平行线证明难题
平行线证明题大综合

平行线的证明【1】1.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC()∴∠2=()∵∠1=∠2(已知)∴∠1=∠(等量代换)∴EF∥CD()∴∠AEF=∠()∵EF⊥AB(已知)∴∠AEF=90°()∴∠ADC=90°()∴CD⊥AB()2.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(),∴∠2=∠CGD(等量代换).∴CE∥BF().∴∠=∠C().又∵∠B=∠C(已知),∴∠=∠B(等量代换).∴AB∥CD().3.如图,∠1=60°,∠2=60°,∠3=100°.要使AB∥EF,∠4应为多少度?说明理由.4.如图,EF∥AD,∠1=∠2.求证:DG∥AB.5.如图,已知DE∥BC,EF平分∠AED,EF⊥AB,CD⊥AB,试说明CD平分∠ACB.6.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.平行线的证明【2】1.如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.2.如图,已知AB∥DE∥MN,AD平分∠CAB,CD⊥DE.(1)∠DAB=15°,求∠ACD的度数;(2)判断等式∠CDA=∠NCD+∠DAB是否成立,并说明理由.3.如图,已知AB∥CD∥EF,∠ABC=46°,∠CEF=154°,求:(1)∠ECD的度数;(2)∠BCE的度数.4.学着说点理,填空:如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.理由如下:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,()∴AD∥EG,()∴∠1=∠2,()∠E=∠3,(两直线平行,同位角相等)又∵∠E=∠1(已知)∴=(等量代换)∴AD平分∠BAC()5.如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.6.如图,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=27°.(1)求∠2的度数;(2)若∠3=18°,判断直线n和m的位置关系,并说明理由.7.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,(1)问直线EF与AB有怎样的位置关系?加以证明;(2)若∠CEF=70°,求∠ACB的度数.平行线的证明【3】1.如图,已知∠1=142°,∠ACB=38°,∠2=∠3,FH⊥AB于H,问AB与CD是否垂直?并说明理由.2.如图,已知∠1+∠2=180°,∠B=∠3,∠BAC与∠DCA相等吗?为什么?3.已知;如图,在四边形ABCD中,AB∥CD,∠BAD,∠ADC的平分线AE、DF分别与线段BC相交于点E、F,AE与DF相交于点G,求证:AE⊥DF.4.如图所示,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED的位置关系,并说明理由.5.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.6.完成下列推理过程:已知:如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()7.如图所示,折叠一个宽度相等的纸条,求∠1的度数.平行线的证明【4】1.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.2.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.3.MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB 和CD的位置关系,并说明理由.4.如图AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°.5.(1)如图1,已知AB∥CD,那么图1中∠P AB、∠APC、∠PCD之间有什么数量关系?并说明理由.(2)如图2,已知∠BAC=80°,点D是线段AC上一点,CE∥BD,∠ABD和∠ACE的平分线交于点F,请利用(1)的结论求图2中∠F的度数.6.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2(1)求证:AB∥CD(2)若∠D=∠3+50°,∠CBD=70°,求∠C的度数.7.如图,AB∥CD,∠CDE=122°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F.平行线的证明【5】1.如图,EF∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°.(1)问直线CD与AB有怎样的位置关系?并说明理由;(2)若∠CEF=70°,求∠ACB的度数.2.