平行线证明难题
平行线证明题大综合

平行线的证明【1】1.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC()∴∠2=()∵∠1=∠2(已知)∴∠1=∠(等量代换)∴EF∥CD()∴∠AEF=∠()∵EF⊥AB(已知)∴∠AEF=90°()∴∠ADC=90°()∴CD⊥AB()2.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(),∴∠2=∠CGD(等量代换).∴CE∥BF().∴∠=∠C().又∵∠B=∠C(已知),∴∠=∠B(等量代换).∴AB∥CD().3.如图,∠1=60°,∠2=60°,∠3=100°.要使AB∥EF,∠4应为多少度?说明理由.4.如图,EF∥AD,∠1=∠2.求证:DG∥AB.5.如图,已知DE∥BC,EF平分∠AED,EF⊥AB,CD⊥AB,试说明CD平分∠ACB.6.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.平行线的证明【2】1.如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.2.如图,已知AB∥DE∥MN,AD平分∠CAB,CD⊥DE.(1)∠DAB=15°,求∠ACD的度数;(2)判断等式∠CDA=∠NCD+∠DAB是否成立,并说明理由.3.如图,已知AB∥CD∥EF,∠ABC=46°,∠CEF=154°,求:(1)∠ECD的度数;(2)∠BCE的度数.4.学着说点理,填空:如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.理由如下:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,()∴AD∥EG,()∴∠1=∠2,()∠E=∠3,(两直线平行,同位角相等)又∵∠E=∠1(已知)∴=(等量代换)∴AD平分∠BAC()5.如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.6.如图,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=27°.(1)求∠2的度数;(2)若∠3=18°,判断直线n和m的位置关系,并说明理由.7.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,(1)问直线EF与AB有怎样的位置关系?加以证明;(2)若∠CEF=70°,求∠ACB的度数.平行线的证明【3】1.如图,已知∠1=142°,∠ACB=38°,∠2=∠3,FH⊥AB于H,问AB与CD是否垂直?并说明理由.2.如图,已知∠1+∠2=180°,∠B=∠3,∠BAC与∠DCA相等吗?为什么?3.已知;如图,在四边形ABCD中,AB∥CD,∠BAD,∠ADC的平分线AE、DF分别与线段BC相交于点E、F,AE与DF相交于点G,求证:AE⊥DF.4.如图所示,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED的位置关系,并说明理由.5.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.6.完成下列推理过程:已知:如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()7.如图所示,折叠一个宽度相等的纸条,求∠1的度数.平行线的证明【4】1.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.2.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.3.MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB 和CD的位置关系,并说明理由.4.如图AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°.5.(1)如图1,已知AB∥CD,那么图1中∠P AB、∠APC、∠PCD之间有什么数量关系?并说明理由.(2)如图2,已知∠BAC=80°,点D是线段AC上一点,CE∥BD,∠ABD和∠ACE的平分线交于点F,请利用(1)的结论求图2中∠F的度数.6.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2(1)求证:AB∥CD(2)若∠D=∠3+50°,∠CBD=70°,求∠C的度数.7.如图,AB∥CD,∠CDE=122°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F.平行线的证明【5】1.如图,EF∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°.(1)问直线CD与AB有怎样的位置关系?并说明理由;(2)若∠CEF=70°,求∠ACB的度数.2.如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:FE∥OC;(2)若∠BOC比∠DFE大20°,求∠OFE的度数.3.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,求:(1)∠FED的度数;(2)∠FEG的度数;(3)∠1和∠2的度数.4.已知△ABC各顶点的坐标为A(﹣4,﹣2),B(﹣1,﹣3),C(﹣2,﹣1),将△ABC 先向右平移4个单位长度,再向上平移3个单位长度得到△A′B′C′.(1)在直角坐标系中画出△A′B′C′;(2)求出△A′B′C′的面积.5.如图①,AB∥CD,点E在直线AB与CD之间,连结AE、BE,试说明∠BAE+∠DCE =∠AEC.【探究】当点E在如图②的位置时,其他条件不变,试说明∠AEC+∠BAE+∠DCE =360°;【应用】点E、F、G在直线AB与CD之间,连结AE、EF、FG和CG,其他条件不变,如图③.若∠EFG=36°,则∠BAE+∠AEF+∠FGC+∠DCG=°.平行线的证明【6】1.已知:如图,CD分别交AD、AE、BE于点D、F、C,连接AB、AC,AD∥BE,∠1=∠2,∠3=∠4.求证:AB∥CD.证明:∵AD∥BE(已知)∴∠3=∠CAD()∵∠3=∠4(已知)∴∠4=(等量代换)∵∠1=∠2(已知)∴∠1+∠CAE=∠2+∠CAE(等式的基本性质)即∠BAE=∴∠4=(等量代换)∴AB∥CD.2.如图(1),AB∥CD,试求∠BPD与∠B、∠D的数量关系,说明理由.(2)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D 的数量关系,并说明理由.(3)观察图(3)和(4),已知AB∥CD,直接写出图中的∠BPD与∠B、∠D的数量关系,不用说明理由.3.(1)如图①如果AB∥CD,求证:∠APC=∠A+∠C.(2)如图②,AB∥CD,根据上面的推理方法,直接写出∠A+∠P+∠Q+∠C=.(3)如图③,AB∥CD,若∠ABP=x,∠BPQ=y,∠PQC=z,∠QCD=m,则m=(用x、y、z表示)4.已知,如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上的一点且GH⊥EG.求证:PF∥GH.5.如图,把矩形纸片ABCD沿EF折叠后,使点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是;(2)若∠BFE=65°,求∠EBF的度数.。
