有理数的加法说课稿
有理数的加法说课稿

有理数的加法说课稿有理数的加法说课稿范文有理数的加法说课稿(一)尊敬的各位评委、各位老师,我是来自洪洞县有理数的加法大槐树一中的数学教师,我叫fwsir,今天的说课题目是【有理数的加法法则】第一节。
我们知道有理数是整个代数的基础,而有理数的加法运算又是初中数学的基本运算,因此可以说有理数这一章,是整个初等数学的奠基石,它所隐含的丰富的内容反映了中学阶段许多重要的数学思想方法。
一、教材分析;二、教法分析;三、学法指导;四、教学过程教材分析:在教材分析中我将谈一下几点:(一)、教材的地位与作用:【有理数的加法法则】是初中华师版七年级上册第二章第六节的内容,在这之前,学生已经在小学掌握了算术运算,而前边的学习又初步掌握了有理数的基本概念,有理数的加法运算是建立在小学运算的基础之上的,又与小学加法运算有很大的区别,如小学的加法运算不需要确定符号运算单一,而有理数的加法不但要计算绝对值的大小而且还要确定结果的符号,由算术到代数式学生从小学到初中的一个新的转折点。
而有理数的加法又是有理数运算的主要内容是初等数学运算的基础,同时又是学习物理、化学等相关学科的基础。
因此,这部分内容在学习数学及其他方面占有相当重要的地位及作用。
(二)、教学内容:有理数的加法的教学共分2课时,这是有理数的加法第一课时。
本节课主要讲授有理数加法的意义,归纳有理数加法的法则,能区别有理数的和与小学运算的和的不同,并要求学生在掌握法则的基础上熟练地进行有理数的加法运算。
(三)、教学目标:倡导有理数的加法要以学生为主,让学生参与"观察、猜想、验证、归纳、运用"的全过程。
以培养创新意识与培养能力为宗旨。
从教材的特点和初一学生的认知水平,以教学思维为出发点。
我设计如下的教学目标:1、知识目标:使学生有理数加法的意义,掌握有理数加法的法则,并要求学生在掌握法则的基础上熟练地进行有理数的加法运算。
2、能力目标:在本节课的教学中,借助数轴向学生渗透数形结合的思想,利用绝对值把有理数的加法运算化归为小学算术的加减运算,体现化归的思想,以及适度加强法则的形成过程,着重培养学生"观察、猜想、验证、归纳、运用"等综合能力。
有理数的加法优质课教案及教学反思(附说课稿)

有理数的加法优质课教案及教学反思(附说课稿)导语:由于有理数的加法是有理数运算的开始,因而它是时一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。
同时,学好这部分内容,对减少两极分化、增强学生学习代数的信心具有十分重要的意义。
以下是品才整理的有理数的加法优质课教案及教学反思,欢迎阅读参考!有理数的加法优质课教案及教学反思一、教材分析有理数的加法是有理数运算的一个非常重要的内容,它建立在小学算术运算的基础上。
但是,它与小学的算术又有很大的区别,小学的加法运算不需要确定和的符号,运算单一,而有理数的加法,既要确定和的符号,又要计算和的绝对值。
因此,有理数加法运算,在确定“和”的符号后,实质上是进行算术数的加减运算,思维过程就是如何把中学有理数的加法运算化归为小学算术的加减运算。
由于有理数的加法是有理数运算的开始,因而它是时一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。
同时,学好这部分内容,对减少两极分化、增强学生学习代数的信心具有十分重要的意义。
本节课的重点是有理数的加法法则,理由是:(1)要熟练地进行有理数的加法运算,就得深刻理解运算法则,对运算法则理解得越深,运算才能掌握得越好。
(2)有理数的加法作为基本运算,在今后的各种运算中有着广泛的应用。
本课的教学难点是异号两数相加的法则,原因是:学生学习数学是一种认识过程,要遵循一般的认识规律。
而初一年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需有通过绝对值大小的比较来确定和的符号和加法转化为减法两个思维过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度。
在教学时,应从实例出发,充分利用数轴,从数形结合的观点加以讲授,并配以适量的练习,让学生在练习中感知法则的应用。
以求突破这一难点。
二、教学目的的确定1.使学生理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。
有理数的加法说课稿范文有理数加减法说课稿(4篇)