如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:FE∥OC;(2)若∠BOC比∠DFE大20°,求∠OFE的度数.3.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,求:(1)∠FED的度数;(2)∠FEG的度数;(3)∠1和∠2的度数.4.已知△ABC各顶点的坐标为A(﹣4,﹣2),B(﹣1,﹣3),C(﹣2,﹣1),将△ABC 先向右平移4个单位长度,再向上平移3个单位长度得到△A′B′C′.(1)在直角坐标系中画出△A′B′C′;(2)求出△A′B′C′的面积.5.如图①,AB∥CD,点E在直线AB与CD之间,连结AE、BE,试说明∠BAE+∠DCE =∠AEC.【探究】当点E在如图②的位置时,其他条件不变,试说明∠AEC+∠BAE+∠DCE =360°;【应用】点E、F、G在直线AB与CD之间,连结AE、EF、FG和CG,其他条件不变,如图③.若∠EFG=36°,则∠BAE+∠AEF+∠FGC+∠DCG=°.平行线的证明【6】1.已知:如图,CD分别交AD、AE、BE于点D、F、C,连接AB、AC,AD∥BE,∠1=∠2,∠3=∠4.求证:AB∥CD.证明:∵AD∥BE(已知)∴∠3=∠CAD()∵∠3=∠4(已知)∴∠4=(等量代换)∵∠1=∠2(已知)∴∠1+∠CAE=∠2+∠CAE(等式的基本性质)即∠BAE=∴∠4=(等量代换)∴AB∥CD.2.如图(1),AB∥CD,试求∠BPD与∠B、∠D的数量关系,说明理由.(2)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D 的数量关系,并说明理由.(3)观察图(3)和(4),已知AB∥CD,直接写出图中的∠BPD与∠B、∠D的数量关系,不用说明理由.3.(1)如图①如果AB∥CD,求证:∠APC=∠A+∠C.(2)如图②,AB∥CD,根据上面的推理方法,直接写出∠A+∠P+∠Q+∠C=.(3)如图③,AB∥CD,若∠ABP=x,∠BPQ=y,∠PQC=z,∠QCD=m,则m=(用x、y、z表示)4.已知,如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上的一点且GH⊥EG.求证:PF∥GH.5.如图,把矩形纸片ABCD沿EF折叠后,使点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是;(2)若∠BFE=65°,求∠EBF的度数.。
平行线专项证明题

1.已知:如图,CE平分∠ACD,∠1=∠2.求证:AB∥CD.2.如图,M,N,T和P,Q,R分别在同一直线上,且∠1=∠3,∠P=∠T.求证:∠M=∠R.3.如图,直线m⊥l,n⊥l,∠1=∠2.求证:∠3=∠4.4. 如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H. ∠GFH+∠BHC=180°.求证:.5如图,已知∠B=∠C,AD∥BC,求证:AD平分∠CAE.6.如图,已知,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠AEF,∠1=40°,求∠2的度数.7.如图,DB ∥FG ∥EC ,∠ABD =60°,∠ACE =36°,AP 平分∠BAC.求∠PAG 的度数.8: 如图1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°,求∠C .9.如图,直线AB 、CD 被直线EF 所截,∠AEF +∠CFE =180°,∠1=∠2,则图中的∠H 与∠G 相等吗?说明你的理由. (12分)10.如图(6),DE ⊥AB ,EF ∥AC ,∠A=35°,求∠DEF 的度数。
A 1 BC DEF G H 211.如图①是长方形纸带,将纸带沿EF 折叠成图②,再沿BF 折叠成图③.(1)若图①中∠DEF=20°,则图③中∠CFE 的度数是多少?(2)若图①中∠DEF=α,把图③中∠CFE 的度数用α表示是多少?12、如图,已知l1∥l2,MN 分别和直线l1、l2交于点A 、B ,ME 分别和直线l1、l2交于点C 、D ,点P 在MN 上(P 点与A 、B 、M 三点不重合).(1)如果点P 在A 、B 两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由;(2)如果点P 在A 、B 两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).13、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °.(2)在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.(3)由(1)、(2),请你猜想:当两平面镜a 、b 的夹角∠3= °时,可以使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行.你能说明理由吗?321n m b a。
