:⊙在OA 边取一点D ,以O 为圆心,OD 长为半径画MN ,交OB 于点C ,连接CD .⊙以D 为圆心,DO 长为半径画GH ,交OB 于点E ,连接DE .则CDE ∠的度数为( )A .20︒B .30C .40︒D .50︒6.(2021·海南中考真题)如图,四边形ABCD 是O 的内接四边形,BE 是O 的直径,连接AE .若2BCD BAD ∠=∠,则DAE ∠的度数是( )A .30B .35︒C .45︒D .60︒7.(2021·四川眉山市·中考真题)如图,在以AB 为直径的O 中,点C 为圆上的一点,3BC AC =,弦CD AB ⊥于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则CBF ∠的度数为( )A .18°B .21°C .22.5°D .30°8.(2021·四川南充市·中考真题)如图,AB 是O 的直径,弦CD AB ⊥于点E ,2CD OE =,则BCD∠的度数为( )A .15︒B .22.5︒C .30D .45︒9.(2021·四川广安市·中考真题)如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A 、B 是圆上的点,O 为圆心,120AOB ∠=︒,小强从A 走到B ,走便民路比走观赏路少走( )米.A .6π-B .6π-C .12π-D .12π-10.(2021·重庆中考真题)如图,AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,若20A ∠=︒,则B 的度数为( )A .70°B .90°C .40°D .60°11.(2021·浙江丽水市·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin COD S m α=⋅12.(2021·山东泰安市·中考真题)如图,在ABC 中,6AB =,以点A 为圆心,3为半径的圆与边BC 相切于点D ,与AC ,AB 分别交于点E 和点G ,点F 是优弧GE 上一点,18CDE ∠=︒,则GFE ∠的度数是( )A .50°B .48°C .45°D .36°13.(2021·浙江绍兴市·中考真题)如图,正方形ABCD 内接于O ,点P 在AB 上,则P ∠的度数为( )A .30B .45︒C .60︒D .90︒14.(2021·四川凉山彝族自治州·中考真题)点P 是O 内一点,过点P 的最长弦的长为10cm ,最短弦的长为6cm ,则OP 的长为( )A .3cmB .4cmC .5cmD .6cm15.(2021·四川自贡市·中考真题)如图,AB 为⊙O 的直径,弦CD AB ⊥于点F ,OE AC ⊥于点E ,若3OE =,5OB =,则CD 的长度是( )A .9.6B .C .D .1916.(2021·山东临沂市·中考真题)如图,PA 、PB 分别与O 相切于A 、B ,70P ∠=︒,C 为O 上一点,则ACB ∠的度数为( )A .110︒B .120︒C .125︒D .130︒17.(2021·湖北鄂州市·中考真题)如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是( )A .3B .CD 18.(2021·浙江嘉兴市·中考真题)如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为( )A B C D .419.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,620.(2021·广西来宾市·中考真题)如图,O 的半径OB 为4,OC AB ⊥于点D ,30BAC ∠=︒,则OD 的长是( )A B C .2 D .321.(2021·湖北荆州市·中考真题)如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴的正半轴上,点D 在OA 的延长线上.若()2,0A ,()4,0D ,以О为圆心、OD 长为半径的弧经过点B ,交y 轴正半轴于点E ,连接DE ,BE 、则BED ∠的度数是( )A .15︒B .22.5︒C .30D .45︒22.(2021·湖北宜昌市·中考真题)如图,C ,D 是O 上直径AB 两侧的两点.设25ABC ∠=︒,则BDC ∠=( )A .85︒B .75︒C .70︒D .65︒23.(2021·河北中考真题)如图,等腰AOB 中,顶角40AOB ∠=︒,用尺规按⊙到⊙的步骤操作: ⊙以O 为圆心,OA 为半径画圆;⊙在O 上任取一点P (不与点A ,B 重合),连接AP ;⊙作AB 的垂直平分线与O 交于M ,N ; ⊙作AP 的垂直平分线与O 交于E ,F .结论⊙:顺次连接M ,E ,N ,F 四点必能得到矩形;结论⊙:O 上只有唯一的点P ,使得OFM OAB S S =扇形扇形.对于结论⊙和⊙,下列判断正确的是( )A .⊙和⊙都对B .⊙和⊙都不对C .⊙不对⊙对D .⊙对⊙不对24.(2021·湖北黄冈市·中考真题)如图,O 是Rt ABC △的外接圆,OE AB ⊥交O 于点E ,垂足为点D ,AE ,CB 的延长线交于点F .若3OD =,8AB =,则FC 的长是( )A .10B .8C .6D .425.(2021·湖南邵阳市·中考真题)如图,点A ,B ,C 是O 上的三点.