六种典型环节的阶跃响应曲线
典型环节的模拟研究及阶跃响应分析

典型环节的模拟研究及阶跃响应分析实验二典型环节的模拟研究及阶跃响应分析一实验目的1.掌握各典型环节(比例、积分、比例积分、比例微分、惯性环节、比例积分微分环节等)模拟电路的构成方法,培养实验技能。
2.测试并熟悉各典型环节(比例、积分、比例积分、比例微分、惯性环节、比例积分微分环节等)的阶跃响应曲线。
3.了解参数变化对典型环节(比例、积分、比例积分、比例微分、惯性环节、比例积分微分环节等)阶跃响应的影响。
二实验任务与要求1.观测各种典型环节的阶跃响应曲线。
2.观测参数变化对典型环节阶跃响应的影响。
三实验原理本实验是利用运算放大器的基本特性(开环增益高、输入阻抗大、输出阻抗小等),设置不同的反馈网络来模拟各种环节。
典型环节原理方框图及其模拟电路如下:1、比例环节(P)。
其方框图如图2-1所示:Ui(S)Uo(S)K图1-1A 比例环节方框图图 2-1RRR1010KR10KiUUo--op5op6++10K100K图1-1B 比例环节模拟电路 R0=200K R1=100K;(200K)图 2-2U(S)0其传递函数是: ,K (2-1) Ui(S)比例环节的模拟电路图如图2-2所示,其传递函数是:U(S)R01 (2-2) ,Ui(S)R0比较式(2-1)和(2-2)得 (2-3) K,RR10当输入为单位阶跃信号,即U(t),1(t)时,,则由式(1-1)得到: U(s),1/Sii1 U(S)K,,0S所以输出响应为: (2-4) U,K(t,0)02、积分环节。
其方框图如图2-3所示。
其传递函数为:Ui(S)Uo(S)1TS图 2-3 图1-2A 积分环节方框图RC10KUiRUo--op5op610KR010K100K图1-2B 积分环节模拟电路C=1μf(2μf);R0=200K图 2-4U(S)10 (2-5) ,Ui(S)TS积分环节的模拟电路图如图2-4所示。
积分环节的模拟电路的传递函数为:US()10 (2-6) ,UiSRCS()0比较式(2-5)和(2-6)得:(2-7) T,RC0当输入为单位阶跃信号,即时,,则由式(2-5)得到:U(t),1(t)U(S),1Sii111 ,,,U(S)o2TSSTS所以输出响应为:1 (2-8) Utt(),oT3、比例积分(PI)环节。
闭环、开环频率特性与阶跃响应的关系

(s)
1 s
H
2
(s)
=
2
(
s)
1 s
1(s) = H1(s)s = H2 (ns)ns = 2 (ns)
3. 频带宽度 b 与快速性的关系(一般情况)
r1(t) = 1(t)
h1 (t )
1(s)
r2 (t) = 1(t)
h2 (t)
2 (s)
h(t)
h2
h1
M ()
0.707M (0)
20log G 0
c
高频段
G( j) 1 ( j) = G( j) G( j)
1+ G(j)
闭环幅频特性近似等于开环幅频特性,因此,开环幅频特性的高频段近似反映 了系统对高频输入的抑制作用,高频段的分贝值越低,系统抵抗高频干扰的能力越强。
20log G
-20dB/dec
-40dB/dec
t→
s→0
当 M (0) = 1 时,稳态误差 ess = 0 当 M (0) 1 时,稳态误差 ess 0
M ()
2. 闭环幅频峰值 M m 与平稳性的关系
一阶系统 (s) = 1
M () = 1
Ts +1
(T)2 +1
幅频特性曲线无峰值,阶跃响应无超调,平稳性好。
二阶系统
(s)
越低,系统抵抗高频干扰的能力越强。
本章小结 • 频率特性的定义、物理意义和图示方法; • 典型环节的频率特性; • 系统的开环频率特性(开环幅相特性曲线和对数频率特性曲线); • 频率稳定判据(Nyquist稳定判据和对数频率稳定判据); • 稳定裕度的概念及计算方法; • 闭环频率特性与系统阶跃响应的关系; • 开环频率特性与系统阶跃响应的关系。
典型环节及其阶跃响应