平行线专项证明题

1.已知:如图,CE平分∠ACD,∠1=∠2.求证:AB∥CD.2.如图,M,N,T和P,Q,R分别在同一直线上,且∠1=∠3,∠P=∠T.求证:∠M=∠R.3.如图,直线m⊥l,n⊥l,∠1=∠2.求证:∠3=∠4.4. 如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H. ∠GFH+∠BHC=180°.求证:.5如图,已知∠B=∠C,AD∥BC,求证:AD平分∠CAE.6.如图,已知,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠AEF,∠1=40°,求∠2的度数.7.如图,DB ∥FG ∥EC ,∠ABD =60°,∠ACE =36°,AP 平分∠BAC.求∠PAG 的度数.8: 如图1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°,求∠C .9.如图,直线AB 、CD 被直线EF 所截,∠AEF +∠CFE =180°,∠1=∠2,则图中的∠H 与∠G 相等吗?说明你的理由. (12分)10.如图(6),DE ⊥AB ,EF ∥AC ,∠A=35°,求∠DEF 的度数。
A 1 BC DEF G H 211.如图①是长方形纸带,将纸带沿EF 折叠成图②,再沿BF 折叠成图③.(1)若图①中∠DEF=20°,则图③中∠CFE 的度数是多少?(2)若图①中∠DEF=α,把图③中∠CFE 的度数用α表示是多少?12、如图,已知l1∥l2,MN 分别和直线l1、l2交于点A 、B ,ME 分别和直线l1、l2交于点C 、D ,点P 在MN 上(P 点与A 、B 、M 三点不重合).(1)如果点P 在A 、B 两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由;(2)如果点P 在A 、B 两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).13、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °.(2)在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.(3)由(1)、(2),请你猜想:当两平面镜a 、b 的夹角∠3= °时,可以使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行.你能说明理由吗?321n m b a。
平行线判定大题30道

平行线判定大题1. 什么是平行线?平行线是在同一个平面上,永远不会相交的直线。
如果两条直线在平面上没有任何交点,那么它们就是平行线。
2. 平行线的判定方法判定两条直线是否平行有多种方法,下面介绍常用的几种方法:2.1 利用角度关系判定如果两条直线的斜率相等,并且它们不重合,则这两条直线是平行的。
步骤:1.计算两条直线的斜率。
2.如果斜率相等,则这两条直线是平行的;否则,它们不是平行的。
2.2 利用向量关系判定如果两条直线上的向量方向相同,则这两条直线是平行的。
步骤:1.将两条直线表示为一般式方程。
2.提取出方程中的系数作为向量。
3.如果两个向量方向相同或反向,则这两条直线是平行的;否则,它们不是平行的。
2.3 利用距离关系判定如果一条直线与另一条直线上任意一点之间的距离都相等,则这两条直线是平行的。
步骤:1.计算两条直线上任意一点到另一条直线的距离。
2.如果距离相等,则这两条直线是平行的;否则,它们不是平行的。
3. 平行线判定大题练习下面是30道平行线判定大题,供你练习和巩固所学知识。
1.判断直线y = 2x + 3和y = -3x + 5是否平行。
2.判断直线3x - 4y = 6和6x - 8y = 12是否平行。
3.判断直线2x + y - 3 = 0和4x + 2y - 6 = 0是否平行。
4.判断直线2x - y + 1 = 0和4x - 2y + 2 = 0是否平行。
5.判断直线y = x + 1和y = x - 1是否平行。
6.判断直线2x + y + 5 = 0和4x + y + k = 0是否平行,k为常数。
7.判断直线3x - ky - k^2 = k和6x - ky - k^2 = k是否平行,k为常数。
8.判断过点A(1,2)且斜率为-3的直线和过点B(5,8)且斜率为-3的直线是否平行。
9.判断过点A(2,3)且斜率为2的直线和过点B(4,7)且斜率为-0.5的直线是否平行。
平行线求证题的解题技巧

一、平行线的基本概念平行线是指在平面上两条直线不相交地延伸,它们之间距离保持不变。
在几何学中,平行线是两条没有公共点的直线,或者是在空间中两条直线不相交且不平行(即斜交)。
在求证平行线的问题中,我们需要证明两条直线之间没有交叉点,或者证明两条直线的距离始终保持不变。
1. 仔细阅读题目,理解题意。
在解决平行线求证题时,我们需要仔细阅读题目,理解题目所描述的场景和条件。
通过仔细阅读,我们可以确定需要证明的结论是什么,以及需要用到的知识点和解题方法。
2. 找出平行线的条件。
在找出需要证明的结论后,我们需要从题目所给的条件中找出平行线的条件。
这些条件可能是已知的直线关系,也可能是图形的性质。
3. 选择合适的证明方法。
根据所找到的条件,我们需要选择合适的证明方法来证明平行线。
常用的证明方法包括作垂线法、同位角相等、内错角相等、同旁内角互补等。
4. 证明结论。
在选择了合适的证明方法后,我们需要按照步骤逐步进行证明,最终得到结论。
在证明过程中,需要注意每一步骤的逻辑严密性和准确性。
1. 观察图形特征,寻找已知条件。
在解决平行线求证题时,我们需要仔细观察图形,寻找已知条件和需要证明的结论之间的关系。
通过观察图形的特征,我们可以更快地找到解题的方法和思路。
2. 灵活运用几何性质。
在解决平行线求证题时,我们需要灵活运用几何性质,如平行线的定义、同位角相等、内错角相等、同旁内角互补等。
这些性质可以帮助我们证明两条直线的位置关系,从而得到结论。
3. 合理选择辅助线。
在解决平行线求证题时,合理选择辅助线是非常重要的。
辅助线可以帮助我们更好地理解图形,找到解题的突破口。
常用的辅助线有平行线的延伸线、垂线、等腰三角形的底边等。
4. 严谨的逻辑推理。
在证明平行线时,需要注意每一步推理的严密性和准确性。
需要保证每一步推理都符合逻辑,并且每个结论都是可以推导出来的。
四、例题解析【例题】: 如图所示,在四边形ABCD中,AB//CD,点E是BC的中点,求证:AD//EC。
平行线的判定》证明题

平行线的判定》证明题1.当∠1=∠2时,直线a、b平行。
因为这时∠1+∠2=180°,根据平行线的性质可知a、b平行。
2.已知∠XXX∠BCD,且∠ABC+∠CDG=180°,因此∠BCD=∠XXX根据三角形内角和定理可知∠XXX∠BCD+∠XXX∠ABC+∠BCD=180°,所以BC∥GD。
3.已知∠1=15°,∠2=15°,因此∠ACE=∠BDF=75°。
但AE与BF不平行,因为它们交于点F。
4.BE平分∠ABD,DE平分∠XXX,且∠DQP=∠1=∠2,因此∠XXX∠XXX∠BCQ。
根据同位角和内错角性质可知AB∥CD,DE∥BE,因此AD∥BC。
5.已知∠2=∠3,且∠1+∠2=90°,因此∠1=90°-∠2=90°-∠3.根据同位角和内错角性质可知BE∥DF,因为∠AEB=∠DFB=90°。
6.已知∠1=30°,∠B=60°,因此∠C=90°。
根据三角形内角和定理可知∠ABC=∠ACB=60°,因此AB=AC。