平行线判定大题30道

平行线判定大题1. 什么是平行线?平行线是在同一个平面上,永远不会相交的直线。
如果两条直线在平面上没有任何交点,那么它们就是平行线。
2. 平行线的判定方法判定两条直线是否平行有多种方法,下面介绍常用的几种方法:2.1 利用角度关系判定如果两条直线的斜率相等,并且它们不重合,则这两条直线是平行的。
步骤:1.计算两条直线的斜率。
2.如果斜率相等,则这两条直线是平行的;否则,它们不是平行的。
2.2 利用向量关系判定如果两条直线上的向量方向相同,则这两条直线是平行的。
步骤:1.将两条直线表示为一般式方程。
2.提取出方程中的系数作为向量。
3.如果两个向量方向相同或反向,则这两条直线是平行的;否则,它们不是平行的。
2.3 利用距离关系判定如果一条直线与另一条直线上任意一点之间的距离都相等,则这两条直线是平行的。
步骤:1.计算两条直线上任意一点到另一条直线的距离。
2.如果距离相等,则这两条直线是平行的;否则,它们不是平行的。
3. 平行线判定大题练习下面是30道平行线判定大题,供你练习和巩固所学知识。
1.判断直线y = 2x + 3和y = -3x + 5是否平行。
2.判断直线3x - 4y = 6和6x - 8y = 12是否平行。
3.判断直线2x + y - 3 = 0和4x + 2y - 6 = 0是否平行。
4.判断直线2x - y + 1 = 0和4x - 2y + 2 = 0是否平行。
5.判断直线y = x + 1和y = x - 1是否平行。
6.判断直线2x + y + 5 = 0和4x + y + k = 0是否平行,k为常数。
7.判断直线3x - ky - k^2 = k和6x - ky - k^2 = k是否平行,k为常数。
8.判断过点A(1,2)且斜率为-3的直线和过点B(5,8)且斜率为-3的直线是否平行。
9.判断过点A(2,3)且斜率为2的直线和过点B(4,7)且斜率为-0.5的直线是否平行。
平行线求证题的解题技巧

一、平行线的基本概念平行线是指在平面上两条直线不相交地延伸,它们之间距离保持不变。
在几何学中,平行线是两条没有公共点的直线,或者是在空间中两条直线不相交且不平行(即斜交)。
在求证平行线的问题中,我们需要证明两条直线之间没有交叉点,或者证明两条直线的距离始终保持不变。
1. 仔细阅读题目,理解题意。
在解决平行线求证题时,我们需要仔细阅读题目,理解题目所描述的场景和条件。
通过仔细阅读,我们可以确定需要证明的结论是什么,以及需要用到的知识点和解题方法。
2. 找出平行线的条件。
在找出需要证明的结论后,我们需要从题目所给的条件中找出平行线的条件。
这些条件可能是已知的直线关系,也可能是图形的性质。
3. 选择合适的证明方法。
根据所找到的条件,我们需要选择合适的证明方法来证明平行线。
常用的证明方法包括作垂线法、同位角相等、内错角相等、同旁内角互补等。
4. 证明结论。
在选择了合适的证明方法后,我们需要按照步骤逐步进行证明,最终得到结论。
在证明过程中,需要注意每一步骤的逻辑严密性和准确性。
1. 观察图形特征,寻找已知条件。
在解决平行线求证题时,我们需要仔细观察图形,寻找已知条件和需要证明的结论之间的关系。
通过观察图形的特征,我们可以更快地找到解题的方法和思路。
2. 灵活运用几何性质。
在解决平行线求证题时,我们需要灵活运用几何性质,如平行线的定义、同位角相等、内错角相等、同旁内角互补等。
这些性质可以帮助我们证明两条直线的位置关系,从而得到结论。
3. 合理选择辅助线。
在解决平行线求证题时,合理选择辅助线是非常重要的。
辅助线可以帮助我们更好地理解图形,找到解题的突破口。
常用的辅助线有平行线的延伸线、垂线、等腰三角形的底边等。
4. 严谨的逻辑推理。
在证明平行线时,需要注意每一步推理的严密性和准确性。
需要保证每一步推理都符合逻辑,并且每个结论都是可以推导出来的。
四、例题解析【例题】: 如图所示,在四边形ABCD中,AB//CD,点E是BC的中点,求证:AD//EC。
平行线的判定》证明题

平行线的判定》证明题1.当∠1=∠2时,直线a、b平行。
因为这时∠1+∠2=180°,根据平行线的性质可知a、b平行。
2.已知∠XXX∠BCD,且∠ABC+∠CDG=180°,因此∠BCD=∠XXX根据三角形内角和定理可知∠XXX∠BCD+∠XXX∠ABC+∠BCD=180°,所以BC∥GD。
3.已知∠1=15°,∠2=15°,因此∠ACE=∠BDF=75°。
但AE与BF不平行,因为它们交于点F。
4.BE平分∠ABD,DE平分∠XXX,且∠DQP=∠1=∠2,因此∠XXX∠XXX∠BCQ。
根据同位角和内错角性质可知AB∥CD,DE∥BE,因此AD∥BC。
5.已知∠2=∠3,且∠1+∠2=90°,因此∠1=90°-∠2=90°-∠3.根据同位角和内错角性质可知BE∥DF,因为∠AEB=∠DFB=90°。
6.已知∠1=30°,∠B=60°,因此∠C=90°。
根据三角形内角和定理可知∠ABC=∠ACB=60°,因此AB=AC。
又因为∠BAC=90°,所以AD∥BC。