若90AOC ∠=︒,30BAC ∠=︒,则AOB ∠的大小为( )A .25︒B .30C .35︒D .40︒26.(2021·湖南长沙市·中考真题)如图,点A ,B ,C 在⊙O 上,54BAC ∠=︒,则BOC ∠的度数为( )A .27︒B .108︒C .116︒D .128︒27.(2021·湖北武汉市·中考真题)如图,AB 是O 的直径,BC 是O 的弦,先将BC 沿BC 翻折交AB 于点D .再将BD 沿AB 翻折交BC 于点E .若BE DE =,设ABC α∠=,则α所在的范围是( )A .21.922.3α︒<<︒B .22.322.7α︒<<︒C .22.723.1α︒<<︒D .23.123.5α︒<<︒ 二、填空题28.(2021·黑龙江中考真题)如图,在O 中,AB 是直径,弦AC 的长为5cm ,点D 在圆上,且30ADC ∠=︒,则O 的半径为_____.29.(2021·安徽中考真题)如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.30.(2021·湖南张家界市·中考真题)如图,ABC 内接于O ,50A ∠=︒,点D 是BC 的中点,连接OD ,OB ,OC ,则BOD ∠=_________.31.(2021·广东中考真题)在ABC 中,90,2,3ABC AB BC ∠=︒==.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为_____.32.(2021·江苏宿迁市·中考真题)如图,在Rt⊙ABC 中,⊙ABC =90°,⊙A =32°,点B 、C 在O 上,边AB 、AC 分别交O 于D 、E 两点﹐点B 是CD 的中点,则⊙ABE =__________.33.(2021·江苏南京市·中考真题)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .34.(2021·湖北随州市·中考真题)如图,O 是ABC 的外接圆,连接AO 并延长交O 于点D ,若50C ∠=︒,则BAD ∠的度数为______.35.(2021·江苏连云港市·中考真题)如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.36.(2021·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,直线33y x =+与O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为_________.37.(2021·江苏扬州市·中考真题)在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.⊙该弧所在圆的半径长为___________;⊙ABC 面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ',请你利用图1证明30BA C '∠>︒;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长2AB =,3BC =,点P 在直线CD 的左侧,且4tan 3DPC ∠=. ⊙线段PB 长的最小值为_______;⊙若23PCD PAD S S =,则线段PD 长为________.38.(2021·辽宁本溪市·中考真题)如图,由边长为1的小正方形组成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 和点D ,则tan =ADC ∠________.39.(2021·内蒙古通辽市·中考真题)如图,AB 是⊙O 的弦,AB =C 是⊙O 上的一个动点,且60ACB ∠=︒,若点M ,N 分别是AB ,BC 的中点,则图中阴影部分面积的最大值是__________.40.(2021·湖北襄阳市·中考真题)点O 是ABC 的外心,若110BOC ∠=°,则BAC ∠为______. 41.(2021·湖北恩施土家族苗族自治州·中考真题)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD 等于1寸,锯道AB 长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆形木材的直径___________寸;42.(2021·湖南长沙市·中考真题)如图,在⊙O 中,弦AB 的长为4,圆心O 到弦AB 的距离为2,则AOC ∠的度数为______.43.(2021·湖南怀化市·中考真题)如图,在O 中,3OA =,45C ∠=︒,则图中阴影部分的面积是_________.(结果保留π)三、解答题44.(2021·山东临沂市·中考真题)如图,已知在⊙O 中, AB BC CD ==,OC 与AD 相交于点E .求证: (1)AD ⊙BC(2)四边形BCDE 为菱形.45.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长. 46.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.47.(2021·浙江中考真题)如图,已知AB 是⊙O 的直径,ACD ∠是AD 所对的圆周角,30ACD ∠=︒.