又因为∠BAC=90°,所以AD∥BC。
7.已知∠BAD=∠DCB,∠BAC=∠DCA,因此三角形ABD与三角形CBD相似。
根据相似三角形的性质可知AB∥CD。
8.直线EF分别与直线AB、CD相交于点P和点Q,PG 平分∠APQ,QH平分∠DPQ。
根据角平分线的性质可知∠XXX∠GPQ+∠HPQ=1/2(∠APQ+∠DPQ)=1/2(180°)=90°,因此GH∥AB∥CD。
9.已知XXX,XXX,∠1=∠2,因此∠XXX∠BCD。
根据同位角和内错角性质可知BE∥CF。
10.已知AB⊥DF,∠2=90°,∠2=∠3,因此∠1=90°-∠2=90°-∠3.根据同位角和内错角性质可知BE∥DF,因为∠AEB=∠DFB=90°。
平行线判定大题30道

平行线判定大题30道摘要:一、引言1.问题背景及重要性2.文章目的与结构二、平行线判定方法1.同位角相等2.内错角相等3.同侧角相等4.两直线平行,同位角相等5.两直线平行,内错角相等6.两直线平行,同侧角相等三、平行线判定大题解析1.例题1:同位角相等判定2.例题2:内错角相等判定3.例题3:同侧角相等判定4.例题4:两直线平行,同位角相等判定5.例题5:两直线平行,内错角相等判定6.例题6:两直线平行,同侧角相等判定四、平行线判定大题练习1.练习1:同位角相等判定2.练习2:内错角相等判定3.练习3:同侧角相等判定4.练习4:两直线平行,同位角相等判定5.练习5:两直线平行,内错角相等判定6.练习6:两直线平行,同侧角相等判定五、总结与展望1.平行线判定方法总结2.平行线判定大题技巧概述3.后续学习建议正文:一、引言1.问题背景及重要性在初中数学几何部分,平行线的判定与性质是重点内容。
掌握平行线的判定方法,对于解决各类几何问题具有重要意义。
本文将为大家详细解析平行线判定大题30道,帮助大家更好地理解和应用平行线判定方法。
2.文章目的与结构本文旨在通过解析平行线判定大题,使大家对平行线的判定方法有更深刻的理解。
文章共分为五个部分,分别为:引言、平行线判定方法、平行线判定大题解析、平行线判定大题练习和总结与展望。
二、平行线判定方法1.同位角相等若两条直线被第三条直线所截,且有同位角相等,则这两条直线平行。
2.内错角相等若两条直线被第三条直线所截,且有内错角相等,则这两条直线平行。
3.同侧角相等若两条直线被第三条直线所截,且有同侧角相等,则这两条直线平行。
4.两直线平行,同位角相等若两条直线平行,则它们被第三条直线所截时的同位角相等。
5.两直线平行,内错角相等若两条直线平行,则它们被第三条直线所截时的内错角相等。
6.两直线平行,同侧角相等若两条直线平行,则它们被第三条直线所截时的同侧角相等。
三、平行线判定大题解析1.例题1:同位角相等判定已知直线AB与CD被直线EF所截,若∠AEF = ∠CED,证明AB平行于CD。
平行线的判定专项练习60题(有答案)
平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗?请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB和CD平行吗?为什么?45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?(2)AB∥CD吗?为什么?56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行?平行线的判定60题参考答案:1.∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BC∥DE2.∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).3.∵AB⊥BC(已知),∴∠ABC=90°(垂直定义);∵BC⊥CD(已知),∴∠BCD=90°(垂直定义),∴∠ABC=∠DCB;∵∠1=∠2(已知),∴∠ABC﹣∠2=∠DCB﹣∠1,即∠FBC=∠ECB,∴BF∥CE(内错角相等,两直线平行)4.∵AB⊥BC,∴∠3+∠4=90°.∵∠2=∠3,∠1+∠2=90°,∴∠1=∠4,∴BE∥DF.5.AB平行于ON.证明:∵OP平分∠MON,∴∠BOA=∠NOA,∵∠BOA=∠BAO,∴∠BAO=∠NOA,∴AB∥ON6.∵∠1=∠2,∴DC∥AB,∴∠A+∠ADC=180°.又∵∠A=∠C,∴∠ADC+∠C=180°,∴AE∥BC.7.∵BC是∠ABE的平分线,∴∠ABC=∠CBE(角平分线定义),∵∠ABE=∠D+∠E=∠ABC+∠CBE,∠D=∠E,∴∠ABC=∠D,∴DE∥BC8.过点E作EF∥AB.∵EF∥AB,∴∠A=∠AEF;又∵∠AEC=∠A+∠C,∴∠AEC=∠AEF+∠C;而∠AEC=∠AEF+∠CEF,∴∠CEF=∠C,∴EF∥CD,∴AB∥CD.9.∵AC∥ED,∴∠1=∠4;∵∠1=∠2,∴∠2=∠4;又∵EB平分∠AED,∴∠3=∠4;∴∠2=∠3,∴AE∥BD10.∵∠1+∠BEF=180°,∠1=105°,∴∠BEF=75°,∵∠2=75°,∴∠BEF=∠2,∴AB∥CD.11.∵∠D=∠A,∴ED∥AB;∵∠B=∠BCF,∴AB∥CF;∴ED∥CF.12.∵AB⊥BC,CD⊥BC(已知),∴∠ABC=∠BCD=90°(垂直定义);又∵∠1=∠2(已知),∴∠ABC﹣∠1=∠BCD﹣∠2(等量减等量,差相等),∴∠EBC=∠FCB,∴EB∥FC(内错角相等,两直线平行)13.∵BE是∠B的平分线,∴∠1=∠CBE,∵∠1=∠2,∴∠2=∠CBE,∴DE∥BC.14.AC与DF平行,理由如下:∵BD∥EC,∴∠DBC+∠C=180°,又∠C=∠D,∴∠DBC+∠D=180°,∴AC∥DF.15.∵AC⊥AE,BD⊥BF,∴∠1+∠3=∠2+∠4=90°,∵∠1=35°,∠2=35°,∴∠3=∠4,∴AE∥BF.16.∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等);∵∠1=∠2,∴∠ABC﹣∠1=∠BCD﹣∠2,即∠EBC=∠BCF,∴BE∥CF(内错角相等,两直线平行).17.∵∠BAD=DCB,∠1=∠3(已知),∴∠BAD﹣∠1=∠DCB﹣∠3(等式性质),即∠2=∠4,∴AD∥BC(内错角相等,两直线平行)18.DF∥AB.理由:∵DE∥CA,∴∠1=∠CAD,∵AD是三角形ABC的角平分线,∴∠BAD=∠CAD,∵∠1=∠2,∴∠2=∠BAD,∴DF∥AB19.AB∥DF(2分)理由:∵∠C=∠DAE,(已知)∴AD∥BC,(内错角相等,两直线平行)(2分)∴∠D=∠DFC,(两直线平行,内错角相等)∴∠B=∠D,(已知)∴∠B=∠DFC,(2分)∴AB∥DF(同位角相等,两直线平行)20.CF∥BD.理由如下:∵BD⊥BE,∴∠1+∠2=90°;∵∠1+∠C=90°,∴∠2=∠C.∴CF∥BD.21.AB∥CD.(1分)理由如下:∵∠1+∠MNC=180°,∠MNC=∠1,∴∠1=135°.(2分)又∵∠AMN=∠2=45°,(3分)∴∠1+∠AMN=180°.(4分)∴AB∥CD22.∵BF平分∠ABD,DG平分∠CDE,∴∠1=∠ABD,∠2=∠CDE,又∵∠ABD=∠CDE,∴∠1=∠2,∴BF∥DG(同位角相等,两直线平行).23.ED∥BF;证明如下:∵四边形ABCD中,∠A=∠C=90°,∴∠ADC+∠ABC=180°,∵BF、DE分别平分∠ABC、∠ADC,∴∠ADC+∠ABC=2∠ADE+2∠ABF=180°,∴∠ADE+∠ABF=90°,又∵∠A=90°,∠ADE+∠AED=90°,∴∠AED=∠ABF,∴ED∥BF(同位角相等,两直线平行).24.