7.已知∠BAD=∠DCB,∠BAC=∠DCA,因此三角形ABD与三角形CBD相似。
根据相似三角形的性质可知AB∥CD。
8.直线EF分别与直线AB、CD相交于点P和点Q,PG 平分∠APQ,QH平分∠DPQ。
根据角平分线的性质可知∠XXX∠GPQ+∠HPQ=1/2(∠APQ+∠DPQ)=1/2(180°)=90°,因此GH∥AB∥CD。
9.已知XXX,XXX,∠1=∠2,因此∠XXX∠BCD。
根据同位角和内错角性质可知BE∥CF。
10.已知AB⊥DF,∠2=90°,∠2=∠3,因此∠1=90°-∠2=90°-∠3.根据同位角和内错角性质可知BE∥DF,因为∠AEB=∠DFB=90°。
平行线判定大题30道

平行线判定大题30道摘要:一、引言1.问题背景及重要性2.文章目的与结构二、平行线判定方法1.同位角相等2.内错角相等3.同侧角相等4.两直线平行,同位角相等5.两直线平行,内错角相等6.两直线平行,同侧角相等三、平行线判定大题解析1.例题1:同位角相等判定2.例题2:内错角相等判定3.例题3:同侧角相等判定4.例题4:两直线平行,同位角相等判定5.例题5:两直线平行,内错角相等判定6.例题6:两直线平行,同侧角相等判定四、平行线判定大题练习1.练习1:同位角相等判定2.练习2:内错角相等判定3.练习3:同侧角相等判定4.练习4:两直线平行,同位角相等判定5.练习5:两直线平行,内错角相等判定6.练习6:两直线平行,同侧角相等判定五、总结与展望1.平行线判定方法总结2.平行线判定大题技巧概述3.后续学习建议正文:一、引言1.问题背景及重要性在初中数学几何部分,平行线的判定与性质是重点内容。
掌握平行线的判定方法,对于解决各类几何问题具有重要意义。
本文将为大家详细解析平行线判定大题30道,帮助大家更好地理解和应用平行线判定方法。
2.文章目的与结构本文旨在通过解析平行线判定大题,使大家对平行线的判定方法有更深刻的理解。
文章共分为五个部分,分别为:引言、平行线判定方法、平行线判定大题解析、平行线判定大题练习和总结与展望。
二、平行线判定方法1.同位角相等若两条直线被第三条直线所截,且有同位角相等,则这两条直线平行。
2.内错角相等若两条直线被第三条直线所截,且有内错角相等,则这两条直线平行。
3.同侧角相等若两条直线被第三条直线所截,且有同侧角相等,则这两条直线平行。
4.两直线平行,同位角相等若两条直线平行,则它们被第三条直线所截时的同位角相等。
5.两直线平行,内错角相等若两条直线平行,则它们被第三条直线所截时的内错角相等。
6.两直线平行,同侧角相等若两条直线平行,则它们被第三条直线所截时的同侧角相等。
三、平行线判定大题解析1.例题1:同位角相等判定已知直线AB与CD被直线EF所截,若∠AEF = ∠CED,证明AB平行于CD。
平行线的判定专项练习60题(有答案)

平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗?请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB和CD平行吗?为什么?45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?(2)AB∥CD吗?为什么?56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行?平行线的判定60题参考答案:1.∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BC∥DE2.∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).3.∵AB⊥BC(已知),∴∠ABC=90°(垂直定义);∵BC⊥CD(已知),∴∠BCD=90°(垂直定义),∴∠ABC=∠DCB;∵∠1=∠2(已知),∴∠ABC﹣∠2=∠DCB﹣∠1,即∠FBC=∠ECB,∴BF∥CE(内错角相等,两直线平行)4.∵AB⊥BC,∴∠3+∠4=90°.∵∠2=∠3,∠1+∠2=90°,∴∠1=∠4,∴BE∥DF.5.AB平行于ON.证明:∵OP平分∠MON,∴∠BOA=∠NOA,∵∠BOA=∠BAO,∴∠BAO=∠NOA,∴AB∥ON6.∵∠1=∠2,∴DC∥AB,∴∠A+∠ADC=180°.又∵∠A=∠C,∴∠ADC+∠C=180°,∴AE∥BC.7.∵BC是∠ABE的平分线,∴∠ABC=∠CBE(角平分线定义),∵∠ABE=∠D+∠E=∠ABC+∠CBE,∠D=∠E,∴∠ABC=∠D,∴DE∥BC8.过点E作EF∥AB.∵EF∥AB,∴∠A=∠AEF;又∵∠AEC=∠A+∠C,∴∠AEC=∠AEF+∠C;而∠AEC=∠AEF+∠CEF,∴∠CEF=∠C,∴EF∥CD,∴AB∥CD.9.∵AC∥ED,∴∠1=∠4;∵∠1=∠2,∴∠2=∠4;又∵EB平分∠AED,∴∠3=∠4;∴∠2=∠3,∴AE∥BD10.∵∠1+∠BEF=180°,∠1=105°,∴∠BEF=75°,∵∠2=75°,∴∠BEF=∠2,∴AB∥CD.11.∵∠D=∠A,∴ED∥AB;∵∠B=∠BCF,∴AB∥CF;∴ED∥CF.12.