图1-1 运放的反馈连接 典型环节及其阶跃响应
比例环节:
参数设置:Z1=100K Ω Z2=100K Ω 单位阶跃响应波形如下:
波形分析如下: 惯性环节:
图 1-2 惯性环节模拟电路
参数设置:R1=100K Ω R2=100K C1=1f 单位阶跃响应波形如下:
分析波形如下:
积分环节
参数设置:R1=100K C1=1f
单位阶跃响应波形如下:
波形分析如下:
微分环节
微分环节模拟电路参数设置:C1=1f C2=0.01f R2=100K
单位阶跃响应波形如下:
波形分析如下:
比例微分环节
比例微分模拟电路
参数设置:R1=100K R2=100K C1=1f C2=0.01f 单位阶跃波形如下
波形分析如下:
比例积分环节
比例积分环节模拟电路
参数设置:R1=100K R2=200K C1=1f
单位阶跃波形如下
波形分析如下:
比例积分微分环节
比例积分微分模拟电路
参数设置1:R1=100K R2=200K C1=1f C2=0.1f 单位阶跃波形如下
单位阶跃波形如下
波形分析如下:。
自动控制实验报告一-典型环节及其阶跃响应

实验一环典型环节节及其阶跃响应班级:学号:姓名:一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响;2.学习典型环节阶跃响应的测量方法,并学会根据阶跃响应曲线计算典型环节的传递函数;二、实验仪器1.EL-AT-II型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
2.时域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标[自动控制实验系统] 运行软件。
2)测试计算机与实验箱的通信是否正常,通信正常继续。
如通信不正常查找原因使通信正常后才可以继续进行实验。
3)连接被测量典型环节的模拟电路。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。
检查无误后接通电源。
4)在实验课题下拉菜单中选择实验一[典型环节及其阶跃响应] 。
5)鼠标单击实验课题弹出实验课题参数窗口。
在参数设置窗口中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。
6)用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:YM A X- Y∞Ó%=——————×100%Y∞ T P 与T S :利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态 值所需的时间值,便可得到T P 与T S 。
四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应: 1.比例环节的模拟电路及其传递函数:G (s )=-R1/R22.惯性环节:G(s)= -K/TS+1 K=R2/R1 ,T=R2C; 3.积分环节 G(S)= 1/TS T=RC 4.微分环节G(S)=-RCS5.比例+微分环节G(S)= -K(TS+1) K=R2/R1 T=R2C6.比例+积分环节G(S)=K(1+1/TS) K=R2/R1 T=R2C五、实验步骤1.启动计算机,在桌面双击图标【自动控制实验系统】运行软件。
自动控制原理实验指导书

自动控制原理实验指导书内蒙古工业大学电力学院自动化系2012年10月目录实验一典型环节模拟及二阶系统的时域瞬态响应分析 (1)实验二频率特性的测试 (8)实验三控制系统的动态校正 (12)实验四非线性系统的相平面分析 (14)实验五状态反馈 (20)TKKL—1型控制理论电子模拟实验箱使用说明书 (23)实验一 典型环节模拟及二阶系统的时域瞬态响应分析一、实验目的1.通过搭建典型环节模拟电路,熟悉并掌握控制理论电子模拟实验箱的使用方法。
2.了解并掌握各典型环节的传递函数及其特性,掌握用运放搭建电子模拟线路实现典型环节的方法。
3.掌握二阶系统单位阶跃响应的特点,理解二阶系统参数变化对输出响应的影响。
二、实验仪器1.控制理论电子模拟实验箱一台;2.超低频扫描示波器一台;3.万用表一只。
三、实验原理1.典型环节的传递函数及其模拟电路图(1)比例环节图1-1 比例环节的方框图比例环节的方框图如图1-1所示,其传递函数为()()C s K R s (1-1)比例环节的模拟电路图如图1-2所示,其传递函数为21()()R C s R s R = (1-2) 比较式(1-1)和式(1-2),得:21R K R =图1-2 比例环节的模拟电路图当输入为单位阶跃信号,即()1()r t t =时,由式(1-1)得输出() (0)c t K t =≥,其输出波形如图1-3所示。
图1-3 比例环节的单位阶跃响应(2)积分环节图1-4 积分环节的方框图积分环节的方框图如图1-4所示,其传递函数为()1()C s R s Ts= (1-3)图1-5 积分环节的模拟电路图积分环节的模拟电路图如图1-5所示,其传递函数为()1()C s R s RCs= (1-4) 比较式(1-3)和式(1-4),得:T RC =当输入为单位阶跃信号,即()1()r t t =时,由式(1-3)得输出1()c t t T= 其输出波形如图1-6所示。
六个典型环节的阶跃响应曲线详解