在△ECD中∵∠C+∠CED+∠CDE=180°(三角形内角和定理),又∵∠CAB=∠CED+∠CDE(已知),∴∠C+∠CAB=180°(等量代换),∴AB∥CD(同旁内角互补,两直线平行)25.∵CD⊥AB,GF⊥AB,∴CD∥FG,∴∠2=∠DCG;又∵∠1=∠2,∴∠DCG=∠1,∴DE∥BC26.∵∠CAD=∠ACB,∴AD∥BC,∵EF⊥CD,∴∠EFC=90°∵∠D=90°,∴∠EFC=∠D,∴AD∥EF,∴BC∥EF,∴∠AEB=∠B.27.∵∠E=∠F,∴AE∥FP,∴∠PAE=∠APF;又∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,即∠2+∠PAE=∠1+∠APF;∴∠2=∠128.∵DC⊥EC,∴∠1+∠2=90°,又∠D=∠1,∠E=∠2,∴∠D+∠1+∠E+∠2=180°.根据三角形的内角和定理,得∠A+∠B=180°,∴AD∥BE29.∵∠A+∠ABC+∠C+∠CDA=360°而∠A=∠C,BE平分∠ABC,DF平分∠CDA∴2∠A+2∠ABE+2∠ADF=360°即∠A+∠ABE+∠ADF=180°又∠A+∠ABE+∠AEB=180°∴∠AEB=∠ADF∴BE∥DF30.∠C=∠D.理由如下:∵∠A=∠F,∴DF∥AC,∴∠D=∠DBA.∵∠1=∠DGF,又∵∠1=∠2,∴∠2=∠DGF,∴DB∥EC,∴∠DBA=∠C,∴∠C=∠D31.∵四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠CDA=180°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∵∠A=90°,∴∠1+∠AEB=90°,∵∠1=∠2,∴∠AEB=∠3,∴BE∥FD.32.∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴a∥b.33.CF∥OD.理由:∵DE⊥AO,BO⊥AO,∴DE∥BO,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴CF∥OD34.∵∠DOB是△COD的外角,∴∠C+∠CDO=∠DOB,又∵∠DOB=∠1+∠2,而∠1=∠2,∠C=∠CDO,∴∠2=∠C,∴CD∥OP35.(1)∵DE平分∠BDF,AF平分∠BAC,∴∠BDF=2∠1,∠BAC=2∠2,又∵∠1=∠2,∴∠BDF=∠BAC,∴DF∥AC;(2)∵AF平分∠BAC,∴∠BAF=∠2.又∵∠1=∠2,∴∠1=∠BAF,∴DE∥AF.36.DE∥AB,∵AD平分∠BAC,∴∠BAC=2∠1,∵EF平分∠DEC,∴∠DEC=2∠2,∵∠1=∠2,∴∠BAC=∠DEC,∴DE∥AB.37.∵∠BDE+∠CDE=∠A+∠ACD,又DE是∠BDC的平分线,∠ACD=∠A,∴∠A=∠BDE,∴DE∥AC.38.∠2与∠B相等时,AC∥BD.理由如下:∵∠A=∠1,∠1=∠2,∴∠A=∠2,∵∠2=∠B,∴∠A=∠B,∴AC∥BD.39.MN与EF平行.理由如下:∵∠1=∠A,∴MN∥AB,∵∠2=∠B,∴EF∥AB,∴MN∥EF.40.∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4,∴AB∥CD.41.∵∠E=∠F,∴BE∥CF,∴∠EBC=∠BCF,∵∠1=∠2,∴∠CBA=∠DCB,∴AB∥CD.42.∵EF⊥CD于F,∴∠EFG=90°,∵∠GEF=25°,∴∠EGF=65°,∵∠1=65°,∴∠1=∠EGF,∴AB∥CD.43.图中共有2对平行线.①AB∥CD.理由如下:∵∠1=∠2=90°,∴AB∥CD(在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行);②∵∠2=90°,∴∠4+∠5=90°,又∵∠3=30°,∠4=60°,∴∠3=∠5,∴EF∥HG(同位角相等,两直线平行).综上所述,图中共有2对平行线,它们是:AB∥CD、EF∥HG44.AB∥CD,理由:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴AB∥CD.45.∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFC=90°(垂直的定义),∴∠B=90°﹣∠1(直角三角形两锐角互余),∠GFC=90°﹣∠2(互余的定义),∵∠1=∠2(已知),∴∠B=∠GFC(等角的余角相等),∴AB∥GF(同位角相等,两直线平行)46.∵∠B=∠1,∴AB∥DE(同位角相等,两直线平行),∴∠2=∠ADE(两直线平行,内错角相等)∵∠2=∠E,∴∠E=∠ADE,∴AD∥CE(内错角相等,两直线平行).47.∵EM平分∠BEF,FN平分∠DFH,∴∠BEF=2∠MEF,∠DFH=2∠NFH,∵∠BEF=∠DFH,∴∠MEF=∠NFH,∴EM∥FN48.BE∥CF,理由是:∵BE,CF分别平分∠ABC和∠BCD,∴∠1=∠ABC,∠2=∠BCD,∵∠ABC=∠BCD,∴∠1=∠2,∴BE∥CF.49.DB与EC的位置关系是平行,理由:∵∠1=∠3,∠2=∠4(对顶角相等),又∵∠1=∠2,∴∠3=∠4,∴BD∥EC.50.(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.(2)DG∥BC,理由是:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC.51.GH∥MN.理由如下:∵HG平分∠AHM,MN平分∠DNH(已知),∴∠GHM∠AHM,∠NMH=∠DMH(角平分线定义),而∠AHM=∠DMH(已知)∴∠GHM=∠NMH(等量代换),∴GH∥MN.(内错角相等,两直线平行) 52.∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD53.∵EG⊥FG,∴∠G=90°,∴∠1+∠3=90°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴AB∥CD.54.:∵∠1+∠2=180°,∠1=130°,∴∠2=50°,∵∠A=50°,∴∠A=∠2,∴AB∥CD.55.(1)∵DE⊥AC,BF⊥AC,∴∠AED=∠CFB=90°,∴∠DAE+∠1=90°,∠BCF+∠2=90°,∵∠1=∠2,∴∠DAE=∠BCF,∴AD∥BC;(2)AB∥CD.理由如下:∵∠DAE=∠BCF,∠DAB=∠DCB,∴∠DAB﹣∠DAE=∠DCB﹣∠BCF,即∠CAB=∠ACD,∴AB∥CD.56.(1)AD与BC一定平行.理由如下:∵AB⊥AC,∴∠BAC=90°,∵∠1=30°,∠B=60°,∴∠1+∠BAC+∠B=180°,即∠BAD+∠B=180°,∴AD∥BC.(2)AB与CD不一定平行.57.∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.58.EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=2(已知),∴EF∥AD(内错角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC于点D(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,所以EF与BC的位置关系是垂直.59.∵CE平分∠ACD,∴∠1=∠2,∵∠1=∠B,∴∠2=∠B,∴AB∥CE.60.∵∠1=∠2,∴AB∥CD,∵∠3=∠4,∴AD∥BC,故可以判定AB∥CD,AD∥BC.。