∵AB⊥BC,CD⊥BC(已知),∴∠ABC=∠BCD=90°(垂直定义);又∵∠1=∠2(已知),∴∠ABC﹣∠1=∠BCD﹣∠2(等量减等量,差相等),∴∠EBC=∠FCB,∴EB∥FC(内错角相等,两直线平行)13.∵BE是∠B的平分线,∴∠1=∠CBE,∵∠1=∠2,∴∠2=∠CBE,∴DE∥BC.14.AC与DF平行,理由如下:∵BD∥EC,∴∠DBC+∠C=180°,又∠C=∠D,∴∠DBC+∠D=180°,∴AC∥DF.15.∵AC⊥AE,BD⊥BF,∴∠1+∠3=∠2+∠4=90°,∵∠1=35°,∠2=35°,∴∠3=∠4,∴AE∥BF.16.∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等);∵∠1=∠2,∴∠ABC﹣∠1=∠BCD﹣∠2,即∠EBC=∠BCF,∴BE∥CF(内错角相等,两直线平行).17.∵∠BAD=DCB,∠1=∠3(已知),∴∠BAD﹣∠1=∠DCB﹣∠3(等式性质),即∠2=∠4,∴AD∥BC(内错角相等,两直线平行)18.DF∥AB.理由:∵DE∥CA,∴∠1=∠CAD,∵AD是三角形ABC的角平分线,∴∠BAD=∠CAD,∵∠1=∠2,∴∠2=∠BAD,∴DF∥AB19.AB∥DF(2分)理由:∵∠C=∠DAE,(已知)∴AD∥BC,(内错角相等,两直线平行)(2分)∴∠D=∠DFC,(两直线平行,内错角相等)∴∠B=∠D,(已知)∴∠B=∠DFC,(2分)∴AB∥DF(同位角相等,两直线平行)20.CF∥BD.理由如下:∵BD⊥BE,∴∠1+∠2=90°;∵∠1+∠C=90°,∴∠2=∠C.∴CF∥BD.21.AB∥CD.(1分)理由如下:∵∠1+∠MNC=180°,∠MNC=∠1,∴∠1=135°.(2分)又∵∠AMN=∠2=45°,(3分)∴∠1+∠AMN=180°.(4分)∴AB∥CD22.∵BF平分∠ABD,DG平分∠CDE,∴∠1=∠ABD,∠2=∠CDE,又∵∠ABD=∠CDE,∴∠1=∠2,∴BF∥DG(同位角相等,两直线平行).23.ED∥BF;证明如下:∵四边形ABCD中,∠A=∠C=90°,∴∠ADC+∠ABC=180°,∵BF、DE分别平分∠ABC、∠ADC,∴∠ADC+∠ABC=2∠ADE+2∠ABF=180°,∴∠ADE+∠ABF=90°,又∵∠A=90°,∠ADE+∠AED=90°,∴∠AED=∠ABF,∴ED∥BF(同位角相等,两直线平行).24.在△ECD中∵∠C+∠CED+∠CDE=180°(三角形内角和定理),又∵∠CAB=∠CED+∠CDE(已知),∴∠C+∠CAB=180°(等量代换),∴AB∥CD(同旁内角互补,两直线平行)25.∵CD⊥AB,GF⊥AB,∴CD∥FG,∴∠2=∠DCG;又∵∠1=∠2,∴∠DCG=∠1,∴DE∥BC26.∵∠CAD=∠ACB,∴AD∥BC,∵EF⊥CD,∴∠EFC=90°∵∠D=90°,∴∠EFC=∠D,∴AD∥EF,∴BC∥EF,∴∠AEB=∠B.27.∵∠E=∠F,∴AE∥FP,∴∠PAE=∠APF;又∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,即∠2+∠PAE=∠1+∠APF;∴∠2=∠128.∵DC⊥EC,∴∠1+∠2=90°,又∠D=∠1,∠E=∠2,∴∠D+∠1+∠E+∠2=180°.根据三角形的内角和定理,得∠A+∠B=180°,∴AD∥BE29.∵∠A+∠ABC+∠C+∠CDA=360°而∠A=∠C,BE平分∠ABC,DF平分∠CDA∴2∠A+2∠ABE+2∠ADF=360°即∠A+∠ABE+∠ADF=180°又∠A+∠ABE+∠AEB=180°∴∠AEB=∠ADF∴BE∥DF30.∠C=∠D.理由如下:∵∠A=∠F,∴DF∥AC,∴∠D=∠DBA.∵∠1=∠DGF,又∵∠1=∠2,∴∠2=∠DGF,∴DB∥EC,∴∠DBA=∠C,∴∠C=∠D31.∵四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠CDA=180°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∵∠A=90°,∴∠1+∠AEB=90°,∵∠1=∠2,∴∠AEB=∠3,∴BE∥FD.32.∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴a∥b.33.CF∥OD.理由:∵DE⊥AO,BO⊥AO,∴DE∥BO,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴CF∥OD34.∵∠DOB是△COD的外角,∴∠C+∠CDO=∠DOB,又∵∠DOB=∠1+∠2,而∠1=∠2,∠C=∠CDO,∴∠2=∠C,∴CD∥OP35.(1)∵DE平分∠BDF,AF平分∠BAC,∴∠BDF=2∠1,∠BAC=2∠2,又∵∠1=∠2,∴∠BDF=∠BAC,∴DF∥AC;(2)∵AF平分∠BAC,∴∠BAF=∠2.又∵∠1=∠2,∴∠1=∠BAF,∴DE∥AF.36.DE∥AB,∵AD平分∠BAC,∴∠BAC=2∠1,∵EF平分∠DEC,∴∠DEC=2∠2,∵∠1=∠2,∴∠BAC=∠DEC,∴DE∥AB.37.