(1)求DAB ∠的度数;(2)过点D 作DE AB ⊥,垂足为E ,DE 的延长线交⊙O 于点F .若4AB =,求DF 的长. 48.(2021·四川泸州市·中考真题)如图,ABC 是⊙O 的内接三角形,过点C 作⊙O 的切线交BA 的延长线于点F ,AE 是⊙O 的直径,连接EC(1)求证:ACF B ∠=∠;(2)若AB BC =,AD BC ⊥于点D ,4FC =,2FA =,求AD AE 的值49.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA ,40ACD ∠=︒,求证:OAB CDE ∽.50.(2021·甘肃武威市·中考真题)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知,AB C 是弦AB 上一点,请你根据以下步骤完成这个引理的作图过程.(1)尺规作图(保留作图痕迹,不写作法):⊙作线段AC 的垂直平分线DE ,分别交AB 于点,D AC 于点E ,连接,AD CD ;⊙以点D 为圆心,DA 长为半径作弧,交AB 于点F (,F A 两点不重合),连接,,DF BD BF . (2)直接写出引理的结论:线段,BC BF 的数量关系.51.(2021·四川广元市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,AD 是BAC ∠的平分线,以AD 为直径的O 交AB 边于点E ,连接CE ,过点D 作//DF CE ,交AB 于点F .(1)求证:DF 是O 的切线;(2)若5BD =,3sin 5B ∠=,求线段DF 的长. 52.(2021·四川遂宁市·中考真题)如图,⊙O 的半径为1,点A 是⊙O 的直径BD 延长线上的一点,C 为⊙O 上的一点,AD =CD ,⊙A =30°.(1)求证:直线AC 是⊙O 的切线;(2)求⊙ABC 的面积;(3)点E 在BND 上运动(不与B 、D 重合),过点C 作CE 的垂线,与EB 的延长线交于点F . ⊙当点E 运动到与点C 关于直径BD 对称时,求CF 的长;⊙当点E 运动到什么位置时,CF 取到最大值,并求出此时CF 的长.53.(2021·四川广元市·中考真题)如图1,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,下表给出了这条抛物线上部分点(,)x y 的坐标值:(1)求出这条抛物线的解析式及顶点M 的坐标;(2)PQ 是抛物线对称轴上长为1的一条动线段(点P 在点Q 上方),求AQ QP PC ++的最小值;(3)如图2,点D 是第四象限内抛物线上一动点,过点D 作DF x ⊥轴,垂足为F ,ABD △的外接圆与DF 相交于点E .试问:线段EF 的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.54.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线: (2)若2,33OA BE OD ==,求DA 的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021中考专题训练:圆的有关性质一、选择题1. 如图,AB为☉O的直径,C,D为☉O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°2. 如图,△ABC是☉O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°3. 如图,线段AB经过☉O的圆心,AC,BD分别与☉O相切于点C,D.若AC=BD=4,∠A=45°,则圆弧CD的长度为 ()A.πB.2πC.2πD.4π4. 如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°5. 如图,AB是⊙O的直径,CD为弦,CD⊥AB于点E,则下列结论中不成立...的是()A .∠COE =∠DOEB .CE =DEC .OE =BED.BD ︵=BC ︵6.△ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( ) A. 120° B. 125° C. 135° D. 150°7. 2019·天水 如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°8. 如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径为5.若P 是⊙O上的一点,在△ABP 中,PB =AB ,则PA 的长为( )A .5B.5 32C .5 2D .5 3二、填空题9. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.10.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,若∠BCD =28°,则∠ABD =________°.11. 如图,C ,D两点在以AB 为直径的圆上,AB =2,∠ACD =30°,则AD =________.12. 2019·随州如图,点A ,B ,C 在⊙O 上,点C 在AMB ︵上.若∠OBA =50°,则∠C 的度数为________.13. 如图,在⊙O 中,半径OA 垂直于弦BC ,点D 在圆上,且∠ADC =30°,则∠AOB 的度数为________.14. 