(完整版)平行线常考经典较难题、压轴题例题和巩固练习
平行线 例1 翻折 1、如图,把一张长方形纸带沿着直线GF 折叠,∠CGF=30°,则∠1的度数是的度数是.2、如图,生活中将一个宽度相等的纸条按图所示折叠一下,如果∠2=100°,那么∠1的度数为 .例2 旋转 1、将一副直角三角尺ABC 和CDE 按如图方式放置,其中直角顶点C 重合,∠D=45°,∠A=30°.将三角形CDE 绕点C 旋转,若DE ∥BC ,则直线AB 与直线CE 的较大的夹角∠1的大小为的大小为 度.度.例3 平行线的性质1、已知,直线AB ∥DC ,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB 、CD 之间,当∠BAP=60°,∠DCP=20°时,求∠APC .(2)如图2,点P 在直线AB 、CD 之间,∠BAP 与∠DCP 的角平分线相交于点K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由.之间的数量关系,并说明理由.(3)如图3,点P 落在CD 外,∠BAP 与∠DCP 的角平分线相交于点K ,∠AKC 与∠APC 有何数量关系?并说明理由.量关系?并说明理由. 1AED B C2、如图,两直线AB 、CD 平行,则∠1+∠2+∠3+∠4+∠5= .3、已知直线AB ∥CD . (1)如图1,直接写出∠BME 、∠E 、∠END 的数量关系为的数量关系为 ; (2)如图2,∠BME 与∠CNE 的角平分线所在的直线相交于点P ,试探究∠P 与∠E 之间的数量关系,并证明你的结论;系,并证明你的结论;(3)如图3,∠ABM=∠MBE ,∠CDN=∠NDE ,直线MB 、ND 交于点F ,则= .例4 平移1、如图1所示,已知BC ∥OA ,∠B=∠A=120°(1)说明OB ∥AC 成立的理由.成立的理由. (2)如图2所示,若点E ,F 在BC 上,且∠FOC=∠AOC ,OE 平分∠BOF ,求∠EOC 的度数.的度数. (3)在(2)的条件下,若左右平移AC ,如图3所示,那么∠OCB :∠OFB 的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA 时,求∠OCA 的度数.的度数.2、如图,已知AM ∥BN ,∠A=60°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)求∠CBD 的度数;的度数; (2)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P 运动到使∠ACB=∠ABD 时,∠ABC 的度数是的度数是.例5 作图—应用1、(1)如图1,一个牧童从P 点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.羊群走的路程最短?请在图中画出最短路线.(2)如图2,在一条河的两岸有A ,B 两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段CD 表示.试问:桥CD 建在何处,才能使A 到B 的路程最短呢?请在图中画出桥CD 的位置.的位置.2、如图,平面上有直线a 及直线a 外的三点A 、B 、P .(1)过点P 画一条直线m ,使得m ∥a ;(2)过B 作BH ⊥直线m ,并延长BH 至B ′,使得BB ′为直线a 、m 之间的距离;之间的距离;(3)若直线a 、m 表示一条河的两岸,现要在这条河上建一座桥(桥与河岸垂直),使得从村庄A 经桥过河到村庄B 的路程最短,试问桥应建在何处?画出示意图.的路程最短,试问桥应建在何处?画出示意图.【巩固练习】【巩固练习】1、如图,AB ∥DE ,∠ABC 的角平分线BP 和∠CDE 的角平分线DK 的反向延长线交于点P 且∠P ﹣2∠C=57°,则∠C 等于(等于( )A .24°B .34°C .26°D .22° 图2图1P BA题图第2题图题图第1题图2、如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )A.76° B.78° C.80° D.82°3、在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类的位置关系是( )推,则l1和l8的位置关系是(A.平行.平行或垂直 D.无法确定.无法确定 .平行 B.垂直.垂直 C.平行或垂直4、如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F为定值,其中结论正确的有(为定值,其中结论正确的有( )A.1个 B.2个 C.3个 D.4个第5题图题图第4题图题图5、如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于(等于( )A.180° B.360° C.540° D.720°6、如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为的值为 .第9题图题图题图第8题图第7题图题图7、如图所示,AB∥CD,∠E=35°,∠C=20°,则∠EAB的度数为的度数为 .8、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B﹣∠D=24°,则∠GEF= .9、已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D分别作DF∥AC交AB所的度数是.在直接于F,DE∥AB交AC所在直线于E.若∠A=80°,则∠FDE的度数是10、如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG ⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;的数量关系;(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.的数量关系.11、已知AM∥CN,点B为平面内一点,AB⊥BC于B.;(1)如图1,直接写出∠A和∠C之间的数量关系之间的数量关系(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.的度数.12、如图1,AB∥CD,E是AB、CD之间的一点.之间的一点.之间的数量关系,并证明你的结论;(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.写出∠AFD与∠AED之间的数量关系;之间的数量关系;(3)将图2中的射线DC 沿DE 翻折交AF 于点G 得图3,若∠AGD 的余角等于2∠E 的补角,求∠BAE 的大小.的大小.13、已知:如图,BC ∥OA ,∠B=∠A=100°,试回答下列问题:,试回答下列问题:(1)如图①所示,求证:OB ∥AC .(注意证明过程要写依据).(注意证明过程要写依据)(2)如图②,若点E 、F 在BC 上,且满足∠FOC=∠AOC ,并且OE 平分∠BOF .(ⅰ)求∠EOC 的度数;的度数; (ⅱ)求∠OCB :∠OFB 的比值;的比值;(ⅲ)如图③,若∠OEB=∠OCA .此时∠OCA 度数等于度数等于 .(在横线上填上答案即可).(在横线上填上答案即可)14、已知直线AB ∥CD .(1)如图1,直接写出∠ABE ,∠CDE 和∠BED 之间的数量关系是之间的数量关系是 . (2)如图2,BF ,DF 分别平分∠ABE ,∠CDE ,那么∠BFD 和∠BED 有怎样的数量关系?请说明理由.理由.(3)如图3,点E 在直线BD 的右侧,BF ,DF 仍平分∠ABE ,∠CDE ,请直接写出∠BFD 和∠BED 的数量关系的数量关系.。