六个典型环节的阶跃响应曲线详解1. 引言在信号处理领域中,阶跃响应曲线是描述系统对单位阶跃输入信号的输出响应的一种常用方法。
通过分析阶跃响应曲线,我们可以了解系统的动态特性、稳态误差和稳定性等重要信息。
本文将详细探讨六个典型环节的阶跃响应曲线,以帮助读者更好地理解信号处理中的阶跃响应。
2. 一阶惯性环节让我们来讨论一阶惯性环节的阶跃响应曲线。
一阶惯性环节由一个惯性成分和一个系数组成,其传递函数可以表示为G(s) = k / (τs + 1),其中k为增益,τ为时间常数。
在阶跃输入信号下,一阶惯性环节的输出响应会经历一个指数衰减的过程。
初始阶段,响应曲线呈现出较大的上升斜率,接近输入信号的增量。
随着时间的推移,响应逐渐趋于稳定的平衡状态。
通过观察阶跃响应曲线的时间常数τ,我们可以推断系统的动态特性以及稳态稳定性。
3. 一阶积分环节接下来,我们将研究一阶积分环节的阶跃响应曲线。
一阶积分环节的传递函数可以表示为G(s) = k / s,其中k为增益。
与一阶惯性环节不同,一阶积分环节的阶跃响应曲线呈现出线性增长的特点。
输出信号随时间的增加而持续积分,并逐渐达到稳态。
在实际应用中,一阶积分环节常用于控制系统中,以改善系统的稳定性和对常数误差的补偿。
4. 一阶滞后环节第三个环节是一阶滞后环节,其传递函数可以表示为G(s) = k / (τs + 1),其中k为增益,τ为时间常数。
一阶滞后环节的阶跃响应曲线表现出一种惰性的特点。
初始阶段,响应曲线的上升斜率较小,逐渐接近输入信号的增量。
随着时间的推移,响应曲线逐渐逼近稳定的平衡状态。
一阶滞后环节常用于减小系统的动态响应,并提高稳态精度。
5. 二阶过阻尼环节接下来,我们将研究二阶过阻尼环节的阶跃响应曲线。
二阶过阻尼环节的传递函数可以表示为G(s) = k / (τ^2s^2 + 2ζτs + 1),其中k为增益,τ为时间常数,ζ为阻尼比。
二阶过阻尼环节的阶跃响应曲线表现出较小的震荡和较快的收敛特性。
自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃

实验一、典型环节及其阶跃响应实验目的1、学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2、学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。
实验内容构成下述典型环节的模拟电路,并测量其阶跃响应。
比例环节的模拟电路及其传递函数示图2-1。
G(S)=-R2/R1惯性环节的模拟电路及其传递函数示图2-2。
G(S)=-K/TS+1 K=R2/R1 ,T=R2*C积分环节的模拟电路及其传递函数示图2-3。
G(S)=1/TS T=RC微分环节的模拟电路及其传递函数示图2-4。
G(S)=-RCS比例加微分环节的模拟电路及其传递函数示图2-5。
G(S)=-K(TS+1) K=R2/R1 T=R2C比例加积分环节的模拟电路及其传递函数示图2-6。
G(S)=K(1+1/TS) K=R2/R1,T=R2C软件使用1、打开实验课题菜单,选中实验课题。
2、在课题参数窗口中,填写相应AD,DA或其它参数。
3、选确认键执行实验操作,选取消键重新设置参数。
实验步骤1、连接被测量典型环节的模拟电路及D/A、A/D连接,检查无误后接通电源。
2、启动应用程序,设置T和N。
参考值:T=0.05秒,N=200。
3、观测计算机屏幕示出的响应曲线及数据记录波形及数据(由实验报告确定)。
实验报告1、画出惯性环节、积分环节、比例加微分环节的模拟电路图,用坐标纸画出所有记录的惯性环节、积分环节、比例加微分环节的响应曲线。
2、由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相比较。
实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频ωn 对系统动态性能的影响,定量分析ζ和ωn与最大超调量Mp和调节时间 ts 之间的关系。
2、进一步学习实验仪器的使用方法。
3、学会根据系统阶跃响应曲线确定传递函数。
二、实验原理及电路典型二阶系统的闭环传递函数为其中ζ和ωn对系统的动态品质有决定的影响。
《自动控制》一二阶典型环节阶跃响应实验分析报告讲解