如图2,一下水管道横截面为圆形,直径为100 cm ,下雨前水面宽为60 cm ,一场大雨过后,水面宽为80 cm,则水位上升________cm.链接听P39例4归纳总结15. 在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以点C为圆心,5为半径的圆上,连接PA,PB.若PB=4,则PA的长为________.16. 如图,定长弦CD在以AB为直径的⊙O上滑动(点C,D与点A,B不重合),M是CD的中点,过点C作CP⊥AB于点P.若CD=3,AB=8,PM=l,则l的最大值是________.三、解答题17.如图①,在△ABC中,点D在边BC上,∠ABC ∶∠ACB ∶∠ADB=1∶2∶3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图②),求∠CAD的度数.18. 已知:如图5,在⊙O中,M,N分别为弦AB,CD的中点,AB=CD,AB 不平行于CD.求证:∠AMN=∠CNM.19.如图,在△ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =C D ,过点D 作⊙O 的切线交边AC 于点F. (1)求证:DF ⊥AC ;(2)若⊙O 的半径为5,∠CDF =30°,求BD ︵的长.(结果保留π)20. 如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径作半圆O 交AC 于点D ,E 为BC 的中点,连接DE. (1)求证:DE 是半圆O 的切线;(2)若∠BAC =30°,DE =2,求AD 的长.21. (2019•辽阳)如图,BE 是⊙O 的直径,点A 和点D 是⊙O 上的两点,连接AE ,AD ,DE ,过点A 作射线交BE 的延长线于点C ,使EAC EDA ∠=∠. (1)求证:AC 是⊙O 的切线;(2)若23CE AE==,求阴影部分的面积.22. 已知平面直角坐标系中两定点A(-1, 0)、B(4, 0),抛物线y=ax2+bx-2(a ≠0)过点A、B,顶点为C,点P(m, n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>32,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<52)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得顺次首尾连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.2021中考专题训练:圆的有关性质-答案一、选择题1. 【答案】B[解析]如图,连接AD,∵AB为☉O的直径,∴∠ADB=90°.∵∠A和∠BCD都是所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.2. 【答案】A[解析]记线段OP交☉O于点F.连接CO,CF,∵∠A=119°,∴∠BFC=61°,∴∠BOC=122°,∴∠COP=58°.∵CP与圆相切于点C,∴OC⊥CP,∴在Rt△OCP中,∠P=90°-∠COP=32°,故选A.3. 【答案】B[解析]连接CO ,DO ,因为AC ,BD 分别与☉O 相切于C ,D ,所以∠ACO=∠BDO=90°,所以∠AOC=∠A=45°,所以CO=AC=4, 因为AC=BD ,CO=DO ,所以OD=BD ,所以∠DOB=∠B=45°, 所以∠DOC=180°-∠DOB -∠AOC=180°-45°-45°=90°,==2π,故选B .4. 【答案】B5. 【答案】C6.【答案】C【解析】由CD 为腰上的高,I 为△ACD 的内心,则∠IAC +∠ICA =12(∠DAC +∠DCA)=12(180°-∠ADC)=12(180°-90°)=45°,所以∠AIC =180°-(∠IAC +∠ICA)=180°-45°=135°.又可证△AIB ≌△AIC ,得∠AIB =∠AIC =135°.7. 【答案】C8. 【答案】D[解析] 如图,连接OB ,OA ,OP ,设OB 与AP 交于点D.由PB=AB 可知PB ︵=AB ︵,从而可知OB ⊥AP.运用“一条弧所对的圆周角等于它所对的圆心角的一半”及“同圆的半径相等”可知△OAB 为等边三角形,在Rt △OAD 中,运用“在直角三角形中,30°角所对的直角边等于斜边的一半”及勾股定理列方程可求得AD 的长,从而可求出AP 的长为5 3.故选D.二、填空题9. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB , ∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB , ∴∠BAD=20°.10.【答案】62 【解析】根据直径所对的圆周角等于90°及∠BCD =28°,可得∠ACD =∠ACB -∠BCD =90°-28°=62°,再根据同弧所对圆周角相等有∠ABD =∠ACD =62°.11. 【答案】1[解析] ∵AB 为⊙O 的直径,∴∠ADB =90°. ∵∠B =∠ACD =30°, ∴AD =12AB =12×2=1.12. 【答案】40°13. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.14. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm,到长为80 cm的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm或70 cm.15. 【答案】3或73[解析] 如图,连接CP,PB的延长线交⊙C于点P′.∵PC=5,BC=3,PB=4,∴BC2+PB2=PC2,∴△CPB为直角三角形,且∠CBP=90°,即CB⊥PB,∴PB=P′B=4.∵∠ACB=90°,∴PB∥AC.又∵PB=AC=4,∴四边形ACBP为平行四边形.又∵∠ACB=90°,∴▱ACBP为矩形,∴PA=BC=3.在Rt△APP′中,∵PA=3,PP′=8,∴P′A=82+32=73.综上所述,PA的长为3或73.16. 【答案】34[解析] 如图,当CD∥AB时,PM的长最大,连接OM,OC.∵CD∥AB,CP⊥AB,∴CP⊥CD.∵M为CD的中点,OM过点O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC.∵⊙O的直径AB=8,∴半径OC=4,∴PM=4.三、解答题17. 【答案】(1)证明:如解图,连接OA,OD.设∠ABC=x,∵∠ABC∶∠ACB∶∠ADB=1∶2∶3,∴∠ADB=3x,∠ACB=2x,解图∴∠DAC=x,∠AOD=2∠ABC=2x,∴∠OAD=180°-2x2=90°-x,(2分)∴∠OAC=90°-x+x=90°,∴OA⊥AC,又∵OA为⊙O的半径,∴AC是⊙O的切线.(4分)(2)解:∵BD是⊙O的直径,∴∠BAD=90°,∵∠ABC∶∠ACB∶∠ADB=1∶2∶3,∠ABC+∠ADB=90°,∴∠ABC+3∠ABC=90°,(6分)解得∠ABC=22.5°,∴∠ADB=67.5°,∠ACB=45°,∴∠CAD=∠ADB-∠ACB=22.5°.(8分)18. 【答案】证明:连接OM,ON,OA,OC,如图所示.∵M,N分别为AB,CD的中点,∴OM ⊥AB ,ON ⊥CD ,AM =12AB ,CN =12CD.又∵AB =CD ,∴AM =CN.在Rt △AOM 和Rt △CON 中,⎩⎨⎧OA =OC ,AM =CN ,∴Rt △AOM ≌Rt △CON(HL),∴OM =ON ,∴∠OMN =∠ONM ,∴∠AMO +∠OMN =∠CNO +∠ONM ,即∠AMN =∠CNM.19. 【答案】(1)证明:如解图,连接OD ,(1分)∵DF 是⊙O 的切线,D 为切点,解图∴OD ⊥DF ,∴∠ODF =90°,(2分)∵BD =CD ,OA =OB ,∴OD 是△ABC 的中位线,(3分)∴OD ∥AC ,∴∠CFD =∠ODF =90°,∴DF ⊥AC.(4分)(2)解:∵∠CDF =30°,由(1)得∠ODF =90°,∴∠ODB =180°-∠CDF -∠ODF =60°,∵OB =OD ,∴△OBD 是等边三角形,(7分)∴∠BOD =60°,∴lBD ︵=n πR 180=60π×5180=53π.(8分)20. 【答案】解:(1)证明:如图,连接BD ,OD ,OE.∵AB 为半圆O 的直径,∴∠ADB =∠BDC =90°.在Rt △BDC 中,E 为斜边BC 的中点,∴DE =BE.在△OBE 和△ODE 中,⎩⎨⎧OB =OD ,OE =OE ,BE =DE ,∴△OBE ≌△ODE(SSS),∴∠ODE =∠ABC =90°,即OD ⊥DE.又∵OD 是半圆O 的半径,∴DE 是半圆O 的切线.(2)在Rt △ABC 中,∠BAC =30°,∴BC =12AC. ∵BC =2DE =4,∴AC =8.又∵∠C =90°-∠BAC =60°,DE =BE =EC ,∴△DEC 为等边三角形,∴DC =DE =2,∴AD =AC -DC =6.21. 【答案】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒,∵OA OE =, ∴12EOF AOF AOE ∠=∠=∠, ∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠,∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵CE AE ==∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠,∴2AEO EAC ∠=∠,∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠,∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒,∴OAE △是等边三角形,∴OA AE =,60EOA ∠=︒,∴OA =∴2πAOE S =扇形,在Rt OAE △中,sin 3OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π33-.22. 【答案】(1)因为抛物线y=ax2+bx-2与x轴交于A(-1, 0)、B(4, 0)两点,所以y=a(x+1)(x-4)=ax2-3ax-4a.所以-4a=-2,b=-3a.所以12a=,32b=-.所以221313252()22228y x x x=--=--。

相关文档
最新文档