平行线的证明章末重难点突破八年级数学上册(北师大版)
平行线的证明章末重难点突破【北师大版】【考点1 推理与论证】【例1】(2021秋•嵊州市期中)甲和乙玩一个猜数游戏,规则如下:已知五张纸牌上分别写有1、2、3、4、5五个数字,现甲、乙两人分别从中各自随机抽取一张,然后根据自己手中的数推测谁手上的数更大.甲看了看自己手中的数,想了想说:我不知道谁手中的数更大;乙听了甲的判断后,思索了一下说:我也不知道谁手中的数更大.假设甲、乙所作出的推理都是正确的,那么乙手中的数是.【变式1-1】(2021秋•呼和浩特月考)小强是个自理能力很强的孝顺的好孩子,他每天下午放学都要帮父母煮饭.具体操作时间如下:淘米(3分钟),煮饭(25分钟),洗菜(7分钟),切菜(4分钟),炒菜(10分钟).如果煮饭和炒菜用不同锅和炉子,小强要把饭菜都烧好至少需要分钟.【变式1-2】(2021春•海淀区校级期中)一个俱乐部里只有两种成员:一种是老实人,永远说真话;一种是骗子,永远说假话.某天俱乐部的全体成员围坐成一圈,每个老实人两旁都是骗子,每个骗子两旁都是老实人.外来一位记者问俱乐部的成员张三:“俱乐部里共有多少成员?”张三答:“共有45人.”另一个成员李四说:“张三是老实人.”据此可判断李四是(填“老实人”或“骗子”).【变式1-3】(2021春•海淀区校级期末)为了传承中华文化,激发学生的爱国情怀,提高学生的文学素养,某学校初一(9)班举办了“古诗词”大赛,现有小恩、小地、小奕三位同学进入了最后冠军的角逐,决赛共分为六轮,规定:每轮分别决出第1,2,3名(没有并列),对应名次的得分都分别为a,b,c(a >b>c且a,b,c均为正整数).选手最后得分为各轮得分之和,得分最高者为冠军.如表是三位选手在每轮比赛中的部分得分情况,根据题中所给信息,小奕同学第三轮的得分为分.第一轮第二轮第三轮第四轮第五轮第六轮最后得分小恩a a27小地a b c11小奕c b10【考点2 命题与定理】【例2】(2021秋•信都区校级月考)下列命题是假命题的是()A.同位角相等,两直线平行B.对顶角相等C.过直线外一点有且只有一条直线与已知直线平行D.两直线平行,同旁内角相等【变式2-1】(2021春•西城区校级期中)举例说明命题“如果ac>bc,那么a>b”是假命题,a=1,b=,c=.【变式2-2】(2021秋•安徽期中)对于命题“若a<b,则a2<b2”,小明想举一个反例说明它是假命题,则下列符合要求的反例是()A.a=0,b=1B.a=﹣2,b=﹣1C.a=13,b=12D.a=1,b=2【变式2-3】(2021秋•安徽期中)如图,有如下四个论断:①AC∥DE;②DC∥EF;③CD平分∠BCA;④EF平分∠BED.若选择四个论断中的三个作为条件,余下的一个作为结论,构成一个数学命题,则真命题有()A.1个B.2个C.3个D.4个【考点3 平行公理与推论】【例3】(2021春•雨花区校级期末)下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直【变式3-1】(2021•滨州模拟)如图:PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是:.【变式3-2】(2021春•宜昌校级期中)探索与发现:(1)若直线a1⊥a2,a2∥a3,则直线a1与a3的位置关系是,请说明理由.(2)若直线a1⊥a2,a2∥a3,a3⊥a4,则直线a1与a4的位置关系是(直接填结论,不需要证明)(3)现在有2011条直线a1,a2,a3,…,a2011,且有a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,请你探索直线a1与a2011的位置关系.【变式3-3】(2021春•忻州期中)已知:如图,AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数;请补全下列解法中的空缺部分.解:过点P作PG∥AB交AC于点G.∵AB∥CD(),∴+∠ACD=180°(),∵PG∥AB(),∴∠BAP=(),且PG∥(平行于同一直线的两直线也互相平行),∴∠GPC=(两直线平行,内错角相等),∵AP平分∠BAC,CP平分∠ACD.∴∠BAP=12∠,∠PCD=12∠.(),∴∠BAP+∠PCD=12∠BAC+12∠ACD=90°(),∴∠APC=∠APG+∠CPG=∠BAP+∠CDP=90°.总结:两直线平行时,同旁内角的角平分线.【考点4 平行线的判定与性质】【例4】(2021春•樟树市期末)如图,BE平分∠ABC交CD的延长线于E,∠ABC=2∠E,∠ADE=∠BCD.(1)请说明AB∥EF的理由;(2)若AF平分∠BAD交DC的延长线于F,判断AF与BE的位置关系,并说明理由.【变式4-1】(2021春•覃塘区期末)已知:∠AOB=α(0°<α<90°),一块三角板CDE中,∠CED=90°,∠CDE=30°,将三角板CDE如图所示放置,使顶点C落在OB边上,经过点D作直线MN∥OB交OA边于点M,且点M在点D的左侧.(1)如图,若CE∥OA,∠NDE=45°,则α=°;(2)若∠MDC的平分线DF交OB边于点F,①如图,当DF∥OA,且α=60°时,试说明:CE∥OA;②如图,当CE∥OA保持不变时,试求出∠OFD与α之间的数量关系.【变式4-2】(2021春•顺平县期末)将一副三角板的直角顶点重合按如图放置,得到下列结论:①∠2=∠3;②如果∠3=60°,那么AC∥DE;③如果BC∥AD,那么∠2=45°;④如果∠CAD=150°,那么∠4=∠C.其中正确的有()A.1个B.2个C.3个D.4个【变式4-3】(2021春•重庆期中)已知:AB∥CD,E、G是AB上的点,F、H是CD上的点,∠1=∠2.(1)如图1,求证:EF∥GH;(2)如图2,过F点作FM⊥GH交GH延长线于点M,作∠BEF、∠DFM的角平分线交于点N,EN交GH于点P,求证:∠N=45°;(3)如图3,在(2)的条件下,作∠AGH的角平分线交CD于点Q,若3∠FEN=4∠HFM,直接写出∠GQH的值.∠MPN【考点5平行线的判定与性质与三角形内角和综合】【例5】(2021春•镇海区期中)如图,已知AP平分∠BAC,CP平分∠ACD,∠1+∠2=90°,下列结论正确的有()①AB∥CD;②∠ABE+∠CDF=180°;③AC∥BD;④若∠ACD=2∠E,则∠CAB=2∠F.A.1个B.2个C.3个D.4个【变式5-1】(2021•路南区二模)在探究证明“三角形的内角和是180°”时,综合实践小组的同学作了如图所示四种辅助线,其中不能证明“三角形内角和是180°”的是()A.过C作EF∥BCB.延长AC到F,过C作CE∥ABC.作CD⊥AB于点DD.过AB上一点D作DE∥BC,DF∥AC【变式5-2】(2021春•济南期中)如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠ADE的度数为()A.100°B.110°C.120°D.130°【变式5-3】(2021春•沙坪坝区校级期中)如图,延长△ABC的边AC到点E,过点E作DE∥BC,BG平分∠ABC,EF平分∠AED交BG的反向延长找于点F.