∵∠BDE+∠CDE=∠A+∠ACD,又DE是∠BDC的平分线,∠ACD=∠A,∴∠A=∠BDE,∴DE∥AC.38.∠2与∠B相等时,AC∥BD.理由如下:∵∠A=∠1,∠1=∠2,∴∠A=∠2,∵∠2=∠B,∴∠A=∠B,∴AC∥BD.39.MN与EF平行.理由如下:∵∠1=∠A,∴MN∥AB,∵∠2=∠B,∴EF∥AB,∴MN∥EF.40.∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4,∴AB∥CD.41.∵∠E=∠F,∴BE∥CF,∴∠EBC=∠BCF,∵∠1=∠2,∴∠CBA=∠DCB,∴AB∥CD.42.∵EF⊥CD于F,∴∠EFG=90°,∵∠GEF=25°,∴∠EGF=65°,∵∠1=65°,∴∠1=∠EGF,∴AB∥CD.43.图中共有2对平行线.①AB∥CD.理由如下:∵∠1=∠2=90°,∴AB∥CD(在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行);②∵∠2=90°,∴∠4+∠5=90°,又∵∠3=30°,∠4=60°,∴∠3=∠5,∴EF∥HG(同位角相等,两直线平行).综上所述,图中共有2对平行线,它们是:AB∥CD、EF∥HG44.AB∥CD,理由:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴AB∥CD.45.∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFC=90°(垂直的定义),∴∠B=90°﹣∠1(直角三角形两锐角互余),∠GFC=90°﹣∠2(互余的定义),∵∠1=∠2(已知),∴∠B=∠GFC(等角的余角相等),∴AB∥GF(同位角相等,两直线平行)46.∵∠B=∠1,∴AB∥DE(同位角相等,两直线平行),∴∠2=∠ADE(两直线平行,内错角相等)∵∠2=∠E,∴∠E=∠ADE,∴AD∥CE(内错角相等,两直线平行).47.∵EM平分∠BEF,FN平分∠DFH,∴∠BEF=2∠MEF,∠DFH=2∠NFH,∵∠BEF=∠DFH,∴∠MEF=∠NFH,∴EM∥FN48.BE∥CF,理由是:∵BE,CF分别平分∠ABC和∠BCD,∴∠1=∠ABC,∠2=∠BCD,∵∠ABC=∠BCD,∴∠1=∠2,∴BE∥CF.49.DB与EC的位置关系是平行,理由:∵∠1=∠3,∠2=∠4(对顶角相等),又∵∠1=∠2,∴∠3=∠4,∴BD∥EC.50.(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.(2)DG∥BC,理由是:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC.51.GH∥MN.理由如下:∵HG平分∠AHM,MN平分∠DNH(已知),∴∠GHM∠AHM,∠NMH=∠DMH(角平分线定义),而∠AHM=∠DMH(已知)∴∠GHM=∠NMH(等量代换),∴GH∥MN.(内错角相等,两直线平行) 52.∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD53.∵EG⊥FG,∴∠G=90°,∴∠1+∠3=90°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴AB∥CD.54.:∵∠1+∠2=180°,∠1=130°,∴∠2=50°,∵∠A=50°,∴∠A=∠2,∴AB∥CD.55.(1)∵DE⊥AC,BF⊥AC,∴∠AED=∠CFB=90°,∴∠DAE+∠1=90°,∠BCF+∠2=90°,∵∠1=∠2,∴∠DAE=∠BCF,∴AD∥BC;(2)AB∥CD.理由如下:∵∠DAE=∠BCF,∠DAB=∠DCB,∴∠DAB﹣∠DAE=∠DCB﹣∠BCF,即∠CAB=∠ACD,∴AB∥CD.56.(1)AD与BC一定平行.理由如下:∵AB⊥AC,∴∠BAC=90°,∵∠1=30°,∠B=60°,∴∠1+∠BAC+∠B=180°,即∠BAD+∠B=180°,∴AD∥BC.(2)AB与CD不一定平行.57.∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.58.EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=2(已知),∴EF∥AD(内错角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC于点D(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,所以EF与BC的位置关系是垂直.59.∵CE平分∠ACD,∴∠1=∠2,∵∠1=∠B,∴∠2=∠B,∴AB∥CE.60.∵∠1=∠2,∴AB∥CD,∵∠3=∠4,∴AD∥BC,故可以判定AB∥CD,AD∥BC.。
(完整版)平行线常考经典较难题、压轴题例题和巩固练习