有理数的加法说课稿范文有理数加减法说课稿(4篇)精选有理数的加法说课稿范文一《数学课程标准》安排在小学的其次学段初步熟悉负数,这是小学阶段数学教学新增加的内容。
很久以来,负数的教学始终安排在中学教学的起始阶段,现在考虑到负数在生活中的广泛应用,学生在日常生活中已经接触了一些负数,有了初步熟悉负数的生活根底。
因此《标准》将这一内容提前到小学阶段教学。
熟悉负数,对于小学生来说是数概念的一次拓展。
他们以往熟悉的整数、分数和小数都是算术范围内的数,建立负数的概念则使学生认数的范围从算术的数拓展到有理数,从而丰富了小学生对数概念的熟悉。
这样,有利于中小学数学的连接,为第三学段进一步理解有理数的意义和运算打下良好的根底。
详细目标是:在熟识的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题。
依据这一目标,北京义务教育课程改革试验教材四年级第八册消失了这崭新的一课《正数和负数》。
从《课标》中可以发觉,本课的学习,意在让学生在熟识的生活情境中初步熟悉负数,感受学习的内容就在我们的身边,拓展对数概念的熟悉。
并没有简单的概念与计算,学问层次比拟浅。
我认为,如何充分地呈现负数的产生以及负数的魅力,激起学生学习负数的兴趣,是教师在设计本课时值得关注的问题。
1、以前熟悉的数教材在1、2册安排完成对10以内、20以内和百以内数的熟悉以后在第4册安排了万以内数的熟悉;在其次学段四年级上册完成多位数的熟悉,至此,完成了对正整数的熟悉。
在第6册和第8册教材中分两次安排了分数与小数的初步熟悉。
2、以后将要熟悉的数以后逐步又在第8册和第10册分别又对小数和分数进一步熟悉,在11册一次完成对百分数的熟悉。
3、今日要学习的内容以上的这些数在其次学段即四年级其次学期第8册中消失了负数的熟悉,负数在数轴上显示都是“0”左边的数,这对于小学生来说,是数概念的一次拓展,使学生认数的范围从算术的数拓展的有理数,这是小学生学习有理数的开头。
北师大版数学七年级上册2.4《有理数的加法》(第1课时)说课稿

北师大版数学七年级上册2.4《有理数的加法》(第1课时)说课稿一. 教材分析《有理数的加法》是北师大版数学七年级上册第二章第四节的内容。
本节内容是在学生已经掌握了有理数的概念、运算法则的基础上进行学习的。
有理数的加法是数学中基本的运算之一,它在日常生活和工农业生产中有着广泛的应用。
通过学习有理数的加法,可以培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析面对的是一群刚刚接触初中数学的七年级学生,他们对有理数的概念和运算法则有一定的了解,但还需要进一步的巩固和提高。
学生的学习习惯和思维方式各有不同,因此,在教学过程中,需要关注每一个学生的学习情况,引导他们积极思考,培养他们的抽象思维能力。
三. 说教学目标根据新课程标准的要求,本节课的教学目标分为三个维度:知识与技能、过程与方法、情感态度与价值观。
1.知识与技能:使学生掌握有理数的加法法则,能够正确进行有理数的加法运算。
2.过程与方法:通过观察、分析、归纳等方法,让学生体会数学知识的形成过程,提高他们的抽象思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们克服困难的勇气,增强他们的自信心。
四. 说教学重难点1.教学重点:有理数的加法法则,有理数的加法运算。
2.教学难点:理解并掌握有理数加法的运算规律,能够灵活运用加法法则进行计算。
五. 说教学方法与手段本节课采用自主探究、合作交流的教学方法,让学生在探究中发现问题、解决问题,培养他们的合作意识。
同时,利用多媒体教学手段,为学生提供丰富的学习资源,提高他们的学习兴趣。
六. 说教学过程1.导入新课:通过复习有理数的概念和运算法则,引出本节课的内容——有理数的加法。
2.自主探究:让学生自主研究有理数的加法法则,引导学生发现加法的运算规律。
3.合作交流:学生分组讨论,分享各自的研究成果,互相解答疑问。
4.讲解演示:教师对学生的研究成果进行讲解,并通过多媒体演示有理数的加法运算过程。
5.练习巩固:让学生进行有针对性的练习,检验他们对有理数加法法则的掌握情况。
人教版七年级数学上册:1.3.1《有理数的加法》说课稿

人教版七年级数学上册:1.3.1《有理数的加法》说课稿一. 教材分析《有理数的加法》是人民教育出版社出版的七年级数学上册第一章第三节第一课时内容。