已知3∠A=4∠F,则∠A的大小为()A.75°B.74°C.72°D.70°【考点6 三角形的外角与内角和】【例6】(2021春•临城县期末)△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由;(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.对BF∥OD进行说理.【变式6-1】(2021春•铅山县校级月考)如图(1)所示,已知l1∥l2,MN分别和直线l1、l2交于点A、B,ME分别和直线l1、l2交于点C、D.点P在MN上(P点与A、B、M三点不重合).∠PDB=α,∠PCA =β,∠CPD=γ.(1)探究:若点P在A、B两点之间运动时,α、β、γ之间有何数量关系?请说明理由.(2)拓展:如图(2),过C点作CF∥AB,易证:∠ACD=∠BAC+∠ABC.(不必证明)发现结论:三角形的一个外角等于和它不相邻的两个内角和.应用:若图(1)点P在A、B两点外侧运动时,利用图(2)中的结论再探究α、β、γ之间有何数量关系?请说明理由.【变式6-2】(2021秋•蚌埠期中)如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=1 2(∠BAC﹣∠C);④∠BGH=∠ABE+∠C.其中正确的是.【变式6-3】(2021秋•开江县期末)如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=82°,则∠BEC=;若∠A=a°,则∠BEC=.【探究】(1)如图2,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB,若∠A=a°,则∠BEC=;(2)如图3,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请说明理由;(3)如图4,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.【考点7 平行线的判定与性质的应用】【例7】(2021春•零陵区期末)某市为了美化亮化某景点,在两条笔直的景观道MN、QP上,分别放置了A、B两盏激光灯,如图所示,A灯发出的光束自AM逆时针旋转至AN便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动a度,B灯每秒转动b度,且满足|a ﹣4b|+(a+b﹣5)2=0,若这两条景观道的道路是平行的,即MN∥QP.(1)求a、b的值;(2)B灯先转动15秒,A灯才开始转动,当A灯转动5秒时,两灯的光束AM′和BP′到达如图①所示的位置,试问AM′和BP′是否平行?请说明理由;(3)在(2)的情况下,当B灯光束第一次达到BQ之前,两灯的光束是否还能互相平行,如果还能互相平行,那么此时A灯旋转的时间为秒.(不要求写出解答过程)【变式7-1】(2021秋•香坊区校级期中)如图1,潜望镜是指从海面下伸出海面或从低洼坑道伸出地面,用以窥探海面或地面上活动的装置.其构造与普通地上望远镜相同,唯另加两个反射镜使物光经两次反射而折向眼中,潜望镜常用于潜水艇,坑道和坦克内用以观察敌情.光线经过镜子反射时,抽象出的数学图形如图2所示,已知AB∥CD,∠1=∠2,请问进入潜望镜光线EA和出潜望镜光线DF是否平行?并说明理由.【变式7-2】(2021春•海珠区校级期中)钱塘江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)求a、b的值;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前,若射出的光束交于点C,过C作CD⊥AC交PQ 于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.【变式7-3】(2021春•莱山区期末)我区正在打造某河流夜间景观带,计划在河两岸设置两座可以旋转的射灯.如图1,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射.若灯A转动的速度是2度/秒,灯B转动的速度是1度/秒,假定河两岸是平行的,即PQ∥MN,且∠BAM=2∠BAN.(1)∠BAN=度.(2)灯A射线从AM开始顺时针旋转至AN需要秒;(3)若灯B射线BD(交MN于点D)先转动30秒,灯A射线AC(交PQ于点C)才开始转动.设AC 转动时间为t秒,当AC到达AN之前时,如图2所示.①∠PBD=度,∠MAC=度(用含有t的代数式表示);②求当AC转动几秒时,两灯的光束射线AC∥BD?(4)在BD到达BQ之前,是否还存在某一时刻,使两灯的光束射线AC∥BD?若存在,直接写出转动时间,若不存在,请说明理由.【考点8 平行线中的动点问题】【例8】(2021春•太和县期末)已知:△ABC和同一平面内的点D.(1)如图1,点D在BC边上,过D作DE∥BA交AC于E,DF∥CA交AB于F.①依题意,在图1中补全图形;②判断∠EDF与∠A的数量关系,并直接写出结论(不需证明).(2)如图2,点D在BC的延长线上,DF∥CA,∠EDF=∠A.判断DE与BA的位置关系,并证明.(3)如图3,点D是△ABC外部的一个动点,过D作DE∥BA交直线AC于E,DF∥CA交直线AB于F,直接写出∠EDF与∠A的数量关系(不需证明).【变式8-1】(2021春•汉阳区期中)如图:MN∥HP,直线L交MN于A,交HP于B,点C为线段AB上一定点,点D为直线HP上一动点.(1)当点D在射线BH上运动时(B点除外),∠BCD+∠BDC与∠MAB有何数量关系?猜想出结论并说明理由;(2)当点D在射线BP上运动时(B点除外),∠BCD+∠BDC与∠MAB又有何数量关系?画出图形,猜想出结论(无需说明理由).【变式8-2】(2021春•罗湖区校级期末)如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE 三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.【变式8-3】(2021春•饶平县校级期中)已知:如图,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①所示,求证:OB∥AC.(注意证明过程要写依据)(2)如图②,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.(ⅰ)求∠EOC的度数;(ⅱ)求∠OCB:∠OFB的比值;(ⅲ)如图③,若∠OEB=∠OCA.此时∠OCA度数等于.(在横线上填上答案即可)【考点9 外角在坐标系中的运用】【例9】(2021秋•绥阳县期中)如图所示,在平面直角坐标系中,线段AB 的端点A 在y 轴上,端点B 在x 轴上,BF 平分∠ABO 并与△ABO 的外角平分线AE 所在的直线交于点F .∠ABO =60°,求∠F 的大小.【变式9-1】(2021春•番禺区期末)(1)如图1,点D 在射线BC 上,求证:∠ACD =∠A +∠B .(2)如图2,在直角坐标系xOy 中,点A 在y 轴上,点C 在x 轴上,点F 是线段AC 上一点,满足∠FOC =∠FCO ,点E 是线段OA 上一动点(不与A ,O 重合),连接CE 交OF 于点H .当点E 在线段OA 上运动的过程中,∠OHC+∠ACE ∠OEC 的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.【变式9-2】(2021春•建昌县期末)已知:如图,在平面直角坐标系xOy中,点A为x轴负半轴上一点C (0,﹣2),D(﹣3,﹣2).