自动控制原理实验分析报告姓名:学号:班级:一、典型一阶系统的模拟实验:1.比例环节(P) 阶跃相应曲线。
传递函数:G(S)=-R2/R1=K说明:K为比例系数(1)R1=100KΩ,R2=100KΩ;特征参数实际值:K=-1.(2)(2)R1=100KΩ,R2=200KΩ;即K=-2.〖分析〗:经软件仿真,比例环节中的输出为常数比例增益K;比例环节的特性参数也为K,表征比例环节的输出量能够无失真、无滞后地按比例复现输入量。
2、惯性环节(T) 阶跃相应曲线及其分析。
传递函数:G(S)=-K/(TS+l) K=R2/R1 , T=R2C说明:特征参数为比例增益K和惯性时间常数T。
(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。
(2)、R2=R1=100KΩ , C=0.1µF;特征参数实际值:K=-1,T=0.01。
〖分析〗:惯性环节的阶跃相应是非周期的指数函数,当t=T时,输出量为0.632K,当t=3~4T时,输出量才接近稳态值。
比例增益K表征环节输出的放大能力,惯性时间常数T表征环节惯性的大小,T越大表示惯性越大,延迟的时间越长,反之亦然。
传递函数:G(S)= -l/TS ,T=RC说明:特征参数为积分时间常数T。
(1)、R=100KΩ , C=1µF;特征参数实际值:T=0.1。
(2)R=100KΩ , C=0.1µF;特征参数实际值:T=0.01。
〖分析〗:只要有一个恒定输入量作用于积分环节,其输出量就与时间成正比地无限增加,当t=T时,输出量等于输入信号的幅值大小。
积分时间常数T表征环节积累速率的快慢,T越大表示积分能力越强,反之亦然。
4、比例积分环节(PI) 阶跃相应曲线及其分析。
传递函数:G(S)=K( l+l/TS) K=-R2/R1, T=R2C说明:特征参数为比例增益K和积分时间常数T。
(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六种典型环节的阶跃响应曲线
阶跃响应曲线是描述系统响应速度和稳定性的一种重要方法。
典型的
六种环节系统的阶跃响应曲线可分为惯性环节、比例环节、微分环节、积分环节、一阶惯性环节和二阶惯性环节。
下面分别介绍这六种环节
的阶跃响应曲线特点。
1. 惯性环节
惯性环节是指系统响应变化相对较慢,响应速度较慢,且响应幅值有
惯性的环节系统。
该系统的阶跃响应曲线呈现出逐渐上升并逐步趋于
平稳的特点。
2. 比例环节
比例环节是指系统的输出与输入成正比例关系的环节。
该系统的阶跃
响应曲线呈现出发生瞬间跳跃并在短时间内达到稳态值的特点。
3. 微分环节
微分环节是指系统输出与输入的导数成正比的环节。
该系统的阶跃响
应曲线呈现出瞬间跳跃并持续震荡的特点。
4. 积分环节
积分环节是指系统输出与输入的积分成正比的环节。
该系统的阶跃响应曲线呈现出发生跳跃后,曲线会不断向上弯曲,直到接近水平线的特点。
5. 一阶惯性环节
一阶惯性环节是指系统的输出与输入有一定的滞后性和时间常数的环节。
该系统的阶跃响应曲线呈现出逐渐上升并在一定时间后达到稳态值的特点。
6. 二阶惯性环节
二阶惯性环节是指系统的输出与输入存在两个相邻极点的环节。
该系统的阶跃响应曲线呈现出震荡过程中的不断衰减的特点。
综上所述,不同类型的环节系统响应速度和稳定性都有所不同,掌握不同环节的阶跃响应曲线特点有助于理解系统的动态特性和改善系统响应。