这一节主要介绍有理数的加法运算方法,是学生学习有理数运算的基础知识。
在本节课中,学生将学习如何利用数轴理解有理数的加法,掌握加法的运算律,并能够熟练地进行有理数的加法运算。
二. 学情分析七年级的学生已经具备了一定的数理基础,对数的运算有一定的了解。
但是,对于有理数的加法运算,学生可能还存在着一些困难,如对有理数的概念理解不深,对数轴的使用不熟练等。
因此,在教学过程中,需要注重对学生基础知识的巩固,以及对数轴使用的指导。
三. 说教学目标1.知识与技能目标:学生能够理解有理数的加法概念,掌握有理数的加法运算方法,能够熟练地进行有理数的加法运算。
2.过程与方法目标:通过数轴的使用,学生能够直观地理解有理数的加法,培养学生的数形结合思想。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生积极思考、合作探究的学习态度。
四. 说教学重难点1.教学重点:有理数的加法运算方法,加法的运算律。
2.教学难点:对有理数加法概念的理解,数轴的使用。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过数形结合的方式理解有理数的加法,培养学生的独立思考能力和合作探究能力。
2.教学手段:使用多媒体课件,辅助学生直观地理解有理数的加法,同时利用数轴帮助学生进行运算。
六. 说教学过程1.导入新课:通过简单的实例,引导学生复习已学的数的概念,为新课的学习做好铺垫。
2.探究新知:引导学生通过数轴观察,发现有理数加法的规律,引导学生总结出加法的运算律。
3.巩固新知:通过例题讲解,让学生动手练习,巩固对加法运算的理解。
4.拓展应用:引导学生将加法运算应用于实际问题中,培养学生的应用能力。
5.小结:对本节课的内容进行总结,强调重点知识。
6.布置作业:布置适量的作业,巩固所学知识。
有理数的加法说课稿(通用3篇)

I'd rather run up and be overwhelmed countless times than walk in a proper way for a lifetime.同学互助一起进步(页眉可删)有理数的加法说课稿(通用3篇)有理数的加法说课稿1教学目的1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算。
2.通过有理数的加法运算,培养学生的运算能力。
教学重点与难点重点:熟练应用有理数的加法法则进行加法运算。
难点:有理数的加法法则的理解.教学过程(一)复习提问1.有理数是怎么分类的?2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?-3与-2;3与-3;-3与0;-2与+1;-+4与-3(二)引入新课在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算。
(三)进行新课有理数的加法(板书课题)例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?两次行走后距原点0为8米,应该用加法.为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:1.同号两数相加(1)某人向东走5米,再向东走3米,两次一共走了多少米?这是求两次行走的路程的和。
5+3=8用数轴表示如图:略从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米。
可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和。
(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?显然,两次一共向西走了8米(-5)+(-3)=-8用数轴表示如图:略从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米。
北师大版有理数加法的说课稿

北师大版有理数加法的说课稿(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!北师大版有理数加法的说课稿北师大版有理数加法的说课稿【7篇】说课稿是课堂教学、教学设计的一个重要组成部分,通常由教师根据自己的授课经验和教学目标制定而成。
《有理数的加法》说课稿8篇