(1)求△BCD的面积;(2)若AC⊥BC于C,作∠CBA的平分线交CO于P,交CA于Q,求证:∠CQP=∠CPQ(3)若点B为x轴正半轴上的动点,∠ACB的平分线CE交DA的延长线于E点,设∠ADC=∠DAC=α,∠ACE=β,请你用含α、β的式子表示∠E的大小;(4)在(3)的条件下,∠E∠ABC的值是否变化?若不变,求出其值;若变化,请说明理由.【变式9-3】(2021春•汉阳区期中)如图:在直角坐标系中,已知B (b ,0),C (0,c ),且|b +3|+(2c ﹣8)2=0.(1)求B 、C 的坐标;(2)点A 、D 是第二象限内的点,点M 、N 分别是x 轴和y 轴负半轴上的点,∠ABM =∠CBO ,CD ∥AB ,MC 、NB 所在直线分别交AB 、CD 于E 、F ,若∠MEA =70°,∠CFB =30°.求∠CMB ﹣∠CNB 的值;(3)如图:AB ∥CD ,Q 是CD 上一动点,CP 平分∠DCB ,BQ 与CP 交于点P ,给出下列两个结论:①∠DQB+∠QBC ∠QPC 的值不变;②∠DQB+∠QBC ∠QPC 的值改变.其中有且只有一个是正确的,请你找出这个正确的结论并求其定值.【考点10 外角中的动点问题】【例10】(2021秋•安次区校级月考)(1)如图1,这是一个五角星ABCDE,你能计算出∠A+∠B+∠C+∠D+∠E的度数吗?为什么?(必须写推理过程)(2)如图2,如果点B向右移动到AC上,那么还能求出∠A+∠DBE+∠C+∠D+∠E的大小吗?若能结果是多少?(可不写推理过程)(3)如图,当点B向右移动到AC的另一侧时,上面的结论还成立吗?(4)如图4,当点B、E移动到∠CAD的内部时,结论又如何?根据图3或图4,说明你计算的理由.【变式10-1】(2021秋•蓟县期中)如图,已知∠XOY=90°,点A,B分别在射线OX,OY上移动,BE 是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.试问∠ACB的大小是否变化?若不变,请给出证明,若随点A,B的移动发生变化,请求出变化范围.【变式10-2】(2021春•江都区期末)某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°;图②中,∠D=90°,∠F=45°.图③是该同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,该同学发现:F、C两点间的距离逐渐;连接FC,∠FCE 的度数逐渐.(填“不变”、“变大”或“变小”)(2)△DEF在移动的过程中,∠FCE与∠CFE度数之和是否为定值,请加以说明.(3)能否将△DEF移动至某位置,使F、C的连线与AB平行?请求出∠CFE的度数.【变式10-3】(2021春•海口期末)如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B 在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)∠ACB=;(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,过C作直线与AB交于F,且满足∠AGO﹣∠BCF=45°,求证:CF∥OB。
初一平行线证明题(精选多篇)
初一平行线证明题(精选多篇)第一篇:初一平行线证明题初一平行线证明题用反证法a平面垂直与一条直线,设平面和直线的交点为pb平面垂直与一条直线,设平面和直线的交点为q假设a和b不平行,那么一定有交点。
设有交点r,那么做三角形pqrpr垂直pqqr垂直pq没有这样的三角形。
因为三角形的内角和为180所以a一定平行于b证明:如果a‖b,a‖c,那么b‖c证明:假使b、c不平行则b、c 交于一点o又因为a‖b,a‖c所以过o有b、c两条直线平行于a这就与平行公理矛盾所以假使不成立所以b‖c由同位角相等,两直线平行,可推出:内错角相等,两直线平行。
同旁内角互补,两直线平行。
因为a‖b,a‖c,所以b‖c(平行公理的推论)2“两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。
一、怎样证明两直线平行证明两直线平行的常用定理(性质)有:1.两直线平行的判定定理:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行(或垂直)于同一直线的两直线平行.2、三角形或梯形的中位线定理.3、如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.4、平行四边形的性质定理.5、若一直线上有两点在另一直线的同旁).(a)艺l=匕3(b)/2=艺3(c)匕4二艺5(d)匕2+/4=18)分析:利用平行线判定定理可判断答案选c认六一值!小人﹃夕叱的一试勺洲洲川jlze一b/(一、图月一飞/匕一|求且它们到该直线的距离相等,则两直线平行.例1(2014年南通市)已知:如图l,下列条件中,不能判断直线l,//l:的是(b).例2(2014年泉州市)如图2,△注bc中,匕bac的平分线ad交bc于d,④o过点a,且和bc切于d,和ab、ac分别交b于e、f,设ef交ad于c,连结df.(l)求证:ef//bc(1)根据定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 平行线的性质和判定拔高训练
1.(1) 如图1所示,把一个长方形纸片沿EF 折叠后,点D,C 分别落在'D ,'
C 的位置.若∠EF B
=65°,则'AED 等于__________.
(2) 如图2所示,AD ∥EF ,EF ∥BC ,且EG ∥AC .那么图中与∠1相等的角(不包括∠1)的个数是__________.
(3)如图3所示,AB ∥C D,直线AB ,CD 与直线l相交于点E,F,EG 平分∠AE F,FH 平分∠EFD ,则GE 与FH 的位置关系为__________.
2.如果一个角的两边分别平行于另一个角的两边,且其中一个角比另一个角的4倍少30°,那么这两个角分别是( )
A .30°和150°ﻩ ﻩ
B .42°和138°ﻩ
C .都等于10° ﻩﻩ ﻩ ﻩ
D .42°和138°或都等于10°
3.如图所示,点E在CA 延长线上,DE 、AB交于点F ,且∠BDE =∠AEF ,∠B =∠C,
∠EFA 比∠FDC 的余角小10°,P为线段DC 上一动点,Q 为PC 上一点,且满足∠FQP =∠QFP ,F M为∠EF P的平分线.则下列结论:①AB ∥CD ,②FQ 平分∠AFP ,③∠B+∠E =140°,④∠Q EM 的角度为定值.其中正确的结论有( )个数
A.1ﻩﻩﻩﻩB.2ﻩﻩﻩﻩC .3 ﻩD.4
4.如图所示,AB ∥EF ,E F∥CD,E G平分∠BEF ,∠B +∠BED +∠D=192°, ∠B-∠D =24°,则∠GEF =__________.
5.已知:如图所示,AD ⊥B C于点D ,E G⊥BC 于点G ,∠E =∠3.求证:AD 平分∠B AC .
6.如图所示,AB∥CD,∠1=∠2,∠3=∠4,试说明:AD∥BE.
7.如图所示,已知∠DBF=∠CAF,CE⊥FE.垂足为E,∠BDA+∠ECA=180°, 求证:DA⊥EF
8.已知,如图所示,∠1+∠2=180°,∠1+∠EFD=180°,∠3=∠B,试判断∠AED与∠C
的关系,并证明你的结论.
9.已知,如图所示,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.
10.如图所示,在△ABC中,CE⊥AB于点E,DF⊥AB于点F,AC∥ED,CE是△ACB的角平分线.求证:∠EDF=∠BDF.
11.如图,AB∥CD,∠ABF=∠DCE,求证∠BFE=∠FEC。