平行线 例1 翻折 1、如图,把一张长方形纸带沿着直线GF 折叠,∠CGF=30°,则∠1的度数是的度数是.2、如图,生活中将一个宽度相等的纸条按图所示折叠一下,如果∠2=100°,那么∠1的度数为 .例2 旋转 1、将一副直角三角尺ABC 和CDE 按如图方式放置,其中直角顶点C 重合,∠D=45°,∠A=30°.将三角形CDE 绕点C 旋转,若DE ∥BC ,则直线AB 与直线CE 的较大的夹角∠1的大小为的大小为 度.度.例3 平行线的性质1、已知,直线AB ∥DC ,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB 、CD 之间,当∠BAP=60°,∠DCP=20°时,求∠APC .(2)如图2,点P 在直线AB 、CD 之间,∠BAP 与∠DCP 的角平分线相交于点K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由.之间的数量关系,并说明理由.(3)如图3,点P 落在CD 外,∠BAP 与∠DCP 的角平分线相交于点K ,∠AKC 与∠APC 有何数量关系?并说明理由.量关系?并说明理由. 1AED B C2、如图,两直线AB 、CD 平行,则∠1+∠2+∠3+∠4+∠5= .3、已知直线AB ∥CD . (1)如图1,直接写出∠BME 、∠E 、∠END 的数量关系为的数量关系为 ; (2)如图2,∠BME 与∠CNE 的角平分线所在的直线相交于点P ,试探究∠P 与∠E 之间的数量关系,并证明你的结论;系,并证明你的结论;(3)如图3,∠ABM=∠MBE ,∠CDN=∠NDE ,直线MB 、ND 交于点F ,则= .例4 平移1、如图1所示,已知BC ∥OA ,∠B=∠A=120°(1)说明OB ∥AC 成立的理由.成立的理由. (2)如图2所示,若点E ,F 在BC 上,且∠FOC=∠AOC ,OE 平分∠BOF ,求∠EOC 的度数.的度数. (3)在(2)的条件下,若左右平移AC ,如图3所示,那么∠OCB :∠OFB 的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA 时,求∠OCA 的度数.的度数.2、如图,已知AM ∥BN ,∠A=60°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)求∠CBD 的度数;的度数; (2)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P 运动到使∠ACB=∠ABD 时,∠ABC 的度数是的度数是.例5 作图—应用1、(1)如图1,一个牧童从P 点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.羊群走的路程最短?请在图中画出最短路线.(2)如图2,在一条河的两岸有A ,B 两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段CD 表示.试问:桥CD 建在何处,才能使A 到B 的路程最短呢?请在图中画出桥CD 的位置.的位置.2、如图,平面上有直线a 及直线a 外的三点A 、B 、P .(1)过点P 画一条直线m ,使得m ∥a ;(2)过B 作BH ⊥直线m ,并延长BH 至B ′,使得BB ′为直线a 、m 之间的距离;之间的距离;(3)若直线a 、m 表示一条河的两岸,现要在这条河上建一座桥(桥与河岸垂直),使得从村庄A 经桥过河到村庄B 的路程最短,试问桥应建在何处?画出示意图.的路程最短,试问桥应建在何处?画出示意图.【巩固练习】【巩固练习】1、如图,AB ∥DE ,∠ABC 的角平分线BP 和∠CDE 的角平分线DK 的反向延长线交于点P 且∠P ﹣2∠C=57°,则∠C 等于(等于( )A .24°B .34°C .26°D .22° 图2图1P BA题图第2题图题图第1题图2、如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )A.76° B.78° C.80° D.82°3、在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类的位置关系是( )推,则l1和l8的位置关系是(A.平行.平行或垂直 D.无法确定.无法确定 .平行 B.垂直.垂直 C.平行或垂直4、如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F为定值,其中结论正确的有(为定值,其中结论正确的有( )A.1个 B.2个 C.3个 D.4个第5题图题图第4题图题图5、如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于(等于( )A.180° B.360° C.540° D.720°6、如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为的值为 .