《有理数的加法》说课稿8篇《有理数的加法》说课稿1学习目标:1、理解有理数加法意义2、掌握有理数加法法则,会正确进行有理数加法运算3、经历探究有理数有理数加法法则过程,学会与他人交流合作学习重点:和的符号的确定学习难点:异号两数相加的法则学法指导:在探讨有理数的加法法则问题时,利用物体在同一直线上两次运动的过程,理解有理数运算法则。
先仔细观察式子的特点,找到合理的运算步骤,使加法运算简便。
学习过程(一)课前学习导引:1、如果向东走5米记作+5米,那么向西走3米记作2、比较大小:2 -3,-5 - 7,43、已知a=-5,b=+ 3,则︱a ︳+︱ b︱=(二)课堂学习导引正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。
例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。
如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是(1)红队的净胜球数为 4+(-2) ,(2)蓝队的净胜球数为 1+(-1) 。
这里用到正数和负数的加法。
那么,怎样计算4+(-2),1+(-1)的结果呢?现在让我们借助数轴来讨论有理数的加法:某人从一点出发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?规定向东为正,向西为负,请同学们用数学式子表示①先向东走了5米,再向东走3米,结果怎样?可以表示为②先向西走了5米,再向西走了3米,结果如何?可以表示为:③先向东走了5米,再向西走了3米,结果呢?可以表示为:④先向西走了5米,再向东走了3米,结果呢?可以表示为:⑤先向东走了5米,再向西走了5米,结果呢?可以表示为:⑥先向西走5米,再向东走5米,结果呢?可以表示为:从以上几个算式中总结有理数加法法则:(1)、同号的两数相加,取的`符号,并把相加(2)。
绝对值不相等的异号两数相加,取的加数的符号,并用较大的绝对值较小的绝对值。
互为相反数的两个数相加得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《有理数的加法》说课稿
数师111 张超一
说课内容:人教版数学教材§1.3.1《有理数的加法》大家好,今天我要说课的课题是人教版数学教材七年级上册第一章第三节《有理数加法》的第一课时,《在黑板上写§1.3.1有理数的加法》我们知道,有理数是运算的工具,是解决实际问题的一种模型,而本节课是有理数运算的起始课,是学好后续内容的重要前提。
下面我将从教材分析、教材处理、教学方法和教学手段、教学过程向大家阐述我对这节课的理解与设计。
一、说教材:
我从分析本节课在教材中的地位和作用,结合教学大纲来确定本节课的教学目标、和重、难点。
首先来看一下本节课在教材中的地位和作用。
(一)地位和作用
有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。
熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后面学习实数、代数式运算、方程、不等式、函数等知识奠定基础。
有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。
就本章而言,有理数的加法是本章的重点之一。
学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
从以上两点不难看出它的地位与作用的重要性。
(二)课程目标
接下来介绍本节课的教学目标以及重难点。
课程标准中规定,在有理数加法的第一课时,要使学生理解有理数加法的意义,理解有理数加法的法则,并运用法则进行准确运算。
因此根据课程标准的要求,确定本节课的教学目标。
1、知识与技能目标:
是⑴了解有理数加法的意义。
⑵理解并掌握有理数加法的法则。
(3)运用有理数加法法则正确进行运算。
2、过程与方法目标:
是(1)培养学生的分类、归纳、概括的能力。
(2)在探索过程中感受数形结合和分类讨论的数学思想。
(3)渗透由特殊到一般的唯物辩证法思想
3、情感态度与价值观目标:
是 (1)激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)培养学生对数学的热爱,培养学生运用数学的意识。
(三)重点、难点
有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可。