第9题图题图题图第8题图第7题图题图7、如图所示,AB∥CD,∠E=35°,∠C=20°,则∠EAB的度数为的度数为 .8、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B﹣∠D=24°,则∠GEF= .9、已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D分别作DF∥AC交AB所的度数是.在直接于F,DE∥AB交AC所在直线于E.若∠A=80°,则∠FDE的度数是10、如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG ⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;的数量关系;(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.的数量关系.11、已知AM∥CN,点B为平面内一点,AB⊥BC于B.;(1)如图1,直接写出∠A和∠C之间的数量关系之间的数量关系(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.的度数.12、如图1,AB∥CD,E是AB、CD之间的一点.之间的一点.之间的数量关系,并证明你的结论;(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.写出∠AFD与∠AED之间的数量关系;之间的数量关系;(3)将图2中的射线DC 沿DE 翻折交AF 于点G 得图3,若∠AGD 的余角等于2∠E 的补角,求∠BAE 的大小.的大小.13、已知:如图,BC ∥OA ,∠B=∠A=100°,试回答下列问题:,试回答下列问题:(1)如图①所示,求证:OB ∥AC .(注意证明过程要写依据).(注意证明过程要写依据)(2)如图②,若点E 、F 在BC 上,且满足∠FOC=∠AOC ,并且OE 平分∠BOF .(ⅰ)求∠EOC 的度数;的度数; (ⅱ)求∠OCB :∠OFB 的比值;的比值;(ⅲ)如图③,若∠OEB=∠OCA .此时∠OCA 度数等于度数等于 .(在横线上填上答案即可).(在横线上填上答案即可)14、已知直线AB ∥CD .(1)如图1,直接写出∠ABE ,∠CDE 和∠BED 之间的数量关系是之间的数量关系是 . (2)如图2,BF ,DF 分别平分∠ABE ,∠CDE ,那么∠BFD 和∠BED 有怎样的数量关系?请说明理由.理由.(3)如图3,点E 在直线BD 的右侧,BF ,DF 仍平分∠ABE ,∠CDE ,请直接写出∠BFD 和∠BED 的数量关系的数量关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 平行线的性质和判定拔高训练
1.(1) 如图1所示,把一个长方形纸片沿EF 折叠后,点D,C 分别落在'D ,'
C 的位置.若∠EF B
=65°,则'AED 等于__________.
(2) 如图2所示,AD ∥EF ,EF ∥BC ,且EG ∥AC .那么图中与∠1相等的角(不包括∠1)的个数是__________.
(3)如图3所示,AB ∥C D,直线AB ,CD 与直线l相交于点E,F,EG 平分∠AE F,FH 平分∠EFD ,则GE 与FH 的位置关系为__________.
2.如果一个角的两边分别平行于另一个角的两边,且其中一个角比另一个角的4倍少30°,那么这两个角分别是( )
A .30°和150°ﻩ ﻩ
B .42°和138°ﻩ
C .都等于10° ﻩﻩ ﻩ ﻩ
D .42°和138°或都等于10°
3.如图所示,点E在CA 延长线上,DE 、AB交于点F ,且∠BDE =∠AEF ,∠B =∠C,
∠EFA 比∠FDC 的余角小10°,P为线段DC 上一动点,Q 为PC 上一点,且满足∠FQP =∠QFP ,F M为∠EF P的平分线.则下列结论:①AB ∥CD ,②FQ 平分∠AFP ,③∠B+∠E =140°,④∠Q EM 的角度为定值.其中正确的结论有( )个数
A.1ﻩﻩﻩﻩB.2ﻩﻩﻩﻩC .3 ﻩD.4
4.如图所示,AB ∥EF ,E F∥CD,E G平分∠BEF ,∠B +∠BED +∠D=192°, ∠B-∠D =24°,则∠GEF =__________.
5.已知:如图所示,AD ⊥B C于点D ,E G⊥BC 于点G ,∠E =∠3.求证:AD 平分∠B AC .
6.如图所示,AB∥CD,∠1=∠2,∠3=∠4,试说明:AD∥BE.
7.如图所示,已知∠DBF=∠CAF,CE⊥FE.垂足为E,∠BDA+∠ECA=180°, 求证:DA⊥EF
8.已知,如图所示,∠1+∠2=180°,∠1+∠EFD=180°,∠3=∠B,试判断∠AED与∠C
的关系,并证明你的结论.
9.已知,如图所示,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.
10.如图所示,在△ABC中,CE⊥AB于点E,DF⊥AB于点F,AC∥ED,CE是△ACB的角平分线.求证:∠EDF=∠BDF.
11.如图,AB∥CD,∠ABF=∠DCE,求证∠BFE=∠FEC。