因此本节课的重点是:有理数加法法则的理解与运用。
由于本阶段的学生很难把握住事物主要特征:如同号异号、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。
因此我确定本节课的难点是:有理数加法法则的理解,尤其是理解异号两数相加的法则。
二、教材处理
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念。
《在黑板上写复习》因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用身边的实例,让学生和我一起参加探索发现加法的法则。
在法则的得出过程直接地向学生渗透数形结合的思想,并通过一些变式练习以及书本习题达到训练双基的目的。
三、教学方法与教学手段
在教学过程中,我注重体现教师的导向作用和学生的主体地位。
本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把老师的点拨和学生解决问题结合起来,为学生创设情境,使学生在轻松愉快氛围下学习。
四、教学过程的设计
我将教学过程分为复习、引入、探索、归纳、巩固、总结、作业七个部分。
1、复习:本节课是在之前学习了有理数意义的基础上进行的,学生已经牢固的掌握了正数、负数、数轴、绝对值,所以我没有把太多的时间放在复习旧知
识上,只是选取了与本节课密切相关的绝对值部分的内容,即给出利用绝对值比较大小的题目,因为异号两数相加的情况关键在于比较两数绝对值的大小,我给出的是简单的:
利用绝对值定义比较大小
(1)|-2|与3
(2)|-3|与3
(3)|-5|与0
2、在课堂的引入上,我一开始想要直接用课本的例子,但是它过于直白,不能很好的引起学生的注意,所以在例题的基础上填充体育课的背景,并用无处不在,无所不能的小明做主角,把情境从书上搬到学生身边。
《在黑板上写问题》
问题:在一天东西方向的跑道上,小明站在0点处,如果他第一次行走了5米,第二次行走了3米,问两次行走之后,小明处于什么位置?
3、第三部分就是对上面问题展开的探索,由于法则的得出是知识在学生头脑中发生,发展,形成的过程。
首先借助模拟小人在坐标轴上来回的运动帮助理解问题,由题意可知小明的四种运动情况,即:两次都向东或者向西,一次向东一次向西以及一次向西一次向东。
《在黑板上写分析讨论》
1、同向①先向东走5米,再向东走3米:(+5)+(+3)=+8
②先向西走5米,再向西走3米:(-5)+(-3)=-8
2、异向③先向东走5米,再向西走3米:(+5)+(-3)=+2
④先向西走5米,再向东走3米:(-5)+(+3)=-2
方向的不同得出同号异号两个大类,最后让学生试着写出由数轴转化为数学式子表达的形式。
4、归纳:让学生以小组的形式,观察式子,思考讨论他们自己得出的
结论。
由于规律的得出建立在至少三个同类的形式上,而且绝对值不等的异号两数相加的情况又是本节课的难点,所以我会多给出这类的形式,帮助学生思考。
最后我在他们的基础上归纳结论,并补充互为相反数的两数相加的情况以及与0相加的情况,得出这节课学习的内容:有理数加法的法则。
《在黑板上写有理数加法的法则》
1,同号两数相加,结果取相同符号,并把绝对值相加。
2,异号两数相加,结果取绝对值较大的加数的符号,并将较大的绝对值减较小的绝对值。
3,互为相反数的两个数相加得0.
4,一个数和0相加,仍得这个数。
5、巩固:在习题的配备上,我注意学生的思维是一个循序渐进的过程,所以练习部分我先采用基础的训练题。
《在黑板上写练》
练:1, 7+9= 8+(-3)=
2,-11+(-5)= 9+(-12)=
由学生自主完成,在讲解中强调解题的关键,一观察、二确定符号、三求和,并在黑板上写出详细的解答过程。
紧接着通过两个例题提升对有理数加法的理解,《在黑板上写例》
1,用算是表示:温度从-3度上升7度之后的温度。
2,小红本来在底下二层楼,乘坐电梯上升五层后,她在第几层?
6、总结:小结归纳不应该仅仅是知识的简单罗列,二应该是优化认知结构,完善知识体系的一种有效手段,所以我通过以下三个问题让学生发挥主体作用,自主完成总结工作。
A, 本节课学习,你学会了哪些知识?
B,本节课学习,你最大的体验是什么?
C,本节课学习,你掌握了哪些学习数学的方法?
7、作业:作业是为了达到巩固和发展的目的,所以我选择了书本课后基础题和拓展题两个部分,是发挥作业反馈